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1 Introduction

1.1 Notation

We write partial derivatives as ∂t = ∂
∂t
, ∂j = ∂

∂xj
etc and also use suffix on a function

to indicate partial differentiation: ut = ∂tu etc. A general kth order linear partial
differential operator (pdo) acting on functions u = u(x1, . . . xn) is written:

P =
∑
|α≤k

aα∂
αu . (1.1.1)

Here α = (α1, . . . αn) ∈ Zn+ is a multi-index of order |α| =
∑
αj and

∂α =
∏

∂
αj
j , xα =

∏
x
αj
j . (1.1.2)

For a multi-index we define the factorial α! =
∏
αj!. For (real or complex) con-

stants aα the formula (1.1.1) defines a constant coefficient linear pdo of order k.
(Of course assume always that at least one of the aα with |α| = k is non-zero so
that it is genuinely of order k.) If the coefficients depend on x it is a variable
coefficient linear pdo. The word linear means that

P (c1u1 + c2u2) = c1Pu1 + c2Pu2 (1.1.3)

holds for P applied to Ck functions u1, u2 and arbitrary constants c1, c2.

1.2 Basic definitions

If the coefficients depend on the partial derivatives of a function of order strictly
less than k the operator

u 7→ Pu =
∑
|α≤k

aα(x, {∂βu}|β|<k) ∂αu (1.2.1)

is called quasi-linear and (1.1.3) no longer holds. The corresponding equation
Pu = f for f = f(x) is a quasi-linear partial differential equation (pde). In such
equations the partial derivatives of highest order - which are often most important
- occur linearly. If the coefficients of the partial derivatives of highest order in a
quasi-linear operator P depend only on x (not on u or its derivatives) the equation
is called semi-linear. If the partial derivatives of highest order appear nonlinearly
the equation is called fully nonlinear; such a general pde of order k may be written

F (x, {∂αu}|α|≤k) = 0 . (1.2.2)

Definition 1.2.1 A classical solution of the pde (1.2.2) on an open set Ω ⊂ Rn is
a function u ∈ Ck(Ω) which is such that F (x, {∂αu(x)}|α|≤k) = 0 for all x ∈ Ω .
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Classical solutions do not always exist and we will define generalized solutions
later in the course. The most general existence theorem for classical solutions is the
Cauchy-Kovalevskaya theorem, to state which we need the following definitions:

Definition 1.2.2 Given an operator (1.1.1) we define

• Pprincipal =
∑
|α=k aα∂

αu , (principal part)

• p =
∑
|α≤k aα(iξ)α , ξ ∈ Rn , (total symbol)

• σ =
∑
|α=k aα(iξ)α , ξ ∈ Rn , (principal symbol)

• Charx(P ) = {ξ ∈ Rn : σ(x, ξ) = 0} , (the set of characteristic vectors at x)

• Char(P ) = {(x, ξ) : σ(x, ξ) = 0} = ∪xCharx(P ) , (characteristic variety) .

Clearly σ, p depend on (x, ξ) ∈ R2n for variable coefficient linear operators, but are
independent of x in the constant coefficient case. For quasi-linear operators we
make these definitions by substituting in u(x) into the coefficients, so that p, σ and
(also the definition of characteristic vector) depend on this u(x).

Definition 1.2.3 The operator (1.1.1) is elliptic at x (resp. everywhere) if the
principal symbol is non-zero for non-zero ξ at x (resp. everywhere). (Again the
definition of ellipticity in the quasi-linear case depends upon the function u(x) in
the coefficients.)

The elliptic operators are an important class of operators, and there is a well-
developed theory for elliptic equations Pu = f . Other important classes of opera-
tors are the parabolic and hyperbolic operators: see the introductions to sections
4 and 5 for defintions of classes of parabolic and hyperbolic operators of second
order.

1.3 The Cauchy-Kovalevskaya theorem

The Cauchy problem is the problem of showing that for a given pde and given
data on a hypersurface S ⊂ Rn there is a unique solution of the pde which agrees
with the data on S. This is a generalization of the initial value problem for
ordinary differential equations, and by analogy the appropriate data to be given
on S consists of u and its normal derivatives up to order k−1. A crucial condition
is the following:

Definition 1.3.1 A hypersurface S is non-characteristic at a point x if its normal
vector n(x) is non-characteristic, i.e. σ(x, n(x)) 6= 0. We say that S is non-
characteristic if it is non-characteristic for all x ∈ S.)
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Again for quasi-linear operators it is necessary to substitute u(x) to make sense of
this definition, so that whether or not a hypersurface is non-characteristic depends
on u(x), which amounts to saying it depends on the data which are given on S.

Theorem 1.3.2 (Cauchy-Kovalevskaya theorem) In the real analytic case there
is a local solution to the Cauchy problem for a quasi-linear pde in a neighbourhood
of a point as long as the hypersurface is non-characteristic at that point.

This becomes clearer with a suitable choice of coordinates which emphasizes
the analogy with ordinary differential equations: let the hypersurface be the level
set xn = t = 0 and let x = (x1, . . . xn−1) be the remaining n− 1 coordinates. Then
a quasi-linear P takes the form

Pu = a0k∂
k
t +

∑
|α|+j≤k,j<k

ajα∂
j
t ∂

αu (1.3.1)

with the coefficients depending on derivatives of order < k, as well as on (x, t).
Since the normal vector to t = 0 is n = (0, 0, . . . 0, 1) ∈ Rn the non-characteristic
condition is just a0k 6= 0, and ensures that the quasi-linear equation Pu = f can
be solved for ∂kt u in terms of {∂jt ∂αu}|α|+j≤k,j<k to yield an equation of the form:

∂kt u = G(x, t, {∂jt ∂αu}|α|+j≤k,j<k) (1.3.2)

to be solved with data

u(x, 0) = φ0(x), ∂tu(x, 0) = φ1(x) . . . ∂k−1
t u(x, 0) = φk−1(x) . (1.3.3)

Notice that these data determine, for all j < k, the derivatives

∂jt ∂
αu(x, 0) = ∂αφj(x) , (1.3.4)

(i.e. those involving fewer than k normal derivatives ∂t) on the initial hypersurface.

Theorem 1.3.3 Assume that φ0, . . . φk−1 are all real analytic functions in some
neighbourhood of a point x0 and that G is a real analytic function of its arguments
in a neighbourhood of (x0, 0, {∂αφj(x0)}|α|+j≤k,j<k). Then there exists a unique real
analytic function which satisfies (1.3.3)-(1.3.2) in some neighbourhood of the point
x0.

Notice that the non-characteristic condition ensures that the kth normal derivative
∂kt u(x, 0) is determined by the data through the equation. Differentiation of (1.3.2)
gives further relations which can be shown to determine all derivatives of the
solution at t = 0, and the theorem can be proved by showing that the resulting
Taylor series defines a real-analytic solution of the equation. Read section 1C of
the book of Folland for the full proof.
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In the case of first order equations with real coefficients the method of character-
istics gives an alternative method of attack which does not require real analyticity.
In this case we consider a pde of the form

n∑
j=1

aj(x, u)∂ju = b(x, u) (1.3.5)

with data
u(x) = φ(x) , x ∈ S (1.3.6)

where S ⊂ Rn is a hypersurface, given in paramteric form as xj = gj(σ) , σ =
(σ1, . . . σn−1) ∈ Rn−1. (Think of S = {xn = 0} parametrized by g(σ1, . . . σn−1) =
(σ1, . . . σn−1, 0).)

Theorem 1.3.4 Let S be a C1 hypersurface, and assume that the aj, b, φ are all
C1 functions. Assume the non-characteristic condition:

Σn
j=1aj(x0, φ(x0))nj(x0) 6= 0

holds at a point x0 ∈ S. Then there is an open set O containing x0 in which there
exists a unique C1 solution of (1.3.5) which also satisfies (1.3.6) at all x ∈ O∩S.
If the non-characteristic condition holds at all points of S, then there is a unique
solution of (1.3.5)-(1.3.6) in an open neighbourhood of S.

This is proved by considering the characteristic curves which are obtained by
integrating the system of n+ 1 characteristic ordinary differential equations (ode):

dxj
ds

= aj(x, z) ,
dz

ds
= b(x, z) (1.3.7)

with data xj(σ, 0) = gj(σ), z(σ, 0) = φ(g(σ)); let (X(σ, s), Z(σ, s)) ∈ Rn × R be
this solution. Now compute the Jacobian matrix of the mapping (σ, s) 7→ X(σ, s)
at the point (σ, 0): it is the n × n matrix whose columns are {∂σjg}n−1

j=1 and the
vector a = (a1, . . . an), evaluated at x = g(σ), z = φ(g(σ)). The non-characteristic
condition implies that this matrix is invertible (a linear bijection) and hence, via
the inverse function theorem, that the “restricted flow map” which takes (σ, s) 7→
X(σ, s) = x is locally invertible, with inverse σj = Σj(x), s = S(x) and this
allows one to recover the solution as u(x) = Z(Σ(x), S(x)). This just means we
have found a locally unique characteristic curve passing through x, and have then
found u(x) by tracing its value back along the curve to a point g(Σ(x)) on the
initial hypersurface.

1.4 Various types of equations

We have defined elliptic operators on an open set Ω as partial differential operators
with the property that, for all x ∈ Ω, the princpal symbol σ(x, ξ) vanishes only
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for ξ = 0 . Examples to keep in mind are the Laplacian and the Cauchy-Riemann
operator.

In addition to elliptic operators, later on we will consider parabolic operators
of the form

Lu = ∂tu+ Pu

where

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑
j=1

bj∂ju+ cu (1.4.1)

is a second order elliptic operator - the quadratic form
∑n

j,k=1 ajkξjξk is definite. A
useful slightly stronger condition, which we will use , is that of uniform ellipticity:
there exist positive constants m,M such that

m‖ξ‖2 ≤
n∑

j,k=1

ajkξjξk ≤M‖ξ‖2 (1.4.2)

holds everywhere. The standard example of a parabolic operator is provided by
the heat, or diffusion, equation ut−∆u = 0 , There are other, more general notions
of parabolicity in the literature.

A second order equation of the form

utt +
∑
j

αj∂t∂ju+ Pu = 0

with P as in (1.4.1) (with coefficients potentially depending upon t and x), is called
strictly hyperbolic if the principal symbol

σ(τ, ξ; t, x) = −τ 2 − (α · ξ)τ +
∑
jk

ajkξjξk

considered as a polynomial in τ has two distinct real roots τ = τ±(ξ; t, x) for all
nonzero ξ. We will mostly study the wave equation

utt −∆u = 0 , (1.4.3)

which is the basic hyperbolic operator. Again there are various alternative, more
general notions of hyperbolicity in the literature, in particular that of a strictly
hyperbolic system (see §11.1 in the book of Evans).

These three basic types of operators do not generally form a classification of
all possible operators: for example, the operator ∂2

1 + ∂2
2 − ∂2

3 − ∂2
4 is not elliptic,

parabolic or hyperbolic.
However, the case of second order equations in two space dimensions is special.

An equation of the form

auxx + 2buxy + cuyy = f , (1.4.4)

where a, b, c, f are real-valued smooth functions of x, y, u, ux, uy, is classified as:
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• elliptic in Ω if b2 − ac < 0 throughout Ω ;

• hyperbolic in Ω if b2 − ac > 0 throughout Ω .

The intermediate case, b2 = ac is degenerate - it can lead to an equation which is
parabolic in the sense explained above, but there are other possibilities depending
upon lower order terms: for example the case of an ordinary differential equation
like uxx = 0 satisfies b2 = ac everywhere.

The real significance of the conditions b2 ≷ 0 is for the existence of the char-
acteristic curves for (1.4.4). These are defined to be real integral curves of the
differential equation

a(y′)2 − 2by′ + c = 0 .

In the elliptic case there are no real characteristic curves - this is the case for
the Laplacian. But for hyperbolic equations there are two distinct families of
real characteristic curves (corresponding to the two distinct roots of the quadratic
equation for y′). These curves determine a change of coordinates (x, y) 7→ (X, Y )
under which (1.4.4) can be transformed into the form

UXY = F (X, Y, U, UX , UY ) .

Thus this is a canonical form for second order hyperbolic equations in the plane.
The wave equation uyy − uxx = 0 is a well-known example. The characteristic
curves are x+y = X and x−y = Y , and in the new coordinates X, Y the equation
takes the form UXY = 0. This gives the general solution as F (X) + G(Y ), or as
F (x+ y) +G(x− y) in the original coordinate system, for arbitrary F,G.

1.5 Some worked problems

1. Consider the two-dimensional domain

G := {(x, y) | R2
1 < x2 + y2 < R2

2},

where 0 < R1 < R2 < ∞. Solve the Dirichlet boundary value problem for the Laplace
equation

∆u = 0 in G,

u = u1(ϕ), r = R1,

u = u2(ϕ), r = R2,

where (r, ϕ) are polar coordinates. Assume that u1, u2 are smooth 2π-periodic functions
on the real line.

Discuss the convergence properties of the series so obtained.

[Hint: Use separation of variables in polar coordinates (u = R(r)Φ(ϕ)), with perodic
boundary conditions for the function Φ of the angle variable. Use an ansatz of the form
R(r) = rα for the radial function.]
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Answer As the hint suggests, we use radial coordinates and transform the Laplacian. Using
this, our PDE becomes

urr +
1

r
ur +

1

r2
uϕϕ = 0.

Using separation of variables as the hint suggests yields

R′′Φ +
1

r
R′Φ +

1

r2
RΦ′′ = 0

We multiply this equation by r2

RΦ and rearrange to obtain an equality between an expres-
sion which depends only on r and an expression which depends only on ϕ. This implies
that the two equations are equal to a constant (denoted λ2):

r2R′′(r) + rR′(r)

R(r)
=
−Φ′′(ϕ)

Φ
= λ2

We require a 2π periodicity for each value of the radial coordinate, so we require that Φ
be 2π periodic, and thus obtain:

Φ(ϕ) = A sin(λϕ) +B cos(λϕ),

with positve constants A, B. Since we assume the solution to be 2π-periodic it follows
that λ must be an integer, and w.l.o.g. λ is non-negative.

For the other equation we use the Ansatz R(r) = rα and obtain

α(α− 1)rα + αrα − λ2rα = 0

and thus
α = ±λ.

Therefore

R(r) = Crλ +Dr−λ, if λ > 0

and by considering the case λ = 0 separately

R(r) = E + F ln(r), if λ = 0.

As the equation is linear, the most general solution is

u(r, ϕ) =

∞∑
λ=1

(Aλr
λ +Bλr

−λ) sin(λϕ) + (Cλr
λ +Dλr

−λ) cos(λϕ)

+ E0 + F0 ln(r)

To account for the boundary conditions, we expand u1 and u2 as Fourier series:

u1(ϕ) =
a0

2
+

∞∑
λ=1

aλ sin(λϕ) + bλ cos(λϕ),

u2(ϕ) =
c0
2

+

∞∑
λ=1

cλ sin(λϕ) + dλ cos(λϕ).
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(This is possible by the assumptions on u1,2.) To enforce

u(R1, ϕ) = u1(ϕ), u(R2, ϕ) = u2(ϕ)

comparison of the coefficients leads to

AλR
λ
1 +BλR

−λ
1 = aλ, AλR

λ
2 +BλR

−λ
2 = cλ,

CλR
λ
1 +DλR

−λ
1 = bλ, CλR

λ
2 +DλR

−λ
2 = dλ

and

E0 + F0 ln(R1) =
a0

2
,

E0 + F0 ln(R2) =
c0
2
.

The first two equations result in

Aλ =
Rλ1aλ −Rλ2 cλ
R2λ

1 −R2λ
2

, Bλ =
R−λ1 aλ −R−λ2 cλ

R−2λ
1 −R−2λ

2

,

and

Cλ =
Rλ1 bλ −Rλ2dλ
R2λ

1 −R2λ
2

, Dλ =
R−λ1 bλ −R−λ2 dλ

R−2λ
1 −R−2λ

2

.

From the last equation we obtain

E0 =
a0 ln(R2)− c0 ln(R1)

2(ln(R2)− ln(R1))
, F0 =

c0 − a0

2(ln(R2)− ln(R1))
.

Since the u1,2 are smooth and periodic, their Fourier coeficients are rapidly decreasing,
i.e.

sup
λ∈N

λN (|aλ|+ |bλ|+ |cλ|+ |dλ|) <∞

for any positive N . Now let ρ = R1/R2 = (R2/R1)−1 ∈ (0, 1), then the above formulae
can be written as

Aλ = R−λ2

cλ − ρλaλ
1− ρ2λ

, Bλ = Rλ1
aλ − ρλcλ

1− ρ2λ
,

and

Cλ = R−λ2

dλ − ρλbλ
1− ρ2λ

, Dλ = Rλ1
bλ − ρλdλ
1− ρ2λ

.

Since ρ ∈ (0, 1) it follows from these formulae that |Aλ| ≤ R−λ2 (|aλ| + |cλ|)/(1 − ρ)
and |Bλ| ≤ Rλ1 (|aλ| + |cλ|)/(1 − ρ) while |Cλ| ≤ R−λ2 (|bλ| + |dλ|)/(1 − ρ) and |Dλ| ≤
Rλ1 (|bλ|+ |dλ|)/(1− ρ) . As a consequence

sup
λ∈N

sup
R1≤r≤R2

λN (rλ|Aλ|+ r−λ|Bλ|+ rλ|Cλ|+ r−λ|Dλ|) <∞
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for any positive N . Therefore the series

u(r, ϕ) =

∞∑
λ=1

(Aλr
λ +Bλr

−λ) sin(λϕ) + (Cλr
λ +Dλr

−λ) cos(λϕ)

+ E0 + F0 ln(r)

converges absolutely and uniformly in the closed annulus G, to define a continuous function
u ∈ C(G), which agrees with the given data on the boundary ∂G . Furthermore u is smooth
in the open annulus G where it solves ∆u = 0 .

As a final comment on the method of solution, an alternative to separation of variables is
to say that any smooth function u(r, ϕ) which is 2π periodic in ϕ can be decomposed as

u(r, ϕ) = u0(r) +

∞∑
λ=1

αλ(r) sin(λϕ) + βλ(r) cos(λϕ) ,

with αλ, βλ rapidly decreasing so that term by term differentiation is allowed. Then
substitute this into the equation to obtain equations for u0(r), αλ(r), βλ(r) and the same
answer will follow.

2. (i) State the local existence theorem for real-valued solutions of the first order quasi-linear
partial differential equation

n∑
j=1

aj(x, u)
∂u

∂xj
= b(x, u) (1.5.1)

with data specified on a hypersurface S, including a definition of “non-characteristic” in
your answer. Also define the characteristic curves for (1.5.1) and briefly explain their use
in obtaining the solution.

(ii) For the linear constant coefficient case (i.e. all the functions a1, . . . , an, are real
constants and b(x, u) = cu + d for some real numbers c, d) and with the hypersurface S
taken to be the hyperplane x·ν = 0 explain carefully the relevance of the non-characteristic
condition to obtaining a solution via the method of characteristics.

(iii) Solve the equation
∂u

∂y
+ u

∂u

∂x
= 0,

with initial data u(0, y) = −y prescribed on x = 0, for a real valued function. Describe
the domain on which your solution is C1 and comment on this in relation to the theorem
stated in (i).

Answer (i)

Theorem 1.5.1 Let S be a C1 hypersurface, and assume that the aj , b, φ are all C1

functions. Assume the non-characteristic condition:

Σnj=1aj(x0, φ(x0))nj(x0) 6= 0

holds at a point x0 ∈ S. Then there is an open set O containing x0 in which there exists
a unique C1 solution of (1.5.1) which also satisfies

u(x) = φ(x) , x ∈ S ∩ O . (1.5.2)

If the non-characteristic condition holds at all points of S, then there is a unique solution
of (1.5.1)-(1.3.6) in an open neighbourhood of S.
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The characteristic curves are obtained as the x component of the integral curves of the
characteristic ode:

dxj
ds

= aj(x, z) ,
dz

ds
= b(x, z) (1.5.3)

with data xj(σ, 0) = gj(σ), z(σ, 0) = φ(g(σ)); let (X(σ, s), Z(σ, s)) ∈ Rn × R be this
solution. The characteristic curves starting at g(σ) are the curves s 7→ X(σ, s). They are
useful because the non-characteristic condition implies (via the inverse function theorem)
that the “restricted flow map” which takes (σ, s) 7→ X(σ, s) = x is locally invertible, with
inverse σj = Σj(x), s = S(x) and this allows one to obtain the solution by tracing along
the characteristic curve using the z component of the characteristic ode above. This gives
the final formula: u(x) = Z(Σ(x), S(x)).

(ii) In the linear constant coefficient case the non-characteristic condition reads a · ν 6= 0,
and the characteristic curves are lines with tangent vector a = (a1, . . . an), obtained by
integrating the characteristic ode:

dxj
ds

= aj ,
dz

ds
= b(x, z) = cz + d , (1.5.4)

and taking the “x component”. The flow map is the smooth function R×Rn → Rn given
by

Φ(s, x) = x+ sa,

i.e. the solution of the characteristic ode starting at x . Parametrize the initial hyperplane
as x =

∑n−1
j=1 σjγj , where the γj ∈ Rn are a linearly independent set of vectors in the

plane (i.e. satisfying γj · ν = 0). The restricted flow map is just the restriction of the flow
map to the initial hypersurface, i.e.

X(s, σ) =

n−1∑
j=1

σjγj + sa = J


σ1

...
σn−1

s

 .

Notice that here J , the Jacobian of the linear mapping (s, σ) 7→ X(s, σ), is precisely the
constant n× n matrix whose columns are {γ1, γ2, . . . γn−1, a}. But the non-characteristic
condition a·ν 6= 0 is equivalent to invertibility of this matrix and consequentlyX(s, σ1, . . . , σn−1) =
x is uniquely solvable for

s = S(x), σ1 = Σ1(x), . . . , σn−1 = Σn−1(x)

as functions of x (i.e. X is a linear bijection). This means that given any point x ∈ Rn
there is a unique characteristic passing through it which intersects the initial hyperplane
at exactly one point. This detemines the solution u uniquely at x since by the chain rule
z(s, σ1, . . . , σn−1) = u(X(s, σ1, . . . , σn−1)) satisfies

dz

ds
= cz + d,

so the evolution of u along the characteristic curves is known.

(iii) The characteristic ode are

dx

ds
= −z , dy

ds
= 1 ,

dz

ds
= 0 .
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The initial hypersurface can be parametrized as (x(σ), y(σ) = (0, σ) and the solutions of
the characteristic ode with initial data z(0, σ) = −σ are x(s, σ) = −sσ, y(s, σ) = σ + s
and z(s, σ) = z(0, σ) = −σ . The restricted flow map is therefore X(s, σ) = (−sσ, s + σ).
Inverting this leads to a quadratic and the solution is given explicitly as:

u(x, y) = −1

2
y − 1

2

√
(y2 + 4x) y > 0,

u(x, y) = −1

2
y +

1

2

√
(y2 + 4x) y < 0,

where
√
a means positive square root of a. Both of these formulae define C1 (even smooth)

functions in the region {y2 + 4x > 0}, and can be verified to solve uy + uux = 0 there.
The region {y2 + 4x > 0} includes open neighbourhoods of every point on the initial
hypersurface x = 0 except for the point x = 0 = y: this fits in with the statement of
the theorem since it is at this point, and only this point, that the non-characterisitic
condition fails to hold. To solve the Cauchy problem it is necessary to match the initial
data: notice that the signs of the square roots in the solution given above are chosen to
ensure that the initial data are taken on correctly. It is necessary to choose one of the
“branches”, depending upon how the initial hypersurface {x = 0} is approached. This
means the solution is no longer globally smooth - it is discontinuous along the half line
{x > 0, y = 0}. As in complex analysis this line of discontinuity (like a “branch-cut”)
could be chosen differently, e.g. the half line {y = x, x > 0}.

1.6 Example sheet 1

1. Write out the multinomial expansion for (x1 + . . . xn)N and the n-dimensional Taylor
expansion using multi-index notation.

2. Consider the problem of solving the heat equation ut = ∆u with data u(x, 0) = f(x).
Is the non-characteristic condition satisfied? How about for the wave equation utt = ∆u
with data u(x, 0) = f(x) and ut(x, 0) = g(x)? For which of these problems, and for which
data, does the Cauchy-Kovalevskaya theorem ensure the existence of a local solution? How
about the Cauchy problem for the Schrödinger equation?

3. (a) Find the characteristic vectors for the operator P = ∂1∂2 (n = 2). Is it elliptic? Do
the same for P =

∑m
j=1 ∂

2
j −

∑n
j=m+1 ∂

2
j (1 < m < n).

(b) Let ∆ =
∑n−1
j=1 ∂

2
j be the laplacian. For which vectors a ∈ Rn−1 is the operator

P = ∂2
t u+ ∂t

∑n−1
j=1 aj∂ju−∆u hyperbolic?

4. Solve the linear PDE x1ux2
−x2ux1

= u with boundary condition u(x1, 0) = f(x1) for f a
C1 function. Where is your solution valid? Classify the f for which a global C1 solution
exists. (Global solution here means a solution which is C1 on all of R2.)

5. Solve Cauchy problem for the semi-linear PDE ux1 + ux2 = u4, u(x1, 0) = f(x1) for f a
C1 function. Where is your solution C1?

6. For the quasi-linear Cauchy problem ux2
= x1uux1

, u(x1, 0) = x1

(a) Verify that the Cauchy-Kovalevskaya theorem implies existence of an analytic solution
in a neighbourhood of all points of the initial hypersurface x2 = 0 in R2,
(b) Solve the characteristic ODE and discuss invertibility of the restricted flow map X(s, t)
(this may not be possible explicitly),
(c) give the solution to the Cauchy problem (implicitly).

7. For the quasi-linear Cauchy problem Aux1
− (B − x1 − u)ux2

+A = 0, u(x1, 0) = 0:
(a) Find all points on the intial hypersurface where the Cauchy-Kovalevskaya theorem can
be applied to obtain a local solution defined in a neighbourhood of the point.
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(b) Solve the characteristic ODE and invert (where possible) the restricted flow map,
relating your answer to (a).
(c) Give the solution to the Cauchy problem, paying attention to any sign ambiguities
that arise.
(In this problem take A,B to be positive real numbers).

8. For the Cauchy problem

ux1
+ 4ux2

= αu u(x1, 0) = f(x1), (1.6.1)

with C1 initial data f , obtain the solution u(x1, x2) = eαx2/4f(x1 − x2/4) by the method
of characteristics. For fixed x2 write u(x2) for the function x1 7→ u(x1, x2) i.e. the solu-
tion restricted to “time” x2. Derive the following well-posedness properties for solutions
u(x1, x2) and v(x1, x2) corresponding to data u(x1, 0) and v(x1, 0) respectively:
(a) for α = 0 there is global well-posedness in the supremum (or L∞) norm uniformly in
time in the sense that if for fixed x2 the distance between u and v is taken to be

‖u(x2)− v(x2)‖L∞ ≡ sup
x1

|u(x1, x2)− v(x1, x2)|

then
‖u(x2)− v(x2)‖L∞ ≤ ‖u(0)− v(0)‖L∞ for all x2.

Is the inequality ever strict?
(b) for all α there is well-posedness in supremum norm on any finite time interval in the
sense that for any time interval |x2| ≤ T there exists a number c = c(T ) such that

‖u(x2)− v(x2)‖L∞ ≤ c(T )‖u(0)− v(0)‖L∞ .

and find c(T ). Also, for different α, when can c be assumed independent of time for
positive (respectively negative) times x2?
(c) Try to do the same for the L2 norm, i.e. the norm defined by

‖u(x2)− v(x2)‖2L2(dx1) =

∫
|u(x1, x2)− v(x1, x2)|2dx1.

9. For which real numbers a can you solve the Cauchy problem

ux1
+ ux2

= 0 u(x1, ax1) = f(x1)

for any C1 function f . Explain both in terms of the non-characteristic condition and by
explicitly trying to invert the (restricted) flow map, interpreting your answer in relation
to the line x2 = ax1 on which the initial data are given.

10. (a). Consider the equation
ux1 + nux2 = f (1.6.2)

where n is an integer and f is a smooth function which is 2π- periodic in both variables:

f(x1 + 2π, x2) = f(x1, x2 + 2π) = f(x1, x2).

Apply the method of characteristics to find out for which f there is a solution which is
also 2π- periodic in both variables:

u(x1 + 2π, x2) = u(x1, x2 + 2π) = u(x1, x2).

13



(b) Consider the problem in part (a) using fourier series representations of f and u (both
2π- periodic in both variables) and compare your results.
(c)* What can you say about the case when n is replaced by an irrational number ω? [Hint:
look in http : //en.wikipedia.org/wiki/Diophantine approximation for the definition
of Liouville number, and use this as a condition to impose on ω and investigate the
consequences for solving (1.6.2).]

11. Define, for non-negative s, the norm ‖ · ‖s on the space of smooth 2π-periodic function of
x by

‖f‖2s ≡
∑
m∈Z

(1 +m2)s|f̂(m)|2

where f̂(n) are the fourier coefficients of f . (This is called the Sobolev Hs norm).
(i) What are these norms if s = 0? Write down a formula for these norms for s = 0, 1, 2 . . .
in terms of f(x) and its derivatives directly. (Hint Parseval).
(ii) If u(t, x) is the solution for the heat equation with 2π-periodic boundary conditions,
then for t > 1 and s = 0, 1, 2, , , find a number Cs > 0 such that

‖u(t, ·)‖s ≤ Cs‖u(0, ·)‖0 .

(iii) Show that there exists a number γ1 > 0 which does not depend on f so that
max |f(x)| ≤ γ1‖f‖1 for all smooth 2π-periodic f . For which s > 0 is it also true that
there exists γs > 0 such that max |f(x)| ≤ γs‖f‖s for all smooth 2π-periodic functions f ?
(iv) Generalize the inequality in the last sentence of (iii) to periodic functions f =
f(x1, . . . xn) of n variables. Find a number σ(n) such that the inequality holds if and
only if s > σ(n) ?

2 Background analysis

2.1 Fourier series

Consider the following spaces of 2π-periodic functions on the real line:

Cr
per([−π, π]) = {u ∈ Cr(R) : u(x+ 2π) = u(x)} ,

for r ∈ [0,∞]. The case r = 0 is the continuous 2π-periodic functions, while the
case r = ∞ is ths smooth 2π-periodic functions. For functions u = u(x1, . . . xn)
we define the corresponding spaces Cr

per([−π, π]n) of Cr functions which are 2π-
periodic in each coordinate. (All of these definitions generalize in obvious ways for
classes of functions with periods other than 2π, e.g. Cr

per(
∏n

j=1[0, Lj]) consists of
Cr functions u = u(x1, . . . xn) which are Lj-periodic in xj.)

Given a function u ∈ C∞per([−π, π]) the Fourier coefficients are the sequence of
numbers ûm = û(m) given by

û(m) = ûm =
1

2π

∫ +π

−π
e−imxu(x) dx , m ∈ Z .

Integration by parts gives the formula ∂̂αu(m) = (im)αû(m) for positive integral
α, which shows that the sequence of Fourier coefficients is a rapidly decreasing

14



(bi-infinite) sequence: this means that û ∈ s(Z) where

s(Z) = {û : Z→ C such that |û|α = sup
m∈Z
|mαû(m)| <∞ ∀α ∈ Z+} .

This in turn means that the series
∑

m∈Z û(m)eimx converges absolutely and uni-
formly to a smooth function. The central fact about Fourier series is that this
series actually converges to u, so that each u ∈ C∞per([−π, π]) can be represented
as:

u(x) =
∑

û(m)eimx , where û(m) =
1

2π

∫ +π

−π
e−imxu(x) dx .

The whole development works for periodic functions u = u(x1, . . . xn) with the
sequence space generalized to

s(Zn) = {û : Zn → C such that |û|α = sup
m∈Zn

|mαû(m)| <∞ ∀α ∈ Zn+} .

Here we use multi-index notation, in terms of which we have:

Theorem 2.1.1 The mappping

C∞per([−π, π]n) → s(Zn) ,

u 7→ û = {û(m)}m∈Zn where û(m) =
1

(2π)n

∫
[−π,π]n

e−im·xu(x) dx

is a linear bijection whose inverse is the map which takes û to
∑

m∈Zn û(m)eim·x

and the following hold:

1. u(x) =
∑

m∈Zn û(m)eim·x where û(m) = 1
(2π)n

∫
[−π,π]n

e−im·xu(x) dx (Fourier

inversion),

2. ∂̂αu(m) = (im)αû(m) for all m ∈ Zn, α ∈ Zn+,

3. 1
(2π)n

∫
[−π,π]n

|u(x)|2 dx =
∑

m∈Zn |û(m)|2 (Parseval-Plancherel).

2.2 Fourier transform

Define the Schwartz space of test functions:

S(Rn) = {u ∈ C∞(Rn) : |u|α,β = sup
x∈Rn

|xα∂βu(x)| <∞ , ∀α ∈ Zn+, β ∈ Zn+ .}

This is a convenient space on which to define the Fourier transform because of the
fact that Fourier integrals interchange rapidity of decrease with smoothness, so
the space of functions which are smooth and rapidly decreasing is invariant under
Fourier transform:
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Theorem 2.2.1 The Fourier transform, i.e. the mapping

F : S(Rn) → S(Rn) ,

u 7→ û where û(ξ) = Fx→ξ(u(x)) =

∫
Rn
e−iξ·xu(x) dx

is a linear bijection whose inverse is the map F−1 which takes v to the function
v̌ = F−1(v) given by

v̌(x) =
1

(2π)n

∫
Rn
e+iξ·xv(ξ) dξ ,

and the following hold:

1. u(x) = 1
(2π)n

∫
Rn û(ξ)eiξ·xdξ where û(ξ) =

∫
Rn e

−iξ·xu(x) dx (Fourier inver-

sion),

2. ∂̂αu(ξ) = Fx→ξ(∂αu(x)) = (iξ)αû(ξ) and (∂αû)(ξ) = Fx→ξ((−ix)αu(x)) for
all x, ξ ∈ Rn, α ∈ Zn+,

3.
∫
Rn v̂(ξ)u(ξ) dξ =

∫
Rn v(x)û(x) dx ,

4. 1
(2π)n

∫
Rn v̂(ξ)û(ξ) dξ =

∫
Rn v(x)u(x) dx (Parseval-Plancherel),

5. û ∗ v = ûv̂ where u ∗ v =
∫
u(x− y)v(y) dy (convolution).

2.3 Banach spaces

A norm on a vector space X is a real function x 7→ ‖x‖ such that

1. ‖x‖ ≥ 0 with equality iff x = 0,

2. ‖cx‖ = |c|‖x‖ for all c ∈ C,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

(If the first condition is replaced by the weaker requirement 1′ that ‖x‖ ≥ 0 then
the modified conditions 1′, 2, 3 define a semi-norm.) A normed vector space is a
metric space with metric d(x, y) = ‖x − y‖. Recall that a metric on X is a map
d : X ×X → [0,∞) such that

1. d(x, y) ≥ 0 with equality iff x = y,

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in X.
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(This definition does not require that X be a vector space.) The metric space
(X, d) is complete if every Cauchy sequence has a limit point: to be precise if
{xj}∞j=1 has the property that ∀ε > 0 there exists N(ε) ∈ N such that j, k ≥
N(ε) =⇒ d(xj, xk) < ε then there exists x ∈ X such that limj→∞ d(xj, x) = 0.

Definition 2.3.1 A Banach space is a normed vector space which is complete
(using the metric d(x, y) = ‖x− y‖).

Examples are

• Cn with the Euclidean norm ‖z‖ = (
∑

j |zj|2)
1
2 .

• C([a, b]) with ‖f‖ = sup[a,b] |f(x)| (uniform norm).

• Spaces of p-summable (bi-infinite) sequences {um = u(m)}m∈Z

lp(Z) = {u : Z→ C such that ‖u‖p = (
∑
|u(m)|p)

1
p <∞}

and generalizations such as lp(Zn) and lp(N).

• For s ∈ R the spaces of bi-infinite sequences {um = u(m)}m∈Z

lps(Z) = {u : Z→ C such that ‖u‖lps = (
∑
|(1 +m2)

s
2u(m)|p)

1
p <∞}

and generalizations such as lps(Zn) and lps(N).

• Spaces of measurable Lp functions for 1 ≤ p <∞

Lp(Rn) = {u : Rn → C measurable with ‖u‖p = (

∫
|u(x)‖p dx )

1
p <∞}

and generalizations such as Lp([−π, π]n) and Lp([0,∞)) etc. For p =∞ the
space L∞(Rn) consists of measurable functions which are bounded on the
complement of a null set, and the least such bound is called the essential
supremum and gives the norm ‖u‖L∞ . In this example we identify functions
which agree on the complement of a null set (almost everywhere). Read the
appendix for an informal introduction to the Lebesgue spaces and a list of
results from integration that we will use in this course1.

Completeness is important because methods for proving that an equation has
a solution typically produce a sequence of “approximate solutions”, e.g. Picard
iterates for the case of ode. If this sequence can be shown to be Cauchy in some
norm then completeness ensures the existence of a limit point which is the putative
solution, and in good situations can be proved to be a solution. The basic result is
the contraction mapping principle which can be used to prove existence of solutions
of equations of the form Tx = x, i.e. to find fixed points of mappings T : X → X
defined on complete (non-empty) metric spaces:

1You will not be examined on any subtle points connected with the Lebesgue integral
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Theorem 2.3.2 Let (X, d) be a complete, non-empty, metric space and T : X →
X a map such that

d(Ty1, T y2) ≤ kd(y1, y2)

with k ∈ (0, 1). Then T has a unique fixed point in X; in fact if y0 ∈ X, then Tmy0

converges to a fixed point as m→∞.

Proof We first prove uniqueness of any fixed point: notice that if Ty1 = y1 and
Ty2 = y2 then the contraction property implies

d(y1, y2) = d(Ty1, T y2) ≤ kd(y1, y2)

and therefore, since 0 < k < 1, we have d(y1, y2) = 0 and so y1 = y2.
To prove existence, firstly, by the triangle inequality:

d(T n+r+1y0, T
ny0) ≤

r∑
m=0

d(T n+m+1y0, T
n+my0)

≤
r∑

m=0

kmd(T n+1y0, T
ny0) ≤

r∑
m=0

kn+md(Ty0, y0) .

But 0 < k < 1 implies that
∑

m≥0 k
m = 1

1−k < ∞ and hence Tmy0 forms a
Cauchy sequence in X. So by completeness of X, Tmy0 → y some y. But then
Tm+1y0 → Ty, because T is continuous by the contraction property, and so Ty = y
and y is a fixed point. Thus T has a unique fixed point. 2

Existence theorem for ordinary differential equations (ode). We now review the
proof of the existence theorem for ode via the contraction mapping theorem in the
Banach space of continuous functions with the uniform norm. We first note the
following result:

Theorem 2.3.3 (Corollary to the contraction mapping principle) Let (X, d)
be a complete, non-empty, metric space and suppose T : X → X is such that T n

is a contraction for some n ∈ N. Then T has a unique fixed point in X; in fact if
y0 ∈ X, then Tmy0 converges to a fixed point as m→∞.

Proof By Theorem 2.3.2, T n has a unique fixed point, y. We also have that

T n(Ty) = T n+1y = T (T ny) = Ty.

So Ty is also a fixed point of T n and fixed points are unique so Ty = y. Also
Tmny0 → y implies that Tmn+1y0 → Ty = y and so on, until Tmn+(n−1)y0 → y as
(m→∞). All together this implies that Tmy0 → y. 2

Theorem 2.3.4 (Existence theorem for ode) Let f(t, x) be a vector-valued con-
tinuous function defined on the region

{(t, x) : |t− t0| ≤ a, ‖x− x0‖ ≤ b} ⊂ R× Rn
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which also satisfies a Lipschitz condition in x:

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖.

Define M = sup |f(t, x)| and h = min(a, b
M

). Then the differential equation

dx

dt
= f(t, x), x(t0) = x0 (2.3.1)

has a unique solution for |t− t0| ≤ h.

Proof This is a consequence of the contraction mapping theorem applied in the
complete metric space:

X = {x ∈ C([t0 − h, t0 + h],Rn) : ‖x(t)− x0‖ ≤Mh ∀t ∈ [t0 − h, t0 + h]} ,

endowed with the metric d(x1, x2) = sup
|t−t0|≤h

‖x1(t)−x2(t)‖ . (Recall that a limit in

the uniform norm of continuous functions is itself continuous.)
Introduce the integral operator T by the formula

(Tx)(t) = x0 +

∫ t

t0

f(s, x(s))ds. (2.3.2)

The condition Mh ≤ b implies that T : X → X. Notice that x ∈ X solves (2.3.1)
if and only if Tx = x, by the fundamental theorem of calculus. In particular,
observe that Tx = x implies that x ∈ X is in fact continuously differentiable.

We now assert that, for |t− t0| ≤ h,

‖T kx1(t)− T kx2(t)‖ ≤ Lk

k!
|t− t0|kd(x1, x2).

For k = 0, this is obvious, and in general it follows by induction since

‖T kx1(t)− T kx2(t)‖ ≤
∫ t
t0
‖f(s, T k−1x1(s))− f(s, T k−1x2(s))‖ds

≤ L
∫ t
t0
‖T k−1x1(s)− T k−1x2(s)‖ds

≤ Lk

(k−1)!

∫ t
t0
|s− t0|k−1 ds d(x1, x2)

≤ Lk

k!
|t− t0|kd(x1, x2).

This implies that T k is a contraction mapping for sufficiently large k, and so the
result follows from Theorem 2.3.3. 2

Theorem 2.3.5 (Gronwall Lemma) Let u ∈ C([t0, t1]) satisfy

u(t) ≤ A+B

∫ t

t0

u(s)ds

for t0 ≤ t ≤ t1 and some positive constants A,B . Then

u(t) ≤ AeB(t−t0) , for t0 ≤ t ≤ t1 .
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Proof Define F (t) = A + B
∫ t
t0
u(s)ds - by the fundamental theorem of calculus

this is a C1 function which verifies Ḟ = Bu ≤ BF . It follows that e−BtF (t) is
non-increasing, so that e−BtF (t) ≤ e−Bt0F (t0) , and hence

u(t) ≤ F (t) ≤ F (t0)eB(t−t0) = AeB(t−t0)

for t0 ≤ t ≤ t1. 2

Theorem 2.3.6 In the situation of Theorem 2.3.4, let y(t), w(t) be two solutions
of (2.3.1) defined for t0 ≤ t ≤ t1 ≤ t0 + a and such that ‖y(t) − x0‖ ≤ b and
‖w(t)− x0‖ ≤ b on [t0, t1] . Then

‖y(t)− w(t)‖ ≤ ‖y(t0)− w(t0)‖eL(t−t0)

for t0 ≤ t ≤ t1 .

Proof u(t) = y(t)− w(t) satisfies, by the Lipschitz property:

‖u(t)‖ = ‖y(t)− w(t)‖ = ‖y(t0)− w(t0) +

∫ t

t0

(
f(s, y(s))− f(s, w(s))

)
ds ‖

≤ ‖u(t0)‖+ L

∫ t

t0

‖u(s)‖ds .

The result is now an immediate consequence of Gronwall’s inequality. 2

Theorem 2.3.6 says that for ode defined by Lipschitz vector fields the solutions
vary continuously with the initial data: this is the crucial stability property which is
central to the notion of well-posedness. To be precise, we would say the initial value
problem (2.3.1) is well-posed with Lipschitz continuous f is well-posed because for
each initial value x(0) in a neighbourhood of x0 there exists a unique local solution
which depends continuously on x(0).

For pde the same definition is used, and is very important, however the issue
is more subtle: this is because norms (or, possibly, some other topological notion
which allows one to define continuity) are used in the definition of well-posed. If
a pde can be solved for a solution u which is uniquely determined by some set of
initial and/or boundary data {fj} then the problem is said to be well-posed in
a norm ‖ · ‖ if in addition the solution changes a small amount in this norm as
the data change. This would be satisfied if, for example, for any other solution v
determined by data {gj} there holds the stability estimate:

‖u− v‖ ≤ C(
∑
j

‖fj − gj‖j) , for some C > 0 , (2.3.3)

where ‖ · ‖j are some collection of norms which measure what kind of changes of
data produce small changes of the solution. Finding the appropriate norms such
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that (2.3.3) holds for a given problem is a crucial part of understanding the problem
- they are generally not known in advance. Once this is understood, it is helpful
with development of numerical methods for solving problems on computers, and
tells you in an experimental situation how accurately you need to measure the data
to make a good prediction.

To fix ideas consider the problem of solving an evolution equation of the form

∂tu = P (∂x)u

where P is a constant coefficient polynomial; e.g. the case P (∂x) = i∂2
x corresponds

to the Schrödinger equation ∂tu = i∂2
xu. If we are solving this with periodic

boundary conditions u(x, t) = u(x + 2π, t) and with given initial data u(x, 0) =
u0(x) for u0 ∈ C∞per([−π, π]). Formally the solution can be given as

u(x, t) =
∑
m∈Z

etP (im)+imxû0(m) (2.3.4)

and if the initial data uo =
∑
û0(m)eimx is a finite sum of exponentials then (2.3.4)

is easily seen to define a solution since it reduces also to a finite sum. In the general
case it is necessary to investigate convergence of the sum so that it does define a
solution, then to prove uniqueness of this solution, and finally to find norms for
which (2.3.3) holds. For this final step the Parseval identity is often very helpful,
and for the case of the Schrödinger equation the series (2.3.4) does indeed define
a solution for smooth periodic data u0, v0 and

max
t∈R

∫
|u(x, t)− v(x, t)|2 dx ≤

∫
|u0(x)− v0(x)|2 dx .

This inequality would be interpreted as saying that the Schrödinger equation is
well posed in L2 (globally in time since there is no restriction on t.)

In general an equation defines a well posed problem with respect to specific
norms, which encode certain aspects of the behaviour of the solutions and have
to be found as part of the investigation: the property of being well posed depends
on the norm. This is related to the fact that norms on infinite dimensional vector
spaces (like spaces of functions) can be inequivalent (i.e. can correspond to different
notions of convergence), unlike in Euclidean space Rn.

2.4 Hilbert spaces

A Hilbert space is a Banach space which is also an inner product space: the norm

arises as ‖x‖ = (x, x)
1
2 where (·, ·) : X ×X → C satisfies:

1. (x, x) ≥ 0 with equality iff x = 0,

2. (x, y) = (y, x),
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3. (ax+ by, z) = a (x, z) + b (y, z) and (x, ay + bz) = a (x, y) + b (x, z) for com-
plex numbers a, b and vectors x, y, z.

(Funtions X × X → C like this which are linear in the second variable and anti-
linear in the first are sometimes called sesqui-linear.) Crucial properties of the inner
product in a Hilbert space are the Cauchy-Schwarz inequality | (x, y) | ≤ ‖x‖‖y‖
and the fact that the inner product can be recovered from the norm via

(x, y) =
1

4

(
‖x+ y‖2 − ‖x− y‖2 − i‖x+ iy‖2 + i‖x− iy‖2

)
, (polarization) .

Examples include l2(Zn) with inner product
∑

m u(m)v(m) and L2(Rn) with inner

product (u, v) =
∫
u(x)v(x) dx. Another example is the Sobolev spaces: firstly in

the periodic case

H1(R/2πZ) = {u ∈ L2([−π, π]) : ‖u‖2
1 =

∑
m∈Z

(1 + |m|2)|û(m)|2 <∞} , (2.4.1)

where u =
∑
û(m)eimx is the Fourier representation, and secondly

H1(Rn) = {u ∈ L2(Rn) : ‖u‖2
1 =

∫
Rn

(1 + |ξ|2)|û(ξ)|2 dξ <∞} , (2.4.2)

where û is the Fourier transform.
The new structure in Hilbert (as compared to Banach) spaces is the notion of

orthogonality coming from the the inner product. A set of vectors {en} is called
orthonormal if (en, em) = δnm. We will consider only Hilbert spaces which have a
countable orthonormal basis {en} (separable Hilbert spaces). In such spaces it is
possible to decompose arbitrary elements as u =

∑
unen where un = (en, u). (The

case of Fourier series with em(x) = eimx/
√

2π,m ∈ Z is an example.) The Parseval
identity in abstract form reads ‖u‖2 =

∑
| (en, u) |2 and:

Theorem 2.4.1 Given an orthonormal set {en} the following are equivalent:

• (en, u) = 0 ∀n implies u = 0, (completeness)

• ‖u‖2 =
∑
| (en, u) |2 ∀u ∈ X, (Parseval),

• u =
∑

(en, u) en ∀u ∈ X (orthonormal basis).

A closed subspace X1 ⊂ X of a Hilbert space is also a Hilbert space, and there
is an orthogonal decomposition

X = X1 ⊕X⊥1

where X⊥1 = {y ∈ X : (x1, y) = 0∀x1 ∈ X1}. This means that any x ∈ X can
be written uniquely as x = x1 + y with x1 ∈ X1 and y ∈ X⊥1 , and there is a
correponding projection PX1x = x1.
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Associated to a Hilbert space X is its dual space X ′ which is defined to be the
space a bounded linear maps:

X ′ = {L : X → C , with L linear and ‖L‖ = sup
x∈X,‖x‖=1

|Lx| <∞}.

The definition of the norm on X ′ ensures that |L(x)| ≤ ‖L‖‖x‖.

Theorem 2.4.2 (Riesz representation) Given a bounded linear map L on a
Hilbert space X there exists a unique vector y ∈ X such that Lx = (y, x); also
‖L‖ = ‖y‖. The correspondence between L and y gives an identification of the
dual space X ′ with the original Hilbert space X.

Proof KerL is a closed subspace whose orthogonal complement (KerL)⊥ is one-
dimensional: to see this let l1, l2 lie in (KerL)⊥ with Llj = cj for some non-zero
numbers c1, c2. Then L(c1l2 − c2l1) = 0, so that c1l2 − c2l1 ∈ (KerL) ∩ (KerL)⊥

and hence l1, l2 are linearly dependent, establishing that dim(KerL)⊥ = 1. Choose
any non-zero vector v ∈ (KerL)⊥ - it is unique up to multiplication by scalars.
Let x ∈ X be arbitrary, then

x− (v, x)

‖v‖2
v ∈ ((KerL)⊥)⊥ = KerL ,

and hence Lx = (y, x) where yL(v)v/‖v‖2 . 2

A generalization of this (for non-symmetric situations) is:

Theorem 2.4.3 (Lax-Milgram lemma) Given a bounded linear map L : X →
R on a Hilbert space X, and a bilinear map B : X × X → R which satisfies (for
some positive numbers ‖B‖, γ):

• |B(x, y)| ≤ ‖B‖‖x‖‖y‖ ∀x, y ∈ X (continuity),

• B(x, x) ≥ γ‖x‖2 ∀x ∈ X (coercivity),

there exists a unique vector z ∈ X such that Lx = B(z, x)∀x ∈ X.

Proof The uniqueness statement is a consequence of the coercivity assumption.
To prove existence, first apply Riesz representation to the map y 7→ B(x, y) for
fixed x, to deduce the existence of a vector wx ∈ X such that B(x, y) = (wx, y). Put
y = wx, then we deduce that ‖wx‖2 ≤ ‖B‖‖x‖‖wx‖, and hence ‖wx‖ ≤ ‖B‖‖x‖.
But also the assignment x 7→ wx is linear on account of the bilinearity of B, and
therefore we can write wx = Ax where A is a bounded linear map X → X with
‖A‖ ≤ ‖B‖ , and

B(x, y) = (Ax, y) .

We now make three assertions about A. Firstly: by the coercivity assumption
(Ax, x) ≥ γ‖x‖2, so that A is injective. Secondly: AX, the range of A, is a
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closed subspace. Indeed if yn → y is a convergent sequence with yn = Axn, then
coercivity implies γ‖xn − xm‖2 ≤ (A(xn − xm), xn − xm) = (yn − ym, xn − xm) ,
so that ‖xn − xm‖ ≤ γ−1‖yn − ym‖. It follows that {xn} is cauchy, and so there
exists x ∈ X such that xn → x, and by continuity Ax = y, so AX is indeed
closed as claimed. Thirdly: AX = X because otherwise there exists a non-zero
vector u with (y, u) = 0∀y ∈ AX, i.e. (Ax, u) = B(x, u) = 0 for all x, which
gives a contradiction to coercivity by choosing x = u. Thus A is a bounded linear
bijection, with bounded inverse.

Finally, apply Riesz representation again to write L(x) = (w, x) for some w ∈ X
(and all x ∈ X.) Then, since we just proved A is surjective, there exists z ∈ X
such that Az = w, and so

L(x) = (w, x) = (Az, x) = B(z, x) , ∀x ∈ X

completing the proof. 2

A bounded linear operator B : X → X means a linear map X → X with the
property that there exists a number ‖B‖ ≥ 0 such that ‖Bu‖ ≤ ‖B‖‖u‖ ∀u ∈ X.
As in Sturm-Liouville theory we say a bounded linear operator is diagonalizable
if there is an orthonormal basis {en} such that Ben = λnen for some collection of
complex numbers λn which are the eigenvalues.

2.5 Distributions

Definition 2.5.1 A periodic distribution T ∈ C∞per([−π, π]n)′ is a continuous lin-
ear map T : C∞per([−π, π]n) → C, where continuous means that if fn and all its
partial derivatives ∂αfn converge uniformly to f then T (fn)→ T (f). Here we call
C∞per([−π, π]n) the space of test functions.

A tempered distribution T ∈ S ′(Rn) is a continuous linear map T : S(Rn)→ C,
where continuous means that if ‖fn − f‖α,β → 0 for every Schwartz semi-norm
then T (fn)→ T (f). Here we call S(Rn) the space of test functions.

In both cases for x0 ∈ Rn any fixed point (which may be taken to lie in [−π, π]n

in the periodic case) the Dirac distribution defined by δx0(f) = f(x0) gives an
example.

Remark 2.5.2 The notion of convergence on C∞per([−π, π]n and S(Rn) used in
this definition makes these spaces into topological spaces in which the convergence
must be with respect to a countable family of semi-norms. These are examples
of Frechet spaces, a class of topological vector spaces which generalize the notion
of Banach space by using a countable family of semi-norms rather than a single
norm to define a notion of convergence. Using this notion of convergence one can
check that the Fourier transform F is continuous as is its inverse, and the Fourier
inversion theorem can be summarized by the assertion that F : S(Rn) → S(Rn) is
a linear homeomorphism with inverse F−1.
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Remark 2.5.3 Notice that integrable functions define distributions in a natural
way: in the simplest case if g is continuous 2π-periodic function then the formula
Tg(f) =

∫
[−π,π]

g(x)f(x) dx defines a periodic distribution and clearly the mapping

g 7→ Tg is an injection of Cper([−π, π]) into (C∞per([−π, π]))′. Similarly if g is
absolutely integrable on Rn then the formula Tg(f) =

∫
Rn g(x)f(x) dx defines a

tempered distribution. The mapping g 7→ Tg is, properly interpreted, injective: if
g ∈ L1(Rn) then Tg(f) = 0 for all f ∈ S(Rn) implies that g = 0 almost everywhere.
On account of this remark distributions are often called “generalized functions”.
The Dirac example indicates that there are distrubutions which do not arise as Tg.

Remark 2.5.4 In these definitions distributions are elements of the dual space
of a space of test functions with a specified notion of convergence ( a topology).
Another frequently used class of distributions is the dual space of C∞0 (Rn) the space
of compactly supported smooth functions, topologized as follows: fn → f in C∞0
if there is a fixed compact set K such that all fn, f are supported in K and if all
partial derivatives of ∂αfn converge (uniformly) to ∂αf . This class of distributions
is more convenient for some purposes, but not for using the Fourier transform, for
which purpose the tempered distributions are most convenient because of remark
2.5.2, which allows the fourier transform to be defined on tempered distributions
“by duality” as we now discuss.

Operations are defined on distributions by using duality to transfer them to the
test functions, e.g.:

• Given T ∈ S ′(Rn) an arbitrary partial derivative ∂αT is defined by ∂αT (f) =
(−1)|α|T (∂αf).

• Given T ∈ S ′(Rn) its fourier transform T̂ is defined by T̂ (f) = T (f̂).

• Given T ∈ S ′(Rn) and χ ∈ S(Rn) the distribution χT is defined by χT (f) =
T (χf). This is also the definition if χ is a polynomial - it makes sense because
a polynomial times a Schwartz function is again a Schwartz function.

It is useful to check, with reference to the fact in remark 2.5.3 that distributions
are generalized functions, that all such defintions of operations on distributions are
designed to extend the corresponding definitions on functions: e.g. for a Schwartz
function g we have

∂αTg = T∂αg ,

where on the left ∂α means distributional derivative while on the right it is the
usual derivative from calculus applied to the test function g. The same principle
is behind the other definitions.

There are various alternate notations used for distributions:

T (f) = 〈T , f〉 =

∫
T (x)f(x) dx
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where in the right hand version it should be remembered that the expression is
purely formal in general: the putative function T (x) has not been defined, and
the integral notation is not an integral - just shorthand for the duality pairing of
the definition. It is nevertheless helpful to use it to remember some formulae: for
example the formula for the distributional derivative takes the form

∂αT (f) =

∫
∂αT (x)f(x) dx = (−1)|α|

∫
T (x)∂αf(x) dx = (−1)|α|T (∂αf) ,

which is “familiar” from integration by parts. The formula
∫
δ(x − x0)f(x) dx =

f(x0) and related ones are to be understood as formal expressions for the proper
definition of the delta distribution above.

2.6 Positive distributions and Measures

In this section2 we restrict to 2π-periodic distributions on the real line for simplic-
ity. The delta distribution δx0 has the property that if f ≥ 0 then δx0(f) ≥ 0;
such distributions are called positive. Positive distributions have an important
continuity property as a result: if T is any positive periodic distribution, then
since

−‖f‖L∞ ≤ f(x) ≤ ‖f‖L∞ , ‖f‖ = sup |f(x)|

for each f ∈ C∞per([−π, π]) it follows from positivity that T (‖f‖L∞ ± f) ≥ 0 and
hence by linearity that

−c‖f‖L∞ ≤ T (f) ≤ c‖f‖L∞

where c = T (1) is a positive number. This inequality, applied with f replaced
by f − fn, means that if fn → f uniformly then T (fn) → T (f), i.e. positive
distributions are automatically continuous with respect to uniform convergence,
in strong contrast to the continuity property required in the original definition.
In fact this new continuity property ensures that a positive distribution can be
extended uniquely as a map

L : Cper([−π, π])→ R

i.e. as a continuous linear functional on the space of continuous functions. This
extension is an immediate consquence of the density of smooth functions in the
continuous functions in the uniform norm (which can be deduced from the Weier-
strass approximation theorem). A much more lengthy argument allows such a
functional to be extended as an integral L(f) =

∫
f dµ which is defined for a class

of measurable functions f which contains and is bigger than the class of continu-
ous functions. To conclude: positive distributions automatically extend to define

2This is an optional section, for background only
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continuous linear functional on the space of continuous functions, and hence can
be identified with a class of measures (Radon measures) which can be used to inte-
grate much larger classes of functions (extending further the domain of the original
distribution).

2.7 Sobolev spaces

We define the Sobolev spaces for s = 0, 1, 2, . . . on various domains:

On Rn: we have the following equivalent definitions:

Hs(Rn) = {u ∈ L2(Rn) : ‖u‖2
Hs =

∑
α:|α|≤s

‖∂αu‖2
L2 <∞}

= {u ∈ L2(Rn) :

∫
Rn

(1 + ‖ξ‖2)s|û(ξ)|2 dξ <∞}

= C∞0 (Rn)
‖·‖Hs

.

In the first line the partial derivatives are taken in the distributional sense: the
precise meaning is that all distributional (=weak) partial derivatives up to order
s of the distribution Tu determined by u are distributions which are determined
by square integrable funtions which are designated ∂αu (i.e. ∂αTu = T∂αu with
∂αu ∈ L2 in the notation introduced previously). The final line means that Hs is
the closure of the space of smooth compactly supported functions C∞0 (Rn) in the

Sobolev norm ‖ · ‖Hs . The quantity ‖̃u‖̃2
Hs =

∫
Rn (1 + ‖ξ‖2)s|û(ξ)|2 dξ appearing

in the middle definition defines a norm which is equivalent to the norm ‖u‖Hs

appearing in the first definition. (Recall that ‖ · ‖ and ‖̃ · ‖̃ are equivalent if there

exist positive numbers C1, C2 such that ‖u‖ ≤ C1‖̃u‖ and ‖̃u‖̃ ≤ C2‖u‖ for all
vectors u; equivalent norms give rise to identical notions of convergence (i.e. they
define the same topologies).

Theorem 2.7.1 For s = 0, 1, 2 . . . the Sobolev space Hs(Rn) is a Hilbert space,
and so complete in either of the norms

‖u‖2
Hs =

∑
α:|α|≤s

‖∂αu‖2
L2 or ‖̃u‖̃2

Hs =

∫
Rn

(1 + ‖ξ‖2)s|û(ξ)|2 dξ

which are equivalent. Given any u ∈ Hs(Rn) there exists a sequence uν of C∞0 (Rn)
functions such that ‖u − uν‖Hs → 0 as ν → +∞ . If u ∈ Hs(Rn) for s > n

2
+ k

with k ∈ Z+ then u ∈ Ck(Rn) and there exists C > 0 such that

‖u‖Ck =
∑
|α|≤k

sup
x∈Rn
|∂αu(x)| ≤ C‖u‖Hs . (2.7.1)
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• The fact that Hs functions can be approximated by C∞0 (Rn) functions means
that for many purposes calculations can be done with C∞0 (Rn), or S(Rn),
functions and in the end the result extended to Hs. See the second worked
problem to see how this goes to prove (2.7.1) with k = 0.

• For s = 0 we have H0 = L2 and the norm ‖ · ‖H0 is exactly the L2 norm,

while ‖̃ · ‖̃H0 is proportional (and hence equivalent) to the L2 norm by the
Parseval-Plancherel theorem.

• Strictly speaking the assertion u ∈ Ck(Rn) in the last sentence of the theorem
only holds after possibly redefining u on a set of zero measure. This subtle
point, which will generally be ignored in the following, arises because u is
really only a distribution which can be represented by an L2 function, and
as such is only defined up to sets of zero measure.

On (R/(2πZ))n : In the 2π-periodic case the following definitions are equivalent:

Hs
per([−π, π]n) = {u ∈ L2([−π, π]n) : ‖u‖2

Hs =
∑

α:|α|≤s

‖∂αu‖2
L2 <∞}

= {
∑
m∈Zn

û(m)eim·x :
∑
m∈Zn

(1 + ‖m‖2)s|û(m)|2 <∞}

= C∞per([−π, π]n)
‖·‖Hs

.

Again the quantity apearing in the middle line defines an equivalent norm which
can be used when it is more convenient. Since we are considering only the case s =
0, 1, 2, . . . the Fourier series

∑
m∈Zn û(m)eim·x always defines a square integrable

function, and as s increases the function so defined is more and more regular
(exercise), and as above we have:

Theorem 2.7.2 For s = 0, 1, 2 . . . the periodic Sobolev space Hs
per([−π, π]n) is a

Hilbert space, and so complete in either of the norms

‖u‖2
Hs =

∑
α:|α|≤s

‖∂αu‖2
L2 or ‖̃u‖̃2

Hs =
∑
m∈Zn

(1 + ‖m‖2)s|û(m)|2

which are equivalent. Given any u ∈ Hs
per([−π, π]n) there exists a sequence uν of

C∞per([−π, π]n) functions such that ‖u−uν‖Hs → 0 as ν → +∞ . If u ∈ Hs([−π, π]n)
for s > n

2
+ k with k ∈ Z+ then u ∈ Ck(Rn) and there exists C > 0 such that

‖u‖Ck =
∑
|α|≤k

sup
x∈[−π,π]n

|∂αu(x)| ≤ C‖u‖Hs . (2.7.2)
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Similar comments to those made after Theorem 2.7.1 apply of course. To keep the
notation clean we do not indicate “periodic” in the notation for norm on a space
of periodic functions, only the space - it should be clear from the context.

With the concept of tempered distribution understood, it is possible to ex-
tend the definition of the Sobolev spaces Hs(Rn) for all s ∈ R: since the Fourier
transform û of any tempered distribution is well-defined, we just say

Hs(Rn) = {u ∈ S ′(Rn) :

∫
Rn

(1 + ‖ξ‖2)s|û(ξ)|2 dξ <∞} . (2.7.3)

(Notice, it is implicit in this definition that the tempered distribution û is in fact
represented by a measurable function.)

These various definitions of Sobolev spaces require some modifications for the
case of general domains Ω, starting with the notion of the weak partial derivative
(since we did not define distributions in Ω).

Definition 2.7.3 A locally integrable function u defined on an open set Ω admits
a weak partial derivative corresponding to the multi-index α if there exists a locally
integrable function, designated ∂αu, with the property that∫

Ω

u ∂αχdx = (−1)|α|
∫

Ω

∂αuχ dx ,

for every χ ∈ C∞0 (Ω).

A useful fact is that in this situation:

‖∂αu‖L2 = sup{
∫

Ω

u ∂αχdx : χ ∈ C∞0 (Ω) and ‖χ‖L2 = 1 .} (2.7.4)

Then employing this notion of partial derivative we define (for s = 0, 1, 2, . . . ):

Hs(Ω) = {u ∈ L2(Ω) : ‖u‖2
Hs =

∑
α:|α|≤s

‖∂αu‖2
L2 <∞}

(with all L2 norms being defined by integration over Ω). This space is to be
distinguished from the corresponding closure of the space of smooth functions
supported in a compact subset of Ω:

Hs
0(Ω) = C∞0 (Ω)

‖·‖Hs
.

Since these functions are limits of functions which vanish in a neighbourhood of Ω
they are to be thought of as vanishing in some generalized sense on ∂Ω (at least in
the case s = 1, 2, . . . and if Ω has a smooth boundary ∂Ω.) The case s = 1 gives
the space H1

0 (Ω) which is the natural Hilbert space to use in order to give a weak
formulation of the Dirichlet problem for the elliptic equation Pu = f on Ω.
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In one dimension, with Ω = (a, b) ⊂ R the relation between H1((a, b)) and
H1

0 ((a, b)) can be stated simply because all f ∈ H1((a, b)) are uniformly continuous
(similar to the argument in the last part of the 2nd worked problem) and

H1
0 ((a, b)) = {f ∈ H1((a, b)) : f(a) = f(b) = 0} .

More details and proofs can be found in the relevant chapter of the book of Brezis.
In this course we need to be able to use Sobolev spaces to study pde, and we will
see that the Hs spaces are easy to work with for various reasons:

1. The “energy” methods often give rise to information about
∫
u2dx or

∫
‖∇u‖2dx

where u is a solution of a pde, and this translates into information about the
solution in Sobolev norms. As a specific example: conservation of energy

1

2

∫
(u2

t + ‖∇u‖2) dx = E = constant ,

when u is a solution of the wave equation .

2. The Parseval-Plancherel theorem means that information on Sobolev norms
is often easily obtainable when the solution is written down using Fourier
methods.

3. The Sobolev spaces Hs are Hilbert spaces (complete) whose elements can be
approximated by smooth functions: in practice, this means one has the dual
advantages of smoothness of the functions and completeness of the space of
functions.

Thus typically we will do some computations for smooth solutions of pde which
give information about their Sobolev norms, and then using density we will ex-
tend the information to more general (weak) solutions lying in the Sobolev spaces
themselves. The use of the full Sobolev space is crucial in any argument relying
on completeness, typically in proving existence of a solution e.g. by variational
methods or by the Lax-Milgram lemma.

2.8 Appendix: integration

The aim of this appendix3 is to give a brief review of facts from integration needed
- completeness of the Lp spaces, dominated convergence and other basic theorems.
We first consider the case of functions on the unit interval [0, 1]. A main achieve-
ment of the Lebesgue integral is to construct complete vector spaces of functions

3This section gives a brief introduction to the results on Lebesgue integral which we make use
of. You should be able to use the results listed here but will not be examined on the proofs or
on any subtleties connected with the results.
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where the completeness is with respect to a norm defined by an integral such as
the L2 norm ‖ · ‖L2 defined by

‖f‖2
L2 =

∫ 1

0

|f(x)|2 dx .

This is a perfectly good norm on the space of continuous functions C([0, 1]), but
the resulting normed vector space is not complete (and so not a Banach space)
and is not so useful as a setting for analysis. The Lebesgue framework provides
a larger class of functions which can be potentially integrated - the measurable
functions. The complete Lebesgue space L2 which this construction leads to then
consists of (equivalence classes of) measurable functions f with ‖f‖2

L2 < ∞; here
it is necessary to consider equivalence classes of functions because functions which
are non-zero only on sets which are very small (in a certain precise sense) are
invisible to the integral, and so have to be factored out of the discussion. The
“very small” sets in question are called null sets and are now defined.

2.8.1 Null sets and measurable functions on [0, 1]

An interval in [0, 1] is a subset of the form (a, b) or [a, b] or (a, b] or [a, b) (respec-
tively open,closed, half open). In all cases the length of the interval is |I| = b− a.
A collection of intervals {Iα} covers a subset A if A ⊂ ∪αIα.

Definition 2.8.1 (Null sets) For a set A ⊂ [0, 1] we define the outer measure
to be

|A|∗ = inf
{In}∞n=1 ∈C

{∑
n

|In| : A ⊂ ∪In
}
,

where C consists of countable families of intervals in [0, 1]. A set N ⊂ [0, 1] is
null if |I|∗ = 0, i.e. if for all ε > 0 there exists {In}∞n=1 ∈ C which covers A with∑
|In| < ε.

Definition 2.8.2 We say f = g almost everywhere (a.e.) if f(x) = g(x) for all
x /∈ N for some null set N . We say a sequence of functions fn converges to f a.e.
if fn(x)→ f(x) for all x /∈ N for some null set N .

Equality a.e. defines an equivalence relation, and two equivalent functions f, g are
said to be Lebesgue or measure theoretically equivalent. One way to think about
measurable functions is provided by the Lusin theorem, which says a measurable
function is one which is “almost continuous” in the sense that it agrees with a
continuous function on the complement of a set of arbitrarily small outer measure:

Definition 2.8.3 (Measurable functions) A function f : [0, 1]→ R is measur-
able if for every ε > 0 there exists a continuous function f ε : [0, 1] → R and a set
F ε such that |F ε|∗ < ε and f(x) = f ε(x) for all x /∈ F ε. We write L([0, 1]) for the
space of all measurable functions so defined.
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Theorem 2.8.4 L([0, 1]) is a linear space closed under almost everywhere conver-
gence: given a sequence fn ∈ L([0, 1]) of measurable functions which converges to
a function f a.e. it follows that f ∈ L([0, 1]).

Definition 2.8.3 is not the usual definition of measurability - which involves the
notion of a distinguished collection of sets, the σ-algebra of measurable sets - but
is equivalent to it by what is called the Lusin theorem (see for example §2.4 and
§7.2 in the book Real Analysis by Folland). The Lusin theorem gives a helpful way
of thinking about measurability (the Littlewood 3 principles - see §3.3 in the book
Real Analysis by Royden and Fitzpatrick). A companion to the Lusin theorem is
the Egoroff theorem which states that given a sequence fn ∈ L([0, 1]) of measurable
functions which converges to a function f a.e. then for every ε > 0 it is possible to
find a set E ⊂ [0, 1] with |E|∗ < ε such that fn → f uniformly on Ec = [0, 1]−E.
Thus two of Littlewood’s principles say that “ a measurable function is one which
agrees with a continuous function except on a set which may be taken to have
arbitrarily small size” and “a sequence of measurable functions which converges
almost everywhere converges uniformly on the complement of a set which may be
assumed to be arbitrarily small”.

2.8.2 Definition of Lp([0, 1])

An integral
∫ 1

0
f(x)dx can be defined of any non-negative measurable function, al-

though the value can be +∞ . When the function is continuous, or indeed Riemann
integrable, this integral agrees with the Riemann integral, and it has the following
properties (for arbitrary non-negative measurable functions f, g):

1.
∫ 1

0
cf(x)dx = c

∫ 1

0
f(x)dx if c > 0 ,

2.
∫ 1

0
(f(x) + g(x)) dx =

∫ 1

0
(f(x) + g(x)) dx ,

3.
∫ 1

0
f(x) dx ≤

∫ 1

0
g(x) dx if f ≤ g a.e.

Exercise For non-negative measurable functions f, g, show that if f = g a.e. then∫ 1

0
f(x)dx =

∫ 1

0
g(x)dx .

Accepting that such a definition exists, we can now define the Lp([0, 1]) spaces,
which are Banach spaces of functions on which there exists a well-defined notion
of the integral (called the Lebesgue integral).

Definition 2.8.5 For 1 ≤ p < ∞ define Lp([0, 1]) to be the linear space of mea-
surable functions on [0, 1] with the property that

‖f‖pLp =

∫ 1

0

|f(x)|p dx <∞ .
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For the case p = ∞: firstly, say that f is essentially bounded above with upper
(essential) bound M if f(x) ≤M for x /∈ N for some null set N . Then let ess sup f
be the infimum of all upper essential bounds. Then:

Definition 2.8.6 L∞([0, 1]) is the linear space of measurable functions on [0, 1]
with the property that

‖f‖L∞ = ess sup |f | <∞ .

A crucial fact for us is that considering the spaces of equivalence classes of
functions which agree almost everywhere we obtain Banach spaces, also written
Lp([0, 1]): these “Lebesgue spaces” are vector spaces of (equivalence classes of)
functions which are complete with respect to the norm ‖ · ‖Lp . (The fact that,
strictly speaking, the elements of these spaces are equivalence classes of functions
which agree almost everywhere, is often taken as understood and not repeatedly
mentioned each time the spaces are made use of.)

The spaces Lp([0, 1]) contain the continuous functions, and the Lebesgue in-
tegral, which is defined on the whole of these spaces, is equal to the Riemann
integral when restricted to Riemann integrable functions. These Lp([0, 1]) spaces
are special cases of Lp(M) spaces which arise from abstract measure spacesM on
which a measure µ (and a σ-algebra of measurable sets) is given; µ measures the
“size” of elements of this collection of measurable sets. In the general setting the
integral of a function is often defined in terms of the measure of sets on which the
function takes given values: for example, one development of the integral takes as
starting point the following definition for the integral of a non-negative measurable
function: ∫

f dµ =

∫ ∞
0

µ({f > λ}) dλ . (2.8.1)

The point here is that as λ increases, the sets {f > λ} decrease and their measure
µ({f > λ}) decreases also, so that (2.8.1) is well-defined as the Riemann integral
of a monotone function. See the book Analysis by Lieb and Loss for a development
along these lines.

Other examples of measure spaces used in this course are

• Lp([a, b]) with norm (
∫ b
a
|f(x)|p dx)

1
p ,

• Lp([−π, π]n) with norm (
∫

[−π,π]n
|u(x)|p dx)

1
p , and

• Lp(Ω) with norm (
∫

Ω
|f(x)|p dx)

1
p , where Ω ⊂ Rn is open; the case Ω = Rn

will occur most often.

2.8.3 Assorted theorems on integration

Theorem 2.8.7 (Hölder inequality)
∫
fgdx ≤ ‖f‖Lp‖g‖Lq for any pair of func-

tions f ∈ Lp, g ∈ Lq (on any measure space) with p−1 + q−1 = 1 and p, q ∈ [1,∞].
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Corollary 2.8.8 (Young inequality) If f ∈ Lp(Rn) and g ∈ L1(Rn) then f ∗g ∈
Lp(Rn) and ‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 for 1 ≤ p ≤ ∞.

Theorem 2.8.9 (Dominated convergence theorem) Let the sequence fn ∈
L1 converge to f almost everywhere (on any measure space) and assume that there
exists a nonnegative measurable function Φ ≥ 0 such that |fn(x)| ≤ Φ(x) almost
everywhere and

∫
Φ <∞. Then limn→∞

∫
fn =

∫
f and limn→∞ ‖fn − f‖L1 = 0 .

Corollary 2.8.10 (Differentiation through the integral) Let g ∈ C1(Rn×Ω)
where Ω ⊂ Rm is open, and consider F (λ) =

∫
Rn g(x, λ)dx. Assume there exists a

measurable function Φ(x) ≥ 0 such that

•
∫
Rn Φ(x) dx <∞ ,

• supλ(|g(x, λ) + |∂λg(x, λ)|) ≤ Φ(x) .

Then F ∈ C1(Ω) and ∂λF =
∫
Rn ∂λg(x, λ) dx.

Corollary 2.8.11 If f is a Ck(Rn) function with all partial derivatives ∂αf of
order |α| ≤ k bounded, and g ∈ L1(Rn) then f∗g ∈ Ck(Rn) and ∂α(f∗g) = (∂αf)∗g
for |α| ≤ k.

Theorem 2.8.12 (Tonelli) If f ≥ 0 is a nonnegative measurable function f :
Rl × Rm → R then∫∫

Rl×Rm

f(x, y) dxdy =

∫
Rl

(∫
Rm

f(x, y) dy

)
dx =

∫
Rm

(∫
Rl

f(x, y) dx

)
dy .

Theorem 2.8.13 (Fubini) If f is a measurable function f : Rl × Rm → R such
that ∫∫

Rl×Rm

|f(x, y)| dxdy <∞

then ∫∫
Rl×Rm

f(x, y) dxdy =

∫
Rl

(∫
Rm

f(x, y) dy

)
dx =

∫
Rm

(∫
Rl

f(x, y) dx

)
dy .

Remark 2.8.14 In these two results it is to be understood that when we write down
repeated integrals that an implicit assertion is that the functions y 7→

∫
f(x, y)dx

and x 7→
∫
f(x, y)dy are measurable and integrable.
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Theorem 2.8.15 (Minkowski inequality) If f is a measurable function f :
Rl × Rm → R and g : Rm → R is measurable, then

‖
∫
Rm

f(x, y)g(y) dy‖Lp(dx) ≤
∫
Rm

‖f(x, y)‖Lp(dx)|g(y)| dy . (2.8.2)

where

‖f(x, y)‖pLp(dx) =

∫
Rl

|f(x, y)|p dx ,

with the understanding as above that this means that if the right hand side of
(2.8.2) is finite then the function f(x, y)g(y) is integrable in y for almost every x
and the resulting function x 7→

∫
f(x, y)g(y) dy is measurable and (2.8.2) holds.

2.9 Worked problems

1. Prove that if a continuous 2π-periodic function f ∈ Cper([−π, π]) satisfies

f̂(m) = (2π)−1

∫ +π

−π
e−imxf(x)dx = 0

for all m ∈ Z , then f is identically zero. Deduce that if f ∈ C∞per([−π, π]) then f =∑
m∈Z f̂(m)eimx.

Answer Assume for the sake of contradiction that there exists x0 with f(x0) 6= 0. Replacing
f(·) by ±f(· − x0) we may assume w.l.o.g. that f(0) > 0. Now:∫ +π

−π
f(x)(ε+ cosx)k dx = 0

for all k ∈ Z+ and ε ∈ R, by the assumption that all Fourier coefficients vanish. By
continuity of f there exists δ ∈ (0, π/2] such that f(x) > f(0)/2 > 0 for |x| < δ. Now
maxδ≤|x|≤π cosx < 1 and cos 0 = 1, so there exists

• ε > 0 such that |ε+ cosx| < 1− ε/2 for δ ≤ |x| ≤ π;

• η ∈ (0, δ) such that |ε+ cosx| > 1 + ε/2 for |x| < η.

Now ∫ +π

−π
f(x)(ε+ cosx)k dx =

∫
|x|≤η

+

∫
|η|<|x|<δ

+

∫
δ≤|x|≤π

f(x)(ε+ cosx)k dx

≥ (1 +
ε

2
)k
f(0)

2
− 2π sup |f |(1− ε

2
)k ,

since the middle integral is ≥ 0 because f > 0 on (−δ,+δ), and also since δ ≤ π/2 and
cosx ≥ 0 on [0, π/2]. Now let k → +∞: the final term has limit zero, while the first term
has limit +∞ providing a contradiction.

For the last part observe that for f ∈ Cper([−π, π]) the Fourier coefficients satisfy

sup
m
mN |f̂(m)| <∞
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for all N (rapidly decreasing) and therefore the series
∑
m∈Z f̂(m)eimx converges ab-

solutely to define a continuous periodic function whose Fourier coefficients are f̂(m).
(The latter assertion follows from the fact that the sum and integral can be interchanged
when integrating an absolutely and uniformly convergent power series.) Therefore f(x)−∑
m∈Z f̂(m)eimx is a continuous 2π-periodic function whose Fourier coefficents all vanish.

It therefore vanishes itself by the previous part, completing the proof.

2. For positive s the Sobolev space is defined as

Hs(Rn) = {f ∈ L2(Rn) : ‖f‖2Hs =

∫
Rn

(1 + ‖ξ‖2)s|f̂(ξ)|2 dξ <∞} .

Show that if s > n/2 then Hs(Rn) ⊂ C(Rn) and there exists a positive number C such
that

sup
x∈Rn

|f(x)| ≤ C‖f‖Hs . (2.9.1)

In the case n = 1 prove, using calculus only, the inequality

sup
x∈R
|f(x)| ≤ C ′

(∫
(f2 + (∂xf)2) dx

) 1
2

. (2.9.2)

for all f ∈ S(R) and for some positive C ′. Comment on the relation with the first part of
the question. Prove that all functions f ∈ H1(R) are uniformly continuous on R .

Answer We will first establish the inequality for f ∈ S(Rn). By the Hölder inequality:

(2π)n
∣∣F−1(f̂)

∣∣ =

∣∣∣∣∫
Rn

f̂(ξ)eiξ·x dx

∣∣∣∣ =

∣∣∣∣∫
Rn

(1 + ‖ξ‖2)
s
2 f̂(ξ)eiξ·x

(1 + ‖ξ‖2)
s
2

dx

∣∣∣∣
≤
(∫

Rn

1

(1 + ‖ξ‖2)s
dx

) 1
2

‖f‖Hs .

The integral on the second line is finite, since adopting polar coordinates (r,Ω) it is just∫
Sn−1

dΩ

∫ ∞
0

rn−1

(1 + r2)s
dr

which is finite for 2s− n + 1 > 1, i.e. for s > n/2 . This establishes the stated inequality

(2.9.1). Exactly the same calculation shows that ‖f̂‖L1 ≤ C‖f‖Hs . Now to complete the
proof, just approximate f ∈ Hs(Rn) by a sequence fν of Schwartz functions as in Theorem
2.7.1: since the constant in (2.9.1) is independent of ν we can take the limit ν →∞. Then
since ‖f − fν‖Hs → 0 the sequence fν is Cauchy in the norm Hs, and hence also Cauchy
in the uniform C0 norm by (2.9.1). This implies that the limit f ∈ C0(Rn) and obeys
(2.9.1).

For the one dimensional inequality calculate, by the Hölder inequality that

|f(x)− f(y)| = |
∫ x

y

f ′(z)dz| ≤ |x− y| 12
∣∣∣∣ ∫ (f ′)2dz

∣∣∣∣ 12
and

|f2(x)− f2(y)| = |2
∫ x

y

f(z)f ′(z)dz| ≤
∫
R
f2 + (f ′)2 dz .
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For f ∈ S(R) let y → +∞ in the second inequality and the result follows for such f . It
holds for general f ∈ H1(R) by density (strictly speaking up to sets of measure zero). The
first inequality implies uniform continuity.

Relation with the first part of the question: the Parseval-Plancherel theorem implies that:∫
R
f2 + (f ′)2 dz =

1

2π

∫
R

(|f̂(ξ)|2 + |ξ|2|f̂(ξ)|2) dξ .

So that the result of the second part is really a special case of the first part, but the proof
is different.

2.10 Example sheet 2

1. Obtain and solve the ODE satisfied by characteristic curves y = y(x) for the equation
(x2 + 2)2uxx − (x2 + 1)2uyy = 0. Show that there are two families of such curves which

can be written in the form y−x+ 2−
1
2 arctan 2−

1
2x = ξ and y+x− 2−

1
2 arctan 2−

1
2x = η,

for arbitrary real numbers ξ, η. Now considering the change of coordinates (x, y)→ (ξ, η)
so determined find the form of the equation in the coordinate system (ξ, η).

2. Which of the following functions of x lie in Schwartz space S(R): (a) (1 + x2)−1,(b) e−x,

(c)e−x
4

/(1 + x2)? Show that if f ∈ S(R) then so is f(x)/P (x) where P is any strictly
positive polynomial (i.e. P (x) ≥ θ > 0 for some real θ.

3. Show that any û = {ûm}m∈Z in lps(Z) defines (for any p ≥ 1, s ∈ R) a periodic distribution
via the formula

Fû(ϕ) = 2π
∑
m∈Z

û−mϕ̂(m) (2.10.1)

for each test function ϕ =
∑
ϕ̂(m)eimx ∈ C∞per([−π, π]). Show that if û ∈ s(Z), then this

distribution agrees with the periodic distribution Tu determined in the usual way by the
the smooth function u =

∑
ûme

imx .

4. Use Fourier series to solve the following initial value problem

∂tu = ∂3
xu u(0, x) = f(x)

for x ∈ [−π, π] with periodic boundary conditions u(t,−π) = u(t, π) and f smooth and
2π-periodic. Discuss well-posedness properties of your solutions for the L2 norm, i.e.
‖u(t)‖L2 = (

∫ +π

−π |u(t, x)|2dx)
1
2 , using the Parseval-Plancherel theorem. Extend your result

to the Hs norm.

*Show that if f ∈ L2([−π, π]) your Fourier series formula gives a distributional solution
of the equation, in a precise sense which you should define.

5. Show that the heat equation ∂tu = ∂2
xu, with 2π-periodic boundary conditions in x,

is well-posed forwards in time in L2 norm, but not backwards in time (even locally).
(Hint compute the L2 norm of solutions un for negative t corresponding to initial values
un(0, x) = n−1einx.)

6. (i) Use Fourier series to solve the Schrödinger equation

∂tu = i∂2
xu u(0, x) = f(x)
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for initial value f smooth and periodic. Prove in two different ways that there is only one
smooth periodic solution.

(ii) Use the fourier transform to solve the Schrodinger equation for x ∈ R and initial value

f ∈ S(R). Find the solution for the case f = e−x
2

.

7. (i) Verify that the tempered distribution u on the real line defined by the function Km(x) =
(2m)−1e−m|x|, (for positive m), solves

(−d2

dx2
+m2

)
u = δ0

in S ′(R). For which s ∈ R does the function Km lie in Hs(R)? For which s ∈ R does the
δ-function lie in Hs(R)?[Use the definition (2.7.3).]

(ii) Verify that the function on the real line g(x) = 1 for x ≤ 0 and g(x) = e−x for x > 0
defines a tempered distribution Tg which solves in S ′(R)

T ′′ + T ′ = −δ0.

8. (a) Write down the precise distributional meaning of the equation

−∆(|x|−1) = 4πδ0 in S ′(R3)

in terms of test functions, and then use the divergence theorem to verify that it holds.
(Hint: apply the divergence theorem on the region {0 < |x| < R} − {0 < |x| < ε} for R
sufficiently large and take the limit ε→ 0 carefully).

(b) Find the fundamental solution Gm ∈ S ′(R3) of the operator (−∆ + m2) with m > 0
and in the case of domain R3 . Indicate the modifications of (a) required to prove this.

9. For each of the following equations, find the most general tempered distribution T which
satisfies it.

xT = 0, xdT/dx = 0, x2T = δ0, xdT/dx = δ0

dT/dx = δ0, dT/dx+ T = δ0 T − (d/dx)2T = δ0.

(Hint: see Friedlander §2.7).

10. Solve the equation xmT = 0 in S ′(R).

3 Elliptic equations

3.1 Introduction and Notation

The equation
−∆u + u = f (3.1.1)

can be solved for u via the Fourier transform, if f ∈ S(Rn). The solution is the
inverse Fourier transform of

ûf (ξ) =
f̂(ξ)

1 + ‖ξ‖2
; (3.1.2)
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this formula defines a Schwartz function, and hence the solution u = uf ∈ S
also, and the mapping f 7→ uf is continuous in the sense that if fn is a sequence of
Schwartz functions such that ‖fn−f‖α,β → 0 for every Schwartz semi-norm ‖ · ‖α,β,
then also ‖un−u‖α,β → 0 for every Schwartz semi-norm, where un = ufn , u = uf .

In fact the formula above extends to define a distributional solution uf for each
tempered distribution f ∈ S ′(Rn), i.e. for each φ ∈ S(Rn) there holds

〈uf , −∆φ+ φ 〉 = 〈 f , φ 〉 .

Using the Fourier transform definition of the Sobolev space one can check that:

‖uf‖2
Hs+2 =

∫
Rn

(1 + ‖ξ‖2)s+2|û(ξ)|2 dξ =

∫
Rn

(1 + ‖ξ‖2)s|f̂(ξ)|2 dξ = ‖f‖2
Hs .

Thus the solution operator

(−∆ + 1)−1 : Hs → Hs+2

f 7→ uf

is bounded, indicating that the solution gains two derivatives, as measured in L2,
compared to the inhomogeneous term. This phenomenon goes under the name
elliptic regularity, and generalizes to wide classes of elliptic equations, as does the
maximum principle bound

max
x∈Rn
|uf (x)| ≤ max

x∈Rn
|f(x)| , (3.1.3)

which is valid for classical (e.g. Schwartz) solutions, and is an immediate con-
sequence of the calculus necessary conditions for u ∈ S(Rn) to attain a maxi-
mum/minimum at a point x∗:

∂ju(x∗) = 0 , ∂2u(x∗) ≥ 0 , (minimum) ;

∂ju(x∗) = 0 , ∂2u(x∗) ≤ 0 , (maximum) .

The notation indicates definiteness of the symmetric matrices ∂2u(x∗) = ∂2
jku(x∗) .

This definiteness implies that at a maximum ∆u(x∗) = Tr ∂2u(x∗) ≤ 0 and hence
by (3.1.1) that maxu = u(x∗) ≤ f(x∗) ≤ max |f |; a similar argument for the min-
imum completes the derivation of (3.1.3) for S(Rn) solutions. It is clear from the
proof just outlined that this result is generalizable, both to more general classical
solutions and also to larger classes of equations.

It is the purpose of this chapter to explain the generalizations of the results just
discuused from (3.1.1) to much larger classes of second order elliptic equations.

Notation:Let BR = {w : |w| < R} and BR = {w : |w| ≤ R} be the open and
closed balls of radius R and more generally let BR(x) = {w : |w − x| < R} and
BR(x) = {w : |w−x| ≤ R}. We write ∂BR, ∂BR(x) for the corresponding spheres,
i.e. ∂BR(x) = {w : |w − x| = R} etc. In the following Ω ⊂ Rn is always open and
bounded unless otherwise stated, Ω is its closure and ∂Ω is its boundary (always
assumed smooth).
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3.2 Existence of solutions

In this section it is explained how to formulate and solve elliptic boundary value
problems via the Lax-Milgram lemma, starting with the case of periodic boundary
conditions.

Definition 3.2.1 A weak solution of Pu = f ∈ L2([−π, π]n), with P the operator
given by

Pu = −
∑
jk

∂j(ajk∂ku) + cu , (3.2.1)

with smooth periodic coefficents ajk = akj ∈ C∞([−π, π]n) and c ∈ C∞([−π, π]n),
is a function u ∈ H1

per([−π, π]n) with the property that∫ ∑
jk

ajk ∂ju∂kv + cuv dx =

∫
fv dx (3.2.2)

for all v ∈ H1
per([−π, π]n).

Theorem 3.2.2 Let P be as in (3.2.1), and assume that the inequalities

m‖ξ‖2 ≤
n∑

j,k=1

ajkξjξk ≤M‖ξ‖2 (3.2.3)

and
c(x) ≥ c0 > 0 (3.2.4)

hold everywhere, for some positive constants m,M, c0 and all ξ ∈ Rn. Then given
f ∈ L2([−π, π]n) there exists a unique weak solution of Pu = f in the sense of
definition (3.2.1).

Proof Define the bilinear form B(u, v) =
∫ ∑

jk ajk ∂ju∂kv + cuv dx and observe
that it obeys the continuity and coercivity conditions in the Lax-Milgram lemma
in the Hilbert space H1

per. In particular for continuity take ‖B‖ = ‖a‖L∞ + ‖c‖L∞ ,
where the norm for the matrix a(x) = (ajk(x))nj,k=1 is the operator norm. For
coercivity, notice that (3.2.3) and (3.2.4) imply

B(u, u) ≥ min{m, c0} ‖u‖2
H1 . (3.2.5)

The right hand side of (4.5.2) defines a bounded functional L(v), since

|L(v)| = |
∫
fvdx| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1 ,

by the Hölder inequality, and so existence and uniqueness follows from the Lax-
Milgram lemma. 2
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Definition 3.2.1 and theorem 3.2.2 have various generalizations: to obtain the
correct definition of weak solution for a given elliptic boundary value problem the
general idea is to start with a classical solution and multiply by a test function and
integrate by parts using the boundary conditions in their classical format. This
will lead to a weak formulation of both the equation and the boundary conditions.
For example the weak formulation of the Dirichlet problem

Pu = f , u|∂Ω = 0 , (3.2.6)

where

Pu = −
n∑

j,k=1

∂j(ajk∂ku) +
n∑
j=1

bj∂ju+ cu (3.2.7)

for continuous functions ajk = akj, bj and c, is to find a function u ∈ H1
0 (Ω) such

that
B(u, v) = L(v) , ∀v ∈ H1

0 (Ω) ,

where L(v) =
∫
fv dx (a bounded linear map/functional), and B is the bilinear

form:

B(u, v) =

∫ (∑
jk

ajk ∂ju∂kv +
∑

bj∂juv + cuv
)
dx .

By the Lax-Milgram lemma we have

Theorem 3.2.3 In the situation just described, assume that (3.2.3) and (3.2.4)
hold. Then if ‖b‖L∞ is sufficiently small, there exists a unique weak solution to
(3.2.6).

Proof The crucial point is that (3.2.5) changes into

B(u, u) ≥ min{m, c0} ‖u‖2
H1 − ‖b‖L∞‖u‖2

H1 , (3.2.8)

where ‖b‖L∞ = supx ‖b(x)‖ = supx(
∑n

j=1 bj(x)2)
1
2 . The remainder of the proof is

essentially as above. 2

This solution has various regularity properties, the simplest of which is that if
in addition ajk ∈ C1(Ω) then in any ball such that Br(y) ⊂ Ω there holds for some
constant C > 0:

‖u‖H2(Br(y)) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)) , (interior H2 regularity) ,

and if in addition all the coefficients are smooth then we have, for arbitrary s ∈ N
and some Cs > 0:

‖u‖Hs+2(Br(y)) ≤ Cs(‖f‖Hs(Ω) + ‖u‖L2(Ω)) , (higher interior regularity) .
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For the periodic case there is no boundary, and these results hold with the balls
Br(y) replaced by the whole domain of periodicity [−π, π]n . For example, consider
the Poisson equation

−∆u = f =
∑
m∈Zn

f̂(m) eim·x (3.2.9)

with periodic boundary conditions.

Theorem 3.2.4 (i) If u ∈ C2
per is a classical solution of (3.2.9) then necessarily

f̂(0) = 0 .
(ii) If f ∈ L2 and f̂(0) = 0, then there is a unique weak solution of (3.2.9) in

the Hilbert space
H1
per,0 = {u ∈ H1

per : û(0) = 0}
given by

u(x) =
∑

m∈Zn\{0}

f̂(m)

‖m‖2
eim·x . (3.2.10)

Furthermore, this solution satisfies ‖u‖Hs+2 ≤ 2‖f‖Hs whenever f also belongs to
Hs
per .

Proof H1
per,0 ⊂ H1

per is a closed subspace, and is thus a Hilbert space using the

same inner product as H1
per . The fact that 1

2
≤ ‖m‖2

1+‖m‖2 ≤ 1 for all m ∈ Zn\{0}
implies that

B(u, v) =

∫
∇u · ∇v dx = (2π)n

∑
m∈Zn\{0}

‖m‖2û(−m)v̂(m)

= (2π)n
∑

m∈Zn\{0}

‖m‖2û(m)v̂(m)

satisfies the continuity and coercivity conditions in the Lax-Milgram lemma, ap-
plied in the Hilbert space H1

per,0. A weak solution in this space means a function
u ∈ H1

per,0 such that B(u, v) =
∫
fvdx for all v ∈ H1

per,0; existence of a unique
weak solution in this sense follows. It can be checked directly that this solution is
given by (3.2.10). Using the Fourier definition of the Hs norm, the same inequality
immediately gives the regularity assertion:

‖u‖2
Hs+2 =

∑
m∈Zn\{0}

(1 + ‖m‖2)s+2|f(m)|2

‖m‖4
≤ 22‖f‖2

H2 ,

as claimed. 2

Remark 3.2.5 The significance of the condition f̂(0) = 0 for weak solutions is
this: if u ∈ C2

per is a weak solution of (3.2.9) and f̂(0) = 0 then u is in fact a
classical solution (i.e. it satisfies (3.2.9) everywhere).
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For the case of a domain with boundary, as in theorem 3.2.3, to get regularity
right up to the boundary it is necessary to assume that the boundary itself is
smooth: in this case the interior regularity estimate for the weak solution of (3.2.6)
can be improved to

‖u‖H2(Ω) ≤ C ′(‖f‖L2(Ω) + ‖u‖L2(Ω)) , (boundary H2 regularity) .

3.3 Stability in Sobolev spaces

Weak solutions to elliptic boundary value problems obtained via the Lax-Milgram
lemma inherit a stability (well-posedness) property in the space H1. For example
in the periodic case:

Theorem 3.3.1 Let ajk = akj ∈ C∞([−π, π]n) and c ∈ C∞([−π, π]n) be smooth
periodic coefficents for the elliptic operator

Pu = −
∑
jk

∂j(ajk∂ku) + cu

and assume (3.2.3) and (3.2.4) hold for some poitive constants m,M, c0. Assume
Pu = f with f ∈ L2([−π, π]n), then there exists a number L such that then

‖u‖H1 ≤ L‖f(x)‖L2 .

If Puj = fj are two such solutions then

‖u1 − u2‖H1 ≤ L‖f1 − f2‖

(stability or well-posedness in H1).

Proof This can be proved directly by integration by parts. 2

Alternatively, this type of result is an immediate and general consequence of
coercivity and the Lax-Milgram formulation. Indeed, assume that B(uj, v) = Lj(v)
for j = 1, 2 with the bilinear form B continuous and coercive as in the Lax-Milgram
lemma with coercivity constant γ, and with L1, L2 bounded linear functionals.
Then subtracting the two equations, and choosing as test function v = u1−u2, we
deduce that

γ‖u1 − u2‖2 ≤ B(u1 − u2, u1 − u2) = |(L1 − L2)(u1 − u2) | ≤ ‖L1 − L2‖‖u1 − u2‖ .

Here the norm on linear functionals L : X → R on a Hilbert space X is the dual
norm

‖L‖ = sup
u∈X,u6=0

‖Lju‖
‖u‖

This gives the general stability estimate

‖u1 − u2‖ ≤ γ−1 ‖L1 − L2‖ (3.3.1)

for Lax-Milgram problems.
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3.4 The maximum principle

In the previous two sections we devloped techniques based on the weak formulation,
which involves integration by parts (“energy” methods). For this reason it was
convenient to work with operators in the form (3.2.1), (3.2.7) in which the principal
term is a divergence. In the present section this is no longer particularly convenient,
so the divergence form for the pricipal term will be dropped, and variable coefficient
operators of the form (3.4.1) and (3.4.2) will be considered. Throughout this
section the coefficients ajk(x) = akj(x) are continuous and will be again assumed
to satisfy the uniform ellipticity condition (3.2.3) for some positive constants m,M
and all ξ ∈ Rn.

Recall that Ω ⊂ Rn is always open and bounded unless otherwise stated, Ω is
its closure and ∂Ω is its boundary (always assumed smooth). The proofs of the
following results are all similar to the proof of the first, which is given. In all proofs
we use the following fact from linear algebra. (Recall that a symmetric matrix A
is non-negative if ξTAξ ≥ 0∀ ξ ∈ Rn .)

Lemma 3.4.1 If A,B are real symmetric non-negative matrices. Then Tr(AB) =∑
jk AjkBjk ≥ 0 .

Theorem 3.4.2 (Weak maximum principle I) Let u ∈ C(Ω) ∩ C2(Ω) satisfy
Pu = 0 where

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑
j=1

bj∂ju (3.4.1)

is an elliptic operator with continuous coefficients and (3.2.3) holds, then

max
x∈Ω

u(x) = max
x∈∂Ω

u(x) .

Proof Let R > 0 be chosen such that mR > ‖b‖L∞ , and define uε = u + εex1R

for ε > 0. Then Puε = (−a11R
2 + b1R)εex1R < 0 since a11 ≥ m everywhere

inside Ω by assumption. Now for contradiction assume there exists an interior
point x∗ at which uε attains a maximum point. Then at this point ∂ju

ε(x∗) = 0
and ∂2

jku
ε(x∗) ≤ 0 ( as a symmetric matrix) and hence lemma 3.4.1 implies that

Puε(x∗) ≥ 0, giving a contradiction. It follows that there can never be an interior
maximum, i.e. maxΩ u

ε = max∂Ω u
ε . Since this holds for all ε > 0 the result follows

by taking the limit ε ↓ 0 . 2

Theorem 3.4.3 (Weak maximum principle II) Let u ∈ C(Ω)∩C2(Ω) satisfy
Pu = 0 where

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑
j=1

bj∂ju+ cu (3.4.2)

is an elliptic operator with continuous coefficients and (3.2.3) holds and c ≥ 0
everywhere, then maxx∈Ω u(x) ≤ maxx∈∂Ω u

+(x) where u+ = max{u, 0} is the
positive part of the function u.
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In these theorems the phrase weak maximum principle is in contrast to the strong
maximum principle (proved for harmonic functions in the next section) which
asserts that if a maximum is attained at an interior point the harmonic function
is (locally) constant.

Corollary 3.4.4 In the situation of theorem 3.4.3 maxx∈Ω |u(x)| = maxx∈∂Ω |u(x)|.

Theorem 3.4.5 (Maximum principle bound for inhomogeneous problems)
Let u ∈ C(Ω) ∩ C2(Ω) satisfy Pu = f with Dirichlet data u|∂Ω = 0, where

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑
j=1

bj∂ju+ cu (3.4.3)

is an elliptic operator with continuous coefficients and (3.2.3) holds and

c(x) ≥ c0 > 0

everywhere, for some constant c0 > 0, and f ∈ C(Ω), then

max
x∈Ω

u(x) ≤ 1

c0

max
x∈Ω
|f(x)| .

If Puj = fj are two such solutions then max |u1 − u2| ≤ max |f1 − f2|/c0 (stability
or well-posedness in uniform norm).

3.5 Harmonic functions

Definition 3.5.1 A function u ∈ C2(Ω) which satisfies ∆u(x) = 0 (resp. ∆u(x) ≥
0, resp. ∆u(x) ≤ 0) for all x ∈ Ω, for an open set Ω ⊂ Rn, is said to be harmonic
(resp. subharmonic, resp. superharmonic) in Ω.

Theorem 3.5.2 Let u be harmonic in Ω ⊂ Rn and assume BR(x) ⊂ Ω. Then for
0 < r ≤ R:

u(x) =
1

|∂Br|

∫
∂Br(x)

u(y) dy , (mean value property) . (3.5.1)

Proof This is a consequence of the Green identity∫
ρ<|w−x|<r

(v∆u−u∆v) dw =

∫
|w−x|=r

(v∂νu−u∂νv) dΣ−
∫
|w−x|=ρ

(v∂νu−u∂νv) dΣ ,

(where ∂ν = n · ∇ just means the normal derivative on the boundary) with the
choice of v(w) = N(w − x), where N is the fundamental solution for ∆:

N(x) =
|x|2−n

(2− n)ωn
, (n > 2)

=
1

2π
ln |x| , (n = 2) .
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Here ωn =
∫
|x|=1

dΣ(x) = 2π
n
2 /Γ(n/2) is the area of the unit sphere in Rn. Thus

on ∂Br(x) we have v = r2−n/(2− n)ωn, n > 2 or v = (ln r)/(2π), n = 2 - in other
words v is constant on ∂Br(x), which implies that∫

|w−x|=r
v∂νu dΣ = v(r)

∫
|w−x|≤r

∆u dx = 0

by the divergence theorem, and the harmonicity of u . Together with the corre-
sponding formula for the normal derivative, ∂νv = r1−n/ωn on ∂Br(x), this implies
that

lim
ρ→0

∫
|w−x|=ρ

v∂νu dΣ = 0 , and lim
ρ→0

∫
|w−x|=ρ

u∂νv dΣ = u(x)

where we have used also the continuity of u to take the latter limit:∣∣∣u(x)−
∫
|w−x|=r

u∂νv dΣ
∣∣∣ =

∣∣∣ 1

ωnrn−1

∫
|w−x|=ρ

(
u(x)− u(w)

)
dΣ(w)

∣∣∣
≤ sup
|w−x|=ρ

|u(w)− u(x)| → 0

as ρ→ 0. Substituting these into the Green identity above in the limit ρ→ 0 gives
(3.6.1).

Corollary 3.5.3 If u is a C2 harmonic function in an open set Ω then u ∈ C∞(Ω).
In fact if u is any C2 function in Ω for which the mean value property (3.6.1) holds
whenever Br(x) ⊂ Ω then u is a smooth harmonic function.

Corollary 3.5.4 (Strong maximum principle for harmonic functions) Let
Ω ⊂ Rn be a connected open set and u ∈ C(Ω) harmonic in Ω with M = supx∈Ω u(x) <
∞. Then either u(x) < M for all x ∈ Ω or u(x) = M for all x ∈ Ω. (In words,
a harmonic function cannot have an interior maximum unless it is constant on
connected components).

Corollary 3.5.5 Let Ω ⊂ Rn be open with bounded closure Ω, and let uj ∈
C(Ω) , j = 1, 2 be two harmonic functions in Ω with boundary values uj|∂Ω = fj.
Then

sup
x∈Ω
|u1(x)− u2(x)| ≤ sup

x∈∂Ω
|f1(x)− f2(x)| , (stability or well-posedness).

In particular if f1 = f2 then u1 = u2.

Corollary 3.5.6 A harmonic function u ∈ C2(Rn) which is bounded is constant.

Another consequence of the Green identity is the following. Let N(x, y) =
N(|x− y|) where N is the fundamental solution defined above.
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Theorem 3.5.7 Let u be harmonic in Ω with Ω bounded and u ∈ C1(Ω). Then

u(x) =

∫
∂Ω

[
u(y)∂νyN(x, y)−N(x, y)∂νyu(y)

]
dΣ(y) ,

where ∂νy = n · ∇y just means the normal derivative in y, while ∂ν is the normal
in x. In fact the same formula holds with N(x, y) replaced by any function G(x, y)
such that G(x, y)−N(x, y) is harmonic in y ∈ Ω and C1 for y ∈ Ω for each x ∈ Ω.

It is known from above that u is determined by its boundary values - to determine
a harmonic function u from u|∂Ω is the Dirichlet problem. (The corresponding
problem of determining u from its normal derivative ∂νu|∂Ω is called the Neumann
problem. To get a formula for (or understand) the solution of these problems it is
sufficient to get a formula for (or understand) the correponding Green function:

Definition 3.5.8 (i) A function GD = GD(x, y) defined on GD : Ω × Ω − {x =
y} → R such that (a) GD(x, y)−N(|x− y|) is harmonic in y ∈ Ω and continuous
for y ∈ Ω for each x, and (b) GD(x, y) = 0 for y ∈ ∂Ω, is a Dirichlet Green
function.

(ii) A function GN = GN(x, y) defined on GN : Ω× Ω − {x = y} → R such
that (a) GN(x, y)−N(|x− y|) is harmonic in y ∈ Ω and continuous for y ∈ Ω for
each x, and (b) ∂νyGN(x, y) = 0 for y ∈ ∂Ω, is a Neumann Green function.

Given such functions we obtain representation formulas:

∆u = 0 , u|∂Ω = f =⇒ u(x) =

∫
∂Ω

f(y)∂νyGD(x, y) dΣ(y) ,

and

∆u = 0 , ∂νu|∂Ω = g =⇒ u(x) = −
∫
∂Ω

g(y)GN(x, y) dΣ(y) ,

for f, g ∈ C(∂Ω).
The function P (x, y) = ∂νyGD(x, y), defined for (x, y) ∈ Ω × ∂Ω is called the

Poisson kernel, and is known explicitly for certain simple domains. For example,
for the unit ball Ω = B1, the Poisson kernel is P (x, y) = (1 − ‖x‖2)/ωn‖x − y‖n
and the solution of the Dirichlet problem on the unit ball is

u(x) =

∫
∂B1

f(y)
(1− ‖x‖2)

ωn‖x− y‖n
dΣ(y) .

The formula for the half-space Ω = {(x, y) : x ∈ Rn, y > 0} can also be computed
explicitly (exercise).
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3.6 Worked problems

1. (i) Write down the fundamental solution of the operator −∆ on R3 and state precisely
what this means.

(ii) State and prove the mean value property for harmonic functions on R3.

(iii) Let u ∈ C2(R3) be a harmonic function which satisfies u(p) ≥ 0 at every point p in
an open set Ω ⊂ R3. Show that if B(z, r) ⊂ B(w,R) ⊂ Ω, then

u(w) ≥ (
r

R
)3u(z).

Assume that B(x, 4r) ⊂ Ω. Deduce, by choosing R = 3r and w, z appropriately, that

inf
B(x,r)

u ≥ 3−3 sup
B(x,r)

u.

[In (iii) B(z, ρ) = {x ∈ R3 : ‖x− z‖ < ρ} is the ball of radius ρ > 0 centered at z ∈ R3.]

Answer (i) the distribution N ∈ S ′(R3) defined by the integrable function (4π|x|)−1 is the
fundamental solution, and the precise meaning is that

−
∫
R3

(4π|x|)−1∆φ(x)d3x = φ(0)

for every Schwarz function φ ∈ S(R3).

(ii) Let u be harmonic in Ω ⊂ Rn and assume BR(x) ⊂ Ω. Then for 0 < r ≤ R:

u(x) =
1

|∂Br|

∫
∂Br(x)

u(y) dy , (mean value property) . (3.6.1)

This is a consequence of the Green identity∫
ρ<|w−x|<r

(v∆u− u∆v) dw =

∫
|w−x|=r

(v∂νu− u∂νv) dΣ−
∫
|w−x|=ρ

(v∂νu− u∂νv) dΣ ,

(where ∂ν = n · ∇ just means the normal derivative on the boundary) with the choice of
v(w) = N(w − x), where N is as in (i). On ∂Br(x) we have v = 1

4πr - in particular v is
constant on the sphere ∂Br(x), which implies that∫

|w−x|=r
v∂νu dΣ = v(r)

∫
|w−x|≤r

∆u dx = 0

by the divergence theorem, and the harmonicity of u . Together with the corresponding
formula for the normal derivative, ∂νv = − 1

4πr2 on ∂Br(x), we have:

lim
ρ→0

∫
|w−x|=ρ

v∂νu dΣ = 0 , and lim
ρ→0

∫
|w−x|=ρ

u∂νv dΣ = −u(x)

(having used also the continuity of u to take the latter limit.) Substituting these into the
Green identity above in the limit ρ→ 0 gives (3.6.1).

48



(iii) To start with integrate (3.6.1) with respect to r to obtain:

u(x) =
1

|Br|

∫
Br(x)

u(y) dy . (3.6.2)

For the first bit observe that non-negativity of u implies that
∫
B(w,R)

u ≥
∫
B(z,r)

u and

then apply (3.6.2) to get:

|BR|u(w) =

∫
B(w,R)

u ≥
∫
B(z,r)

u = |Br|u(z) .

Dividing by 4πR3

3 = |BR| gives u(w) ≥ ( rR )3u(z). For the second part, consider any two
points w, z in the ball B(x, r). Then ‖w − z‖ < 2r, and therefore B(z, r) ⊂ B(w, 3r) ⊂ Ω
by the triangle inequality. It follows that u(w) ≥ 3−3u(z) and since w, z are arbitrary in
B(x, r) that infB(x,r) u ≥ 3−3 supB(x,r) u. (The result is called a Harnack inequality.)

2. In this question Ω is a bounded open set in Rn with smooth boundary, and ν is the outward
pointing unit normal vector and ∂ν = ν · ∇.

[a] (i) Let u ∈ C4(Ω)4 solve

∆2u = f in Ω ,

u = ∂νu = 0 on ∂ Ω ,

for some continuous function f . Show that if v ∈ C4(Ω) also satisfies v = ∂νv = 0 on ∂Ω
then ∫

Ω

∆u∆v dx =

∫
Ω

f v dx .

Use this to formulate a notion of weak solution to the above boundary value problem in
the space H2

∂(Ω) ⊂ H2(Ω) which is formed by taking the closure of C∞0 (Ω) in the Sobolev
space:

H2(Ω) = {u ∈ L2(Ω) : ‖u‖2H2 =
∑

α:|α|≤2

‖∂αu‖2L2 <∞} .

[a](ii) State the Lax-Milgram lemma. Use it to prove that there exists a unique function
u in the space H2

∂(Ω) which is a weak solution of the boundary value problem above for
f ∈ L2(Ω) .

[Hint: Use regularity of the solution of the Dirichlet problem for the Poisson equation.]

[b] Let Ω ⊂ Rn be a bounded domain with smooth boundary. Let u ∈ H1(Ω) and denote

ū =

∫
Ω

u dnx

/∫
Ω

dnx .

The following Poincaré-type inequality is known to hold

‖u− ū‖L2 ≤ C‖∇u‖L2 ,

4This means all partial derivatives up to order 4 exist inside the open set Ω, and they have
continuous extensions to the closure Ω .
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where C only depends on Ω. Use the Lax-Milgram lemma and this Poincaré-type inequality
to prove that the Neumann problem

∆u = f in Ω , ∂νu = 0 on ∂ Ω ,

has a unique weak solution in the space

H1
−(Ω) = H1(Ω) ∩ {u : Ω→ R ; ū = 0} ,

for arbitrary f ∈ L2 such that f̄ = 0 . Show also that if this weak solution has regularity
u ∈ C2(Ω) then it is a classical solution of the Neumann problem if f̄ = 0.

Show also that if there exists a classical solution u ∈ C2(Ω) to this Neumann problem
then necessarily f̄ = 0.

Answer [a](i) For u, v as described the Green identity gives:∫
Ω

vf dx =

∫
Ω

v∆2u dx = −
∫

Ω

∇∆u · ∇v dx+

∫
∂Ω

v∇∆u · ν dS

=

∫
Ω

∆u ·∆v dx−
∫
∂Ω

∆u∇v · ν dS ,

which gives the result. Define the bilinear form

B : H2
∂(Ω)×H2

∂(Ω)→ R

by B[u, v] :=
∫

Ω
∆u∆v dx. Then call a weak solution of the problem a function u ∈ H2

∂(Ω)
such that B[u, v] =

∫
Ω
vf dx for all functions v ∈ H2

∂ .

[a](ii) We assume for this section H is a real Hilbert space with norm ‖ · ‖ and inner
product (·, ·). We let 〈·, ·〉 denote the pairing of H with its dual space.
Lax-Milgram Lemma: Assume that

B : H ×H → R

is a bilinear mapping, for which there exists constants α, β > 0 such that

|B[u, v]| ≤ α‖u‖‖v‖ (u, v ∈ H)

and

β‖u‖2 ≤ B[u, u] (u ∈ H).

Finally, let f : H → R be a bounded linear functional on H. Then there exists a unique
element u ∈ H such that

B[u, v] = 〈f, v〉

for all v ∈ H.

To apply this lemma to [a](i) first notice that |B[u, v]| ≤ ‖u‖H2
∂(Ω)‖v‖H2

∂(Ω) trivially, so it

is a matter to check the second (coercivity) condition. Considering the hint, regularity of
the Dirichlet problem for the Poisson equation

∆u = f in Ω

u = 0 on ∂Ω
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with f ∈ L2(Ω) asserts that the unique weak solution u ∈ H1
0 (Ω) is actually in L2 and

verifies:

‖u‖2H2(Ω) ≤ K‖f‖
2
L2(Ω) = K‖∆u‖2L2(Ω) .

Apply this to our problem: clearly any u ∈ H2
∂ also lies in H1

0 , and so:

1

K
‖u‖2H2

∂(Ω) ≤ B[u, u].

Therefore by Lax-Milgram there exists a unique u ∈ H2
∂(Ω) such that

B[u, v] =

∫
Ω

fv dx (3.6.3)

for all v ∈ H2
∂(Ω) i.e. u is a weak solution.

[b] Define

B : H1
−(Ω)×H1

−(Ω)→ R

by B[u, v] :=
∫

Ω
∇u∇v dx.

As in a) |B[u, v]| ≤ ‖u‖H1(Ω)‖v‖H1(Ω). Moreover, by the Poincare inequality with ū = 0,
we have for u ∈ H1

−(Ω):

‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) ≤ (C2 + 1)B[u, u].

Also, since f̄ = 0:

∣∣∫ fudx
∣∣ =

∣∣∫ f(u− ū)dx
∣∣ ≤ C‖f‖L2‖∇u‖L2 .

Thus the functional v 7→
∫

Ω
fv dx is bounded on H1

−(Ω) . Therefore by Lax-Milgram there
exists a unique u ∈ H1

−(Ω) such that

B[u, v] = −
∫

Ω

fv dx

for all v ∈ H1
−(Ω) i.e. u is a weak solution.

Now if u ∈ C2(Ω) then f is also continuous; choosing as test function φ− φ̄ for arbitrary
φ ∈ C1(Ω), and integrating by parts, we obtain∫

∂Ω

∂νu(φ− φ̄) dS −
∫

Ω

∆u (φ− φ̄) dx = −
∫

Ω

f (φ− φ̄) dx .

Now the divergence theorem gives
∫
∂Ω

∂νu dS =
∫

Ω
∆u dx , so that the terms with φ̄ on

the left cancel, leaving:∫
∂Ω

∂νuφ dS −
∫

Ω

∆uφ dx = −
∫

Ω

f (φ− φ̄) dx .
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If f̄ = 0 then
∫

Ω
f φ̄ dx = 0 and so we obtain

−
∫

Ω

∆uφ dx = −
∫

Ω

f φ dx , for all φ ∈ C1
0 (Ω)

which implies that ∆u = f (under the assumption f̄ = 0).

For the last part we assume we have a solution classical solution u of the Neumann problem.
Then we integrate the Poisson equation over Ω to obtain:∫

Ω

f dx =

∫
Ω

∆u dx =

∫
∂Ω

∇u · ν dx = 0

by the divergence theorem. Therefore f̄ = 0.

3.7 Example sheet 3

1. Recall that if u ∈ C2(R3) and ∆u ≥ 0 then u is called subharmonic. State and prove
a mean value property for subharmonic functions. Also state the analogous result for
superharmonic functions, i.e. those C2 functions which satisfy ∆u ≤ 0.

2. Let φ ∈ C(Rn) be absolutely integrable with
∫
φ(x)dx = 1. Assume f ∈ C(Rn) is bounded

with sup |f(x)| ≤M <∞. Define φε(x) = ε−nφ(x/ε) and show

φε ∗ f(x)− f(x) =

∫ (
f(x− εw)− f(x)

)
φ(w)dw

(where the integrals are over Rn). Now deduce the approximation lemma:

φε ∗ f(x)→ f(x) as ε→ 0

and uniformly if f is uniformly continuous. (Hint: split up the w integral into an integral
over the ball BR = {w : |w| < R} and its complement BcR for large R).*Prove that if
f ∈ Lp(Rn), 1 ≤ p < ∞ then limε→0 ‖φε ∗ f(x) − f(x)‖Lp = 0. (Hint: use the Minkowski
inequality in Theorem 2.8.15).

*By computing the Fourier transform of the function γε,a(ξ) = exp[iξ · a− ε‖ξ‖2] deduce
the Fourier inversion theorem from the identity (û, γε,a)L2 = (u, γ̂ε,a)L2 of Theorem 2.2.1.

3. Starting with the mean value property for harmonic u ∈ C2(R3) deduce that if φ ∈ C∞0 (R3)
has total integral

∫
φ(x)dx = 1 and is radial φ(x) = ψ(|x|) , ψ ∈ C∞0 (R) then u = φε ∗ u

where φε(x) = ε−3φ(x/ε). Deduce that harmonic functions u ∈ C2(R3) are in fact C∞.
Also for u ∈ C2(Ω) harmonic in an open set Ω ∈ R3 deduce that u is smooth in the interior
of Ω (interior regularity). *Prove that if φ is a continuous function on Rn which satisfies
the mean value property, then it is a smooth harmonic function.

4. If u1, u2 ∈ C2(Ω)∩C1(Ω) are harmonic in Ω and agree on the boundary ∂Ω, show in two
different ways that u1 = u2 thoroughout Ω.

5. (i) Using the Green identities show that if f1, f2 both lie in S(Rn) then the corresponding
Schwartzian solutions u1, u2 of the equation −∆u+ u = f , i.e.

(−∆ + 1)u1 = f1 (−∆ + 1)u2 = f2
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satisfy

(∗)
∫
|∇(u1 − u2)|2 + |u1 − u2|2 ≤ c

∫
|f1 − f2|2

where the integrals are over Rn. (This is interpreted as implying the equation −∆u+u = f
is well-posed in the H1 norm (or “energy” norm) defined by the left hand side of (*).)
Now try to improve the result so that the H2 norm:

‖u‖2H2 ≡
∑
|α|≤2

∫
|∂αu|2dx,

appears on the left. (The sum is over all multi-indices of order less than or equal to 2).

(ii) Prove a maximum principle bound for u in terms of f and deduce that supRn |u1−u2| ≤
supRn |f1 − f2|.
(iii) Verify that for f ∈ S ′(Rn) the formula for uf in (3.2.9) remains valid, i.e. for each
φ ∈ S(Rn) there holds

〈uf , −∆φ+ φ 〉 = 〈 f , φ 〉 .

6. Prove a maximum principle for solutions of −∆u + V (x)u = 0 (on a bounded domain
Ω with smooth boundary ∂Ω) with V > 0: if u|∂Ω = 0 then u ≤ 0 in Ω. (Assume
u ∈ C2(Ω) ∩ C(Ω). Hint: exclude the possibility of u having a strictly positive interior
maximum).

What does the maximum principle reduce to for one dimensional harmonic functions i.e.
C2 functions such that uxx = 0?

7. Write down the definition of a weak H1 solution for the equation −∆u + u + V (x)u =
f ∈ L2(R3) on the domain R3. Assuming that V is real valued, continuous, bounded and
V (x) ≥ 0 for all x prove the existence and uniqueness of a weak solution. Formulate and
prove well posedness (stability) in H1 for this solution.

How about the case that V is pure imaginary valued?

8. The Dirichlet problem in half-space:
Let H = {(x, y) : x ∈ Rn, y > 0} be the half-space in Rn+1. Consider the problem
∆xu + ∂2

yu = 0, where ∆x is the Laplacian in the x variables only) and u(x, 0) = f(x)
with f a bounded and uniformly continuous function on Rn. Define

u(x, y) = Py ∗ f(x) =

∫
Rn

Py(x− z)f(z)dz

where Py(x) = 2y

cn(|x|2+y2)
n+1
2

for x ∈ Rn and y > 0. Show that for an appropriate choice

of cn the function u is harmonic on H and is equal to f for y = 0. This is the Poisson
kernel for half-space.
(Hint: first differentiate carefully under the integral sign; then note that Py(x) = y−nP1(xy )

where P1(x) = 2

cn(1+|x|2)
n+1
2

, i.e. an approximation to the identity) and use the approxi-

mation lemma to obtain the boundary data).

(ii) Assume that n = 1 and f ∈ S(R). Take the Fourier transform in the x variables to
prove the same result.
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9. Formulate and prove a maximum principle for a 2nd order elliptic equation Pu = f in the
case of periodic boundary conditions. Take Pu = −

∑n
jk=1 ajk∂

2
jku +

∑n
j=1 bj∂ju + cu

with ajk = akj , bj , c and f all continuous and 2π - periodic in each variable and assume u is
a C2 function with same periodicity. Assume uniform ellipticity (3.2.3) and c(x) ≥ c0 > 0
for all x. Formulate and prove well-posedness for Pu = f in the uniform norm.

10. Formulate a notion of weak H1 solution for the Sturm-Liouville problem Pu = f on
the unit interval [0, 1] with inhomogeneous Neumann data: assume Pu = −(pu′)′ + qu
with p ∈ C1([0, 1]) and q ∈ C([0, 1]) and assume there exist constants m, c0 such that
p ≥ m > 0 and q ≥ c0 > 0 everywhere, and consider boundary conditions u′(0) = α and
u′(1) = β. (Hint : start with a classical solution, multiply by a test function v ∈ C1([0, 1])
and integrate by parts). Prove the existence and uniqueness of a weak H1 solution for
given f ∈ L2. (*) Show that a weak solution u ∈ C2((0, 1)) whose first derivative u′

extends continuously up to the boundary of the interval, is in fact a classical solution
which satisfies u′(0) = α and u′(1) = β.

4 Parabolic equations

In this section we consider parabolic operators of the form

Lu = ∂tu+ Pu

where

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑
j=1

bj∂ju+ cu (4.0.1)

is an elliptic operator. Throughout this section ajk = akj, bj, c are continuous
functions, and

m‖ξ‖2 ≤
n∑

j,k=1

ajkξjξk ≤M‖ξ‖2 (4.0.2)

for some positive constants m,M and all x, t and ξ. The basic example is the heat,
or diffusion, equation ut − ∆u = 0 , which we start by solving, first for x in an
interval and then in Rn. We then show that in both situations the solutions fit into
an abstract framework of what is called a semi-group of contraction operators. We
then discuss some properties of solutions of general parabolic equations (maximum
principles and regularity theory).

4.1 The heat equation on an interval

Consider the one dimensional heat equation ut − uxx = 0 for x ∈ [0, 1], with
Dirichlet boundary conditions u(0, t) = 0 = u(1, t). Introduce the Sturm-Liouville
operator Pf = −f ′′, with these boundary conditions. Its eigenfunctions φm =√

2 sinmπx constitute an orthonormal basis for L2([0, 1]) (with inner product
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(f, g)L2 =
∫
f(x)g(x)dx, considering here real valued functions). The eigenvalue

equation is Pφm = λmφm with λm = (mπ)2. In terms of P the equation is:

ut + Pu = 0

and the solution with initial data

u(0, x) = u0(x) =
∑

(φm, u0)L2φm ,

is given by

u(x, t) =
∑

e−tλm(φm, u0)L2φm . (4.1.1)

(In this expression
∑

means
∑∞

m=1.) An appropriate Hilbert space is to solve for

u(·, t) ∈ L2([0, 1]) given u0 ∈ L2, but the presence of the factor e−tλm = e−tm
2π2

means the solution is far more regular for t > 0 than for t = 0:

Theorem 4.1.1 Let u0 =
∑

(φm, u0)L2φm be the Fourier sine expansion of a func-
tion u0 ∈ L2([0, 1]). Then the series (4.1.1) defines a smooth function u(x, t) for
t > 0, which satisfies ut = uxx and limt↓0 ‖u(x, t)− u0(x)‖L2 = 0.

Proof Term by term differentiation of the series with respect to x, t has the effect
only of multiplying by powers of m. For t > 0 the exponential factor e−tλm =
e−tm

2π2
thus ensures the convergence of these term by term differentiated series,

absolutely and uniformly in regions t ≥ θ > 0 for any positive θ . It follows that for
positive t the series defines a smooth function, which can be differentiated term
by term, and which can be seen to solve ut = uxx . To prove the final assertion
in the theorem, choose for each positive ε, a natural number N = N(ε) such that∑∞

N+1(φm, u0)2
L2 < ε2/42 . Let t0 > 0 be such that for |t| < t0

‖
N∑
1

(e−tλm − 1)(φm, u0)L2φm‖L2 ≤ ε

2
.

(This is possible because it is just a finite sum, each term of which has limit zero).
Then the triangle inequality gives (for 0 < t < t0):

‖u(x, t)− u0(x)‖L2 ≤ ‖
∞∑
1

(e−tλm − 1)(φm, u0)L2φm‖L2

≤ ε

2
+ 2× ‖

∞∑
N+1

(φm, u0)L2φm‖L2 ≤ ε

which implies that limt↓0 ‖u(x, t) − u0(x)‖L2 = 0 since ε is arbitrary. (In the last
bound, the restriction to t positive is crucial because it ensures that e−tλm ≤ 1.)
2
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The instantaneous smoothing effect established in this theorem is an important
property of parabolic pde. In the next section it will be shown to occur for the
heat equation on Rn also.

The formula (4.1.1) also holds, suitably modified, when P is replaced by any
other Sturm-Liouville operator with orthonormal basis of eigenfunctions φm. For
example, for if Pu = −u′′ on [−π, π]) with periodic boundary conditions: in this
case λm = m2 and φm = eimx/

√
2π for m ∈ Z .

4.2 The heat kernel

The heat equation is ut = ∆u where ∆ is the Laplacian on the spatial domain.
For the case of spatial domain Rn the distribution defined by the function

K(x, t) =

{
1√

4πtn
exp[−‖x‖

2

4t
] if t > 0,

0 if t ≤ 0,
(4.2.1)

is the fundamental solution for the heat equation (in n space dimensions). This
can be derived slightly indirectly: first using the Fourier transform (in the space
variable x only) the following formula for the solution of the initial value problem

ut = ∆u , u(x, 0) = u0(x) , u0 ∈ S(Rn) . (4.2.2)

Let Kt(x) = K(x, t) and let ∗ indicate convolution in the space variable only, then

u(x, t) = Kt ∗ u0(x) (4.2.3)

defines for t > 0 a solution to the heat equation and by the approximation lemma
(see question 2 sheet 3) limt→0+ u(x, t) = u0(x). Once this formula has been derived
for u0 ∈ S(Rn) using the fourier transform it is straightforward to verify directly
that it defines a solution for a much larger class of initial data, e.g. u0 ∈ Lp(Rn),
and the solution is in fact smooth for all positive t (instantaneous smoothing).

The Duhamel principle gives the formula for the inhomogeneous equation

ut = ∆u+ F , u(x, 0) = 0 (4.2.4)

as u(x, t) =
∫ t

0
U(x, t, s)ds, where U(x, t, s) is obtained by solving the family of

homogeneous initial value problems:

Ut = ∆U , U(x, s, s) = F (x, s) . (4.2.5)

This gives the formula (with F (x, t) = 0 for t < 0)

u(x, t) =

∫ t

0

Kt−s ∗ F (·, s) ds =

∫ t

0

Kt−s(x− y)F (y, s) ds = K ~ F (x, t) ,

for the solution of (4.2.4), where ~ means space-time convolution.
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4.3 Parabolic equations and semigroups

In this section we show that the solution formulae just obtained define semi-groups
in the sense of definition 6.1.1.

Theorem 4.3.1 (Semigoup property - Dirichlet boundary conditions) The
solution operator for the heat equation given by (4.1.1)

S(t) : u0 7→ u(·, t)

defines a strongly continuous one parameter semigroup of contractions on the
Hilbert space L2([0, 1]).

Proof S(t) is defined for t ≥ 0 on u ∈ L2([0, 1]) by

S(t)
∑
m

(φm, u)L2φm =
∑
m

e−tλm(φm, u)L2φm

and since |e−tλm| ≤ 1 for t ≥ 0 and ‖u‖2
L2 =

∑
m(φm, u)2

L2 <∞ this maps L2 into
L2 and verifies the first two conditions in definition 6.1.1. The strong continuity
condition (item 4 in definition 6.1.1) was proved in theorem 4.1.1. Finally, the fact
that the {S(t)}t≥0 are contractions on L2 is an immediate consequence of the fact
that |e−tλm| ≤ 1 for t ≥ 0. 2

To transfer this result to the heat kernel solution for whole space given by
(4.2.3), note the following properties of the heat kernel:

• Kt(x) > 0 for all t > 0, x ∈ Rn,

•
∫
Rn Kt(x)dx = 1 for all t > 0,

• Kt(x) is smooth for t > 0, x ∈ Rn, and for t fixed Kt(·) ∈ S(Rn),

the following result concerning the solution u(·, t) = S(t)u0 = Kt ∗ u0 follows from
basic properties of integration (see appendix to §2 on integration):

• for u0 ∈ Lp(Rn) the function u(x, t) is smooth for t > 0, x ∈ Rn and satisfies
ut −∆u = 0,

• ‖u(·, t)‖Lp ≤ ‖u0‖Lp and limt→0+ ‖u(·, t)− u0‖Lp = 0 for 1 ≤ p <∞.

From these and the approximation lemma (question 2 sheet 3) we can read off the
theorem:

Theorem 4.3.2 (Semigroup property - Rn) (i) The formula u(·, t) = S(t)u0 =
Kt ∗ u0 defines for u0 ∈ L1 a smooth solution of the heat equation for t > 0 which
takes on the initial data in the sense that limt→0+ ‖u(·, t)− u0‖L1 = 0.

(ii) The family {S(t)}t≥0 also defines a strongly continuous semigroup of con-
tractions on Lp(Rn) for 1 ≤ p <∞.

(iii) If in addition u0 is continuous then u(x, t) → u0(x) as t → 0+ and the
convergence is uniform if u0 is uniformly continuous.
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The properties of the heat kernel listed above also imply a maximum principle
for the heat equation, which says that the solution always takes values in between
the minimum and maximum values taken on by the intial data:

Lemma 4.3.3 (Maximum principle - heat equation on Rn) Let u = u(x, t)
be given by (4.2.3). If a ≤ u0 ≤ b then a ≤ u(x, t) ≤ b for t > 0, x ∈ Rn.

Related maximum principle bounds hold for general second order parabolic equa-
tions, as will be shown in the next section.

4.4 The maximum principle

Maximum principles for parabolic equations are similar to the elliptic case, once
the correct notion of boundary is understood. If Ω ⊂ Rn is an open bounded
subset with smooth boundary ∂Ω and for T > 0 we define ΩT = Ω × (0, T ] then
the parabolic boundary of the space-time domain ΩT is (by definition)

∂parΩT = ΩT − ΩT = Ω× {t = 0} ∪ ∂Ω× [0, T ] .

We consider variable coefficient parabolic operators of the form

Lu = ∂tu+ Pu

as in (4.0.1), still with the uniform ellipticity assumption (4.0.2) on P .

Theorem 4.4.1 Let u ∈ C(ΩT ) have derivatives up to second order in x and first
order in t which are continuous in ΩT , and assume Lu = 0. Then

• if c = 0 (everywhere) then max
ΩT

u(x, t) = max
∂parΩT

u(x, t), and

• if c ≥ 0 (everywhere) then max
ΩT

u(x, t) ≤ max
∂parΩT

u+(x, t), and

max
ΩT

|u(x, t)| = max
∂parΩT

|u(x, t)| .

where u+ = max{u, 0} is the positive part of the function u.

Proof We prove the first case (when c = 0 everywhere). To prove the maximum
principle bound, consider uε(x, t) = u(x, t)− εt which verifies, for ε > 0, the strict
inequality Luε < 0 . First prove the result for uε:

max
ΩT

uε(x, t) = max
∂parΩT

uε(x, t)

Since ∂parΩT ⊂ ΩT the left side is automatically ≥ the right side. If the left side
were strictly greater there would be a point (x∗, t∗) with x∗ ∈ Ω and 0 < t∗ ≤ T
at which the maximum value is attained:

uε(x∗, t∗) = max
(x,t)∈ΩT

uε(x, t) .
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By calculus first and second order conditions: ∂ju
ε = 0, uεt ≥ 0 and ∂2

iju
ε
x ≤ 0 (as

a symmetric matrix - i.e. all eigenvalues are ≤ 0). These contradict Luε < 0 at
the point (x∗, t∗). Therefore

max
ΩT

uε(x, t) = max
∂parΩT

uε(x, t) .

Now let ε ↓ 0 and the result follows. The proof of the second case is similar. 2

4.5 Regularity for parabolic equations

Consider the Cauchy problem for the parabolic equation Lu = ∂tu + Pu = f ,
where

Pu = −
n∑

j,k=1

∂j(ajk∂ku) +
n∑
j=1

bj∂ju+ cu (4.5.1)

with initial data u0. For simplicity assume that the coefficients are all smooth
functions of x, t ∈ Ω∞. The weak formulation of Lu = f is obtained by multiplying
by a test function v = v(x) and integrating by parts, leading to (where ( · ) means
the L2 inner product defined by integration over x ∈ Ω):

(ut , v ) +B(u, v) = (f, v) , (4.5.2)

B(u, v) =

∫ (∑
jk

ajk ∂ju∂kv +
∑

bj∂juv + cuv
)
dx .

To give a completely precise formulation it is necessary to define in which sense
the time derivative ut exists. To do this in a natural and general way requires the
introduction of Sobolev spaces Hs for negative s - see §5.9 and §7.1.1-§7.1.2 in the
book of Evans. However stronger assumptions on the initial data and inhomoge-
neous term are made a simpler statement is possible. (In the following statement
u(t) means the almost everywhere defined function of t taking values in a space of
functions of x.)

Theorem 4.5.1 For u0 ∈ H1
0 (Ω) and f ∈ L2(ΩT ) there exists

u ∈ L2([0, T ];H2(Ω) ∩ L∞([0, T ];H1
0 (Ω))

with time derivative ut ∈ L2(ΩT ) which satisfies (4.5.2) for all v ∈ H1
0 (Ω) and

almost every t ∈ [0, T ] and limt→0+ ‖u(t) − u0‖L2 = 0. Furthermore it is unique
and has the parabolic regularity property:∫ T

0

(‖u(t)‖2
H2(Ω)+‖ut‖L2(Ω) ) dt+ess sup

0≤t≤T
‖u(t)‖2

H1
0 (Ω) ≤ C(‖f‖L2(ΩT )+‖u0‖H1

0 (Ω)) .

(4.5.3)
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The time derivative is here to be understood in a weak/distributional sense as
discussed in the sections of Evans’ book just referenced, and the proof of the
regularity (4.5.3) is in §7.1.3 of the same book. In the following result we will
just verify that the bound holds for smooth solutions of the inhomogeneous heat
equation on a periodic interval:

Theorem 4.5.2 The Cauchy problem

ut − uxx = f , u(x, 0) = u0(x)

where f = f(x, t) is a smooth function which is 2π-periodic in x, and the initial
value u0 is also smooth and 2π-periodic, admits a smooth solution for t > 0, 2π-
periodic in x, which verifies the parabolic regularity estimate:∫ T

0

( ‖ut(t)‖2
L2 + ‖u(t)‖2

H2 ) dt ≤ C ( ‖u0‖2
H1 +

∫ T

0

∫ π

−π
|f(x, t)|2 dxdt ) .

Here the norms inside the time integral are the Sobolev norms on 2π-periodic func-
tions of x taken at fixed time.

Proof To prove existence, search for a solution in Fourier form, u =
∑
û(m, t)eimx

and obtain the ODE

∂tû(m, t) +m2û(m, t) = f̂(m, t) , û(m, 0) = û0(m)

which has solution

û(m, t) = e−m
2tû0(m) +

∫ t

0

e−m
2(t−s)f̂(m, s) ds .

Now by properties of Fourier series, û0(m) is a rapidly decreasing sequence, and
the same is true for f̂(m, t) locally uniformly in time, since

max
0≤t≤T

mj|f̂(m, t)| ≤ 1

2π

∫ π

−π
max

0≤t≤T
|∂jxf(x, t)| dx .

Now, estimating û(m, t) for 0 ≤ t ≤ T simply as

|û(m, t)| ≤ |û0(m)|+ |T | max
0≤t≤T

|f̂(m, t)| ,

we see that û(m, t) is a rapidly decreasing sequence since û0(m) and f̂(m, t) are.
Differentiation in time just gives factors of m2, and so ∂jt û(m, t) is also rapidly
decreasing for each j ∈ N . Therefore u =

∑
û(m, t)eimx defines a smooth function

for positive time, and it verifies the equation (by differentiation through the sum,
since this is allowed by rapidly decreasing property just established.)
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To obtain the estimate, we switch to energy methods: multiply the equation
by ut and integrate. This leads to∫ T

0

∫ π

−π
u2
t dxdt+

∫ π

−π
u2
x dx

∣∣
t=T

=

∫ π

−π
u2
x dx

∣∣
t=0

+

∫ T

0

∫ π

−π
fut dxdt .

Using the Hölder inequality on the final term, this gives an estimate∫ T

0

‖ut(t)‖2
L2 dt+ max

0≤t≤T
‖u(t)‖2

H1 ≤ C
(
‖u0‖2

H1 +

∫ T

0

∫ π

−π
|f(x, t)|2 dxdt

)
.

(Here and below C > 0 is just a positive constant whose precise value is not
important). To obtain the full parabolic regularity estimate from this, it is only
necessary to use the equation itself to estimate∫ T

0

‖uxx(t)‖2
L2 dt ≤ C

(∫ T

0

‖ut(t)‖2
L2 dt +

∫ T

0

‖f(x, t)‖2
L2 dt

)
,

and combining this with the previous bound completes the proof. 2

The parabolic regularity estimate in this theorem can alternatively be derived
from the Fourier form of the solution (exercise).

5 Hyperbolic equations

A second order equation of the form

utt +
∑
j

αj∂t∂ju+ Pu = 0

with P as in (4.0.1) (with coefficients potentially depending upon t and x), is
strictly hyperbolic if the principal symbol

σ(τ, ξ; t, x) = −τ 2 − (α · ξ)τ +
∑
jk

ajkξjξk

considered as a polynomial in τ has two distinct real roots τ = τ±(ξ; t, x) for all
nonzero ξ. We will mostly study the wave equation

utt −∆u = 0 , (5.0.1)

starting with some representations of the solution for the wave equation. In this
section we write u = u(t, x), rather than u(x, t), for functions of space and time to
fit in with the most common convention for the wave equation.
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5.1 The one dimensional wave equation: general solution

Introducing characteristic coordinatesX± = x±t, the wave equation takes the form
∂2
X+X−

u = 0, which has general classical solution F (X−)+G(X+), for arbitrary C2

functions F,G (by calculus). Therefore, the general C2 solution of utt− uxx = 0 is

u(t, x) = F (x− t) +G(x+ t)

for arbitrary C2 functions F,G. (This can be proved by changing to the character-
istic coordinates X± = x± t , in terms of which the wave equation is ∂2u

∂X+∂X−
= 0.

From this can be derived the solution at time t > 0 of the inhomogeneous initial
value problem:

utt − uxx = f (5.1.1)

with initial data
u(0, x) = u0(x) , ut(0, x) = u1(x) . (5.1.2)

u(t, x) =
1

2

(
u0(x− t) +u0(x+ t)

)
+

1

2

∫ x+t

x−t
u1(y) dy +

1

2

∫ t

0

∫ x+t−s

x−t+s
f(s, y) dyds .

(5.1.3)
Notice that there is again a “Duhamel principle” for the effect of the inhomo-

geneous term since

1

2

∫ t

0

∫ x+t−s

x−t+s
f(s, y) dyds =

∫ t

0

U(t, s, x)ds

where U(t, s, x) is the solution of the homogeneous problem with data U(s, s, x) = 0
and ∂tU(s, s, x) = f(s, x) specified at t = s.

Theorem 5.1.1 Assuming that (u0, u1) ∈ C2(R) × C1(R) and that f ∈ C1(R ×
R) the formula (5.1.2) defines a C2(R × R) solution of the wave equation, and
furthermore for each fixed time t, the mapping

Cr × Cr−1 → Cr × Cr−1

(u0(·), u1(·)) 7→ (u(t, ·), ut(t, ·))

is continuous for each integer r ≥ 2 . (Well-posedness in Cr × Cr−1.)

The final property stated in the theorem does not hold in more than one space
dimension (question 7). This is the reason Sobolev spaces are more appropriate
for the higher dimensional wave equation.
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5.2 The one dimensional wave equation on an interval

Next consider the problem x ∈ [0, 1] with Dirichlet boundary conditions u(t, 0) =
0 = u(t, 1). Introduce the Sturm-Liouville operator Pf = −f ′′, with these bound-
ary conditions as in §4.1, its eigenfunctions being φm =

√
2 sinmπx with eigenval-

ues λm = (mπ)2. In terms of P the wave equation is:

utt + Pu = 0

and the solution with initial data

u(0, x) = u0(x) =
∑

û0(m)φm , ut(0, x) = u1(x) =
∑

û1(m)φm ,

is given by

u(t, x) =
∞∑
m=1

cos(t
√
λm)û0(m)φm +

sin(t
√
λm)√

λm
û1(m)φm

with an analogous formula for ut. Recall the definition of the Hilbert space
H1

0 ((0, 1)) as the closure of the functions in C∞0 ((0, 1))5 with respect to the norm

given by ‖f‖2
H1 =

∫ 1

0
f 2 + f ′2 dx. In terms of the basis φm the definition is:

H1
0 ((0, 1)) = {f =

∑
f̂mφm : ‖f‖2

H1 =
∞∑
m=1

(1 +m2π2)|f̂m|2 <∞} .

(In all these expressions
∑

means
∑∞

m=1.) As equivalent norm we can take∑
λm|f̂m|2. An appropriate Hilbert space for the wave equation with these bound-

ary conditions is to solve for (u, ut) ∈ X where X = H1
0 ⊕ L2, and precisely we

will take the following:

X = {(f, g) = (
∑

f̂mφm,
∑

ĝmφm) : ‖(f, g)‖2
X =

∑
(λm|f̂m|2 + |ĝm|2) <∞} .

Now the effect of the evolution on the coefficients û(m, t) and ût(m, t) is the map(
û(m, t)
ût(m, t)

)
7→

(
cos(t

√
λm) sin(t

√
λm)√

λm

−
√
λmsin(t

√
λm) cos(t

√
λm)

)(
û(m, 0)
ût(m, 0)

)
(5.2.1)

Theorem 5.2.1 The solution operator for the wave equation

S(t) :

(
u0

u1

)
7→
(
u(t, ·)
ut(t, ·)

)
defined by (5.2.1) defines a strongly continuous group of unitary operators on the
Hilbert space X, as in definition 6.3.1.

5i.e. smooth functions which are zero outside of a closed set [a, b] ⊂ (0, 1)
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5.3 The wave equation on Rn

To solve the wave equation on Rn take the Fourier transform in the space variables
to show that the solution is given by

u(t, x) = (2π)−n
∫

expiξ·x(cos(t‖ξ‖)û0(ξ) +
sin(t‖ξ‖)
‖ξ‖

û1(ξ))dξ (5.3.1)

for initial values u(0, x) = u0(x), ut(0, x) = u1(x) in S(Rn). The Kirchhoff formula
arises from some further manipulations with the fourier transform in the case n = 3
and u0 = 0 and gives the following formula

u(t, x) =
1

4πt

∫
y:‖y−x‖=t

u1(y) dΣ(y) (5.3.2)

for the solution at time t > 0 of utt − ∆u = 0 with initial data (u, ut) = (0, u1).
The solution for the inhomogeneous initial value problem with general Schwartz
initial data u0, u1 can then be derived from the Duhamel principle, which takes
the same form as in one space dimension (as explained in §5.1).

5.4 The energy identity and finite propagation speed

Lemma 5.4.1 (Energy identity) If u is a C2 solution of the wave equation
(5.0.1), then

∂t
(u2

t + |∇u|2

2

)
+ ∂i

(
−ut∂iu

)
= 0

where ∂i = ∂
∂xi

.

From this and the divergence theorem some important properties follow:

Theorem 5.4.2 (Finite speed of propagation) If u ∈ C2 solves the wave equa-
tion (5.0.1), and if u(0, x) and ut(0, x) both vanish for ‖x− x0‖ < R, then u(t, x)
vanishes for ‖x− x0‖ < R− |t| if |t| < R.

Proof Notice that the energy identity can be written div t,x(e, p) = 0, where

(e, p) =
(u2

t + |∇u|2

2
,−ut∂1u, · · · − ut∂nu

)
∈ R1+n .

Let t0 > 0 and consider the backwards light cone with vertex (t0, x0), i.e. the set

{(t, x) ∈ R1+3 : t ≤ t0, ‖x− x0‖ ≤ t0 − t} .

The outwards normal to this at (t, x) is ν = 1√
2
(1, x−x0
‖x−x0‖) ∈ R1+n, which satisfies

ν · (e, p) ≥ 0 by the Cauchy-Schwarz inequality. Integrating the energy identity
over the region formed by intersecting the backwards light cone with the slab
{(t, x) ∈ R1+3 : 0 ≤ t ≤ t1} , and using the divergence theorem then leads to∫
‖x−x0‖≤t0−t1 e(t1, x) dx ≤

∫
‖x−x0‖≤t0 e(0, x) dx . This implies the result by choosing

R = t0 . 2

64



Theorem 5.4.3 (Regularity for the wave equation) For initial data u(0, x) =
u0(x) and ut(0, x) = u1(x) in S(Rn), the formula (5.3.1) defines a smooth solution
of the wave equation (5.0.1), which satisfies the energy conservation law

1

2

∫
Rn
ut(t, x)2 + ‖∇u(t, x)‖2 dx = E = constant .

Furthermore, at each fixed time t there holds:

‖(u(t, ·), ut(t, ·))‖Hs+1×Hs ≤ C‖(u0(·), u1(·))‖Hs+1×Hs , C > 0 (5.4.1)

for each s ∈ Z+ . Thus the wave equation is well-posed in the Sobolev norms Hs+1×
Hs and regularity is preserved when measured in the Sobolev L2 sense.

Proof The fact that (5.3.1) defines a smooth function is a consequence of the
theorems on the properties of the Fourier transform and on differentiation through
the integral in §2, which is allowed by the assumption that the initial data are
Schwartz functions. Given this, it is straightforward to check that (5.3.1) defines
a solution to the wave equation. Energy conservation follows by integrating the
identity in lemma 5.4.1. Energy conservation almost gives (5.4.1) for s = 0. It is
only necessary to bound ‖u(t, ·)‖2

L2 , which may be done in the following way. To
start, using energy conservation, we have:∣∣ d

dt
‖u‖2

L2

∣∣ =
∣∣ 2(u, ut)L2

∣∣ ≤ ‖u‖L2‖ut‖L2 ≤
√

2E‖u‖L2

This implies that Fε(t) = (ε+ ‖u(t, ·)‖2
L2)

1
2 satisfies6, for any positive ε

Ḟε(t) ≤
√

2E

and hence ‖u(t, ·)‖L2 ≤ Fε(t) ≤ (ε + ‖u(0, ·)‖2
L2)

1
2 +
√

2Et, for any ε > 0. This
completes the derivation of (5.4.1) for s = 0 . The corresponding cases of (5.4.1)
for s = 1, 2 . . . are then derived by successively differentiating the equation, and
applying the energy conservation law to the differentiated equation. 2

Remark 5.4.4 Well-posedness and preservation of regularity do not hold for the
wave equation when measured in uniform norms Cr × Cr−1, except in one space
dimension, see question 7.

Remark 5.4.5 For initial data (u0, u1) ∈ Hs+1 × Hs there is a distributional
solution (u(t, ·), ut(t, ·)) ∈ Hs+1 × Hs at each time, which can be obtained by ap-
proximation using density of C∞0 in the Sobolev spaces Hs and the well-posedness
estimate (5.4.1).

6The ε is introduced to avoid the possibility of dividing by zero.
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6 One-parameter semigroups and groups

If A is a bounded linear operator on a Banach space its norm is

‖A‖ = sup
u∈X,u6=0

‖Au‖
‖u‖

, (operator or uniform norm).

This definition implies that if A,B are bounded linear operators onX then ‖AB‖ ≤
‖A‖‖B‖ .

6.1 Definitions

Definition 6.1.1 A one-parameter family of bounded linear operators {S(t)}t≥0

on a Banach space X forms a semigroup if

1. S(0) = I (the identity operator) , and

2. S(t+ s) = S(t)S(s) for all t, s ≥ 0 (semi-group property).

3. It is called a uniformly continuous semigroup if in addition to (1) and (2):

lim
t→0+

‖S(t)− I‖ = 0 , (uniform continuity).

4. It is called a strongly continuous (or C0) semigroup if in addition to (1) and
(2):

lim
t→0+

‖S(t)u− u‖ = 0 ,∀u ∈ X (strong pointwise continuity).

5. If ‖S(t)‖ ≤ 1 for all t ≥ 0 the semigroup {S(t)}t≥0 is called a semigroup of
contractions.

Notice that in 3 the symbol ‖ · ‖ means the operator norm, while in 4 the same
symbol means the norm on vectors in X. Also observe that uniform continuity is
a stronger condition than strong continuity.

6.2 Semigroups and their generators

For ordinary differential equations ẋ = Ax, where A is an n × n matrix, the
solution can be written x(t) = etAx(0) and there is a 1− 1 corespondence between
the matrix A and the semigroup S(t) = etA on Rn. In this subsection7 we discuss
how this generalizes.

7This subsection is for background information only
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Uniformly continuous semigroups have a simple structure which generalizes
the finite dimensional case in an obvious way - they arise as solution operators for
differential equations in the Banach space X:

du

dt
+ Au = 0 , for u(0) ∈ X given . (6.2.1)

Theorem 6.2.1 {S(t)}t≥0 is a uniformly continuous semgroup on X if and only
if there exists a unique bounded linear operator A : X → X such that S(t) =
e−tA =

∑∞
j=0(−tA)j/j!. This semigroup gives the solution to (6.2.1) in the form

u(t) = S(t)u(0), which is continuously differentiable into X. The operator A is
called the infinitesimal generator of the semigroup {S(t)}t≥0.

This applies to ordinary differential equations when A is a matrix. It is not very
useful for partial differential equations because partial differential operators are
unbounded, whereas in the foregoing theorem the infinitesimal generator was nec-
essarily bounded. For example for the heat equation we need to take A = −∆,
the laplacian defined on some appropriate Banach space of functions. Thus it is
necessary to consider more general semigroups, in particular the strongly contin-
uous semigroups. An unbounded linear operator A is a linear map from a linear
subspace D(A) ⊂ X into X (or more generally into another Banach space Y ).
The subspace D(A) is called the domain of A. An unbounded linear operator
A : D(A)→ Y is said to be

• densely defined if D(A) = X, where the overline means closure in the norm
of X, and

• closed if the graph ΓA = {(u,Au)|u∈D(A)} ⊂ X × Y is closed in X × Y .

A class of unbounded linear operators suitable for understanding strongly contin-
uous semigroups is the class of maximal monotone operators in a Hilbert space:

Definition 6.2.2 1. A linear operator A : D(A)→ X on a Hilbert space X is
monotone if (u,Au) ≥ 0 for all u ∈ D(A).

2. A monotone operator A : D(A) → X is maximal monotone if, in addition,
the range of I + A is all of X, i.e. if:

∀f ∈ X ∃u ∈ D(A) : (I + A)u = f .

Maximal monotone operators are automatically densely defined and closed, and
there is the following generalization of theorem 6.2.1:

Theorem 6.2.3 (Hille-Yosida) If A : D(A) → X is maximal monotone then
the equation

du

dt
+ Au = 0 , for u(0) ∈ D(A) ⊂ X given , (6.2.2)

67



admits a unique solution u ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) with the property
that ‖u(t)‖ ≤ ‖u(0)‖ for all t ≥ 0 and u(0) ∈ D(A). Since D(A) ⊂ X is dense
the map D(A) 3 u(0) → u(t) ∈ X extends to a linear map SA(t) : X → X
and by uniqueness this determines a strongly continuous semigroup of contractions
{SA(t)}t≥0 on the Hilbert space X. Often SA(t) is written as SA(t) = e−tA.

Conversely, given a strongly continuous semigroup {S(t)}t≥0 of contractions
on X, there exists a unique maximal monotone operator A : D(A) → X such
that SA(t) = S(t) for all t ≥ 0. The operator A is the infinitesimal generator of
{S(t)}t≥0 in the sense that d

dt
S(t)u = Au for u ∈ D(A) and t ≥ 0 (interpreting the

derivative as a right derivative at t = 0).

6.3 Unitary groups and their generators

Semigroups arise in equations which are not necessarily time reversible. For equa-
tions which are, e.g. the Schrödinger and wave equations, each time evolution
operator has an inverse and the semigroup is in fact a group. In this subsection8

We give the definitions and state the main result.

Definition 6.3.1 A one-parameter family of unitary operators {U(t)}t∈R on a
Hilbert space X forms a group of unitary operators if

1. U(0) = I (the identity operator) , and

2. U(t+ s) = U(t)U(s) for all t, s ∈ R (group property).

3. It is called a strongly continuous (or C0) group of unitary operators if in
addition to (1) and (2):

lim
t→0
‖U(t)u− u‖ = 0 , ∀u ∈ X (strong pointwise continuity).

A maximal monotone operator A which is symmetric (=hermitian), i.e. such
that

(Au, v) = (u,Av) for all u, v in D(A) ⊂ X (6.3.1)

generates a one-parameter group of unitary operators {U(t)}t∈R, often written
U(t) = e−itA, by solving the equation

du

dt
+ iAu = 0 , for u(0) ∈ D(A) ⊂ X given . (6.3.2)

It is useful to introduce the adjoint operator A∗ via the Riesz representation the-
orem: first of all let

D(A∗) = {u ∈ X : the map v 7→ (u,Av) extends to a

bounded linear functional X → C}
8In this subsection you only need to know definition 6.3.1. The remainder is for background

information.
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so that D(A∗) is a linear space, and for u ∈ D(A∗) there exists a vector wu such that
(wu, v) = (u,Av) (by Riesz representation). The map u → wu is linear on D(A∗)
and so we can define an unbounded linear operator A∗ : D(A∗)→ X by A∗u = wu,
and since we started with a symmetric operator it is clear that D(A) ⊂ D(A∗) and
A∗u = Au for u ∈ D(A); the operator A∗ is thus an extension of A.

Definition 6.3.2 If A : D(A) → X is an unbounded linear operator which is
symmetric and if D(A∗) = D(A) then A is said to be self-adjoint and we write
A = A∗.

Theorem 6.3.3 Maximal monotone symmetric operators are self-adjoint.

Theorem 6.3.4 (Stone theorem) If A is a self-adjoint operator the equation
(6.3.2) has a unique solution for u(0) ∈ D(A) which may be written u(t) =
UA(t)u(0) with ‖u(t)‖ = ‖u(0‖ for all t ∈ R. It follows that the UA(t) extend
uniquely to define unitary operators X → X and that {UA(t)}t∈R constitutes a
strongly continuous group of unitary operators which are written UA(t) = e−itA.

Conversely, given a strongly continuous group of unitary operators {U(t)}t∈R
there exists a self-adjoint operator A such that U(t) = UA(t) = e−itA for all t ∈ R.

6.4 Worked problems

1. Let C∞per = {u ∈ C∞(R) : u(x+2π) = u(x)} be the space of smooth 2π− periodic functions
of one variable.

(i) For f ∈ C∞per show that there exists a unique u = uf ∈ C∞per such that

−∂
2u

∂x2
+ u = f.

(ii) Show that If [uf + φ] > If [uf ] for every φ ∈ C∞per which is not identically zero, where
If : C∞per → R is defined by

If [u] =
1

2

∫ +π

−π

(
(
∂u

∂x
)2 + u2 − 2f(x)u

)
dx.

(iii) Show that the equation
∂u

∂t
− ∂2u

∂x2
+ u = f(x),

with initial data u(0, x) = u0(x) ∈ C∞per has, for t > 0 a smooth solution u(t, x) such that
u(t, ·) ∈ C∞per for each fixed t > 0, and give a representation of this solution as a Fourier
series in x. Calculate limt→+∞ u(t, x) and comment on your answer in relation to (i).

(iv) Show that If [u(t, ·)] ≤ If [u(s, ·)] for t > s > 0, and that If [u(t, ·)] → If [uf ] as
t→ +∞.

Answer (i) Any solution uf ∈ C∞per can be represented as a Fourier series: uf =
∑
ûf (α)eiαx,

as can f . Here α ∈ Z. The fourier coefficients are rapidly decreasing i.e. faster than any
polynomial so it is permissible to differentiate through the sum, and substituting into the
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equation we find that the coefficients ûf (α) are uniquely determined by f according to

(1 + α2)ûf (α) = f̂(α), hence

uf (x) =
∑ f̂(α)

1 + α2
eiαx.

(Can also prove uniqueness by noting that if there were two solutions u1, u2 then the
difference u = u1−u2 would solve−uxx+u = 0. Now multply by u and integrating by parts
(using periodicity) - this implies that

∫
u2
x + u2 = 0 which implies that u = u1 − u2 = 0.)

(ii) Calculate, using the equation satisfied by uf and integration by parts, that

If [uf + φ]− If [uf ] =
1

2

∫ π

π

(φ2
x + φ2)dx > 0

for non-zero φ ∈ C∞per.
(iii) Expand the solution in terms of Fourier series and then substitute into the equation
and use integrating factor to obtain that the solution is u(t, x) =

∑
û(α, t)eiαx where

û(α, t) = e−t(1+α2)û0(α) +

∫ t

0

e−(t−s)(1+α2)f̂(α)ds.

Carry out the integral to deduce that

û(α, t) =
f̂(α)

1 + α2
+ e−t(1+α2)

(
û0(α)− f̂(α)

1 + α2

)
.

which implies that û(α, t)→ ûf (α) = f̂(α)
1+α2 as t→ +∞, and further that u(x, t)→ uf (x)

uniformly in x as t→ +∞.

(iv) By (i) and (iii) we see that u(x, t) = uf (x)+φ(x, t) where φ̂(α, t) = e−t(1+α2)(û0(α)−
ûf (α)). Now apply (ii) and use the Parseval theorem to deduce that

If [u(t, ·)]− If [uf ] = π
∑

(1 + α2)|φ̂(α, t)|2

= π
∑

(1 + α2)e−2t(1+α2)|û0(α)− ûf (α)|2

which decreases to zero since û0(α) and ûf (α) are rapidly decreasing.

2. For the equation ut − uxx + u = f , where f = f(x, t) is a smooth function which is
2π-periodic in x, and the initial data u(x, 0) = u0(x) are also smooth and 2π-periodic
obtain the solution as a Fourier series u =

∑
û(m, t)eimx and hence verify the parabolic

regularity estimate:∫ T

0

( ‖ut(t)‖2L2 + ‖u(t)‖2H2 ) dt ≤ C ( ‖u0‖2H1 +

∫ T

0

∫ π

−π
|f(x, t)|2 dxdt ) .

Answer: Use the Fourier form of the solution u(x, t) =
∑
m∈Zn û(m, t)eim·x at each time

t, and similarly for f , and the definition

Hs
per = {u =

∑
m∈Zn

û(m)eim·x ∈ L2 : ‖u‖2Hs =
∑
m∈Zn

(1 + ‖m‖2)s|û(m)|2 <∞} ,
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is for the Sobolev spaces of fixed time functions 2π-periodic in each co-ordinate xj and
for s = 0, 1, 2, . . . . Writing ωm = 1 + ‖m‖2, and using an integrating factor the solution is
given by:

û(m, t) = e−ωmtû(m, 0) +

∫ t

0

e−(t−s)ωm f̂(m, s) ds

in Fourier representation. The second term is a convolution, so by the Hausdorff-Young
inequality ‖f ∗ g‖2L2 ≤ ‖f‖2L1‖g‖2L2 we obtain:∫ T

0

|
∫ t

0

e−(t−s)ωm f̂(m, s) ds |2 dt ≤
(∫ T

0

|e−tωm |dt
)2 ∫ T

0

|f̂(m, t)|2dt

≤ 1

ω2
m

∫ T

0

|f̂(m, t)|2dt .

Here we have made use of
∫ T

0
e−ωmt dt = 1−e−ωmT

ωm
≤ 1

ωm
. Using this bound, and |a+b|2 ≤

2(a2 + b2), we obtain:∫ T

0

ω2
m|û(m, t)|2 dt ≤ 2

[∫ T

0

e−2tωm dt ω2
m |û(m, 0)|2 +

∫ T

0

|f̂(m, t)|2dt
]

≤ 2
[ ωm

2
|û(m, 0)|2 +

∫ T

0

|f̂(m, t)|2dt
]
.

Now sum over m ∈ Zn and use the Parseval theorem and definitions of ‖ · ‖Hs to obtain∫ T

0

‖u(t)‖2H2 dt ≤ const.
[
‖u(0)‖2H1 +

∫ T

0

|f(t)|2L2 dt
]
.

To obtain the inequality as stated it is sufficient to use the equation to obtain the same

bound for
∫ T

0
‖ut(t)‖2L2 dt (with another constant).

3. (i) Define the Fourier transform f̂ = F(f) of a Schwartz function f ∈ S(Rn), and also of
a tempered distribution u ∈ S ′(Rn).

(ii) From your definition compute the Fourier transform of the distribution Wt ∈ S ′(R3)
given by

Wt(ψ) =< Wt, ψ >=
1

4πt

∫
‖y‖=t

ψ(y)dΣ(y)

for every Schwartz ψ ∈ S(R3). (Here dΣ(y) = t2dΩ(y) is the integration element on the
sphere of radius t,) and hence deduce a formula (Kirchoff) for the solution of the initial
value problem for the wave equation in three space dimensions,

∂2u

∂t2
−∆u = 0,

with initial data u(0, x) = 0 and ∂u
∂t (0, x) = g(x), x ∈ R3 where g ∈ S(R3). Explain briefly

why the formula is valid for arbitrary smooth f .

(iii) Show that any C2 solution of the initial value problem in (ii) is given by the formula
derived in (ii) (uniqueness).

(iv) Show that any two solutions of the initial value problem for

∂2u

∂t2
+
∂u

∂t
−∆u = 0,
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with identical initial data as in (ii), also agree for any t > 0.

Answer (i) f̂(ξ) =
∫
f(x)e−ix·ξ dx , and 〈û, f〉 = 〈u, f̂〉 . This defines u ∈ S ′(Rn) since

for any f ∈ S(Rn) the Fourier transform f̂ ∈ S(Rn) also; in fact f 7→ f̂ is a linear
homeomorphism on S(Rn) .

(ii) Compute

< Wt, f̂ >=
1

4πt

∫
‖y‖=t

f̂(y)dΣ(y) =
t

4π

∫
Rn

f(ξ)

∫
‖Ω‖=1

e−it‖ξ‖ cos θ dΩdξ

Here we are writing Ω = (θ, φ) for the spherical polar angles for y, with the direction of
ξ taken as the “e3 axis”, so that y · ξ = ‖ξ‖‖y‖ cos θ = t‖ξ‖ cos θ. The inner integral can
be performed, after inserting dΩ = sin θdθdφ, and equals 2π× (2 sin t‖ξ‖)/(t‖ξ‖) , so that
overall:

< Ŵt , f >=< Wt , f̂ >=

∫
Rn

sin t‖ξ‖
‖ξ‖

f(ξ) dξ .

This means Ŵt is the distribution determined by the function sin(t‖ξ‖)
‖ξ‖ . (This function

is actually smooth and bounded by the Taylor expansion, and so determines a tempered
distribution.)

But in Fourier variables the solution of the wave equation is:

û(t, ξ) =
(

cos(t‖ξ‖)û0(ξ) +
sin(t‖ξ‖)
‖ξ‖

û1(ξ)
)

for initial values u(0, x) = u0(x), ut(0, x) = u1(x) in S(Rn). Comparing with the formula
just derived, and applying the convolution theorem, it follows that the solution with u0 = 0
and u1 = g is given at each time t by u(t, ·) = Wt ∗ g, since then

û(t, ξ) = Ŵt(ξ)ĝ(ξ) =
sin(t‖ξ‖)
‖ξ‖

ĝ(ξ)

(iii) Classical solutions of the wave equation obey the energy momentum conservation law

et +∇ · p = 0

where e = (u2
t + |∇u|2)/2 and p = −ut∇u. Integrate et +∇ · p = 0 over the part of the

backward light cone with vertex (t0, x0), for some t0 > 0 , which lies in the slab between
{t = 0} and {t = t1 < t0}; i.e. the region

Kt0,x0 = {(t, x) ∈ R1+3 : 0 ≤ t ≤ t1, ‖x− x0‖ ≤ t0 − t} .

Applying the divergence theorem, and noticing that if ν is the outward pointing normal on
the sloping part of the boundary of this region, then ν · (e, p) ≥ 0 by the Cauchy-Schwarz
inequality, we deduce that∫

‖x−x0‖≤t0−t1
e(t1, x) dx ≤

∫
‖x−x0‖≤t0

e(0, x) dx . (6.4.1)

This implies that if the initial data are zero then the solution is zero at all later times. By
time reversal symmetry an identical argument implies the same thing for negative times.
Applied to the difference of two solutions this implies uniqueness (since by linearity the
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difference of two solutions of the wave equation also solves the wave equation), and hence
that any classical C2 solution is given by the same formula as was derived in (ii).

(iv) Do essentially the same calculation as in (iii) but using this time that

et +∇ · p = −u2
t ≤ 0

which gives the same conclusion 6.4.1 for positive times. (However, since time reversal
symmetry no longer holds, the argument cannot now be simply reversed to obtain the
analogous inequality for negative times).

4. Consider a continuous function t 7→ u(t) ∈ C such that |u(t)| = 1∀t and u(t+s) = u(t)u(s)
for all real s, t . Prove that there exists a ∈ R such that u(t) = eiat. Deduce Stone’s theorem
on the Hilbert space C .

Answer There exists λ(t), defined mod 2π, such that u(t) = eiλ(t). By continuity there
exists δ > 0 such that for |t| ∈ I = (−δ,+δ) we have |u(t) − 1| < 1

2 . In this interval

I, there is a unique λ(t) ∈ (−π,+π) which is continuous and satisfies u(t) = eiλ(t) and
λ(t+s) = λ(t)+λ(s) for s, t, s+t all in I. Let N be any integer sufficiently large that 1

N ∈ I,
and define a = Nλ( 1

N ). Then the semigroup property implies that u(mN ) = (u( 1
N ))m =

eimλ( 1
N ) = eia

m
N , for any integer m. The value of a thus defined is independent of N chosen

as above: indeed, if a′, N ′ were another such value we would also have u(t) = eia
′ m
N′ for all

integral m. Clearly 1
NN ′ ∈ I, so also defining b = NN ′λ( 1

NN ′ ) we have by the additivity
of λ that a = b = a′. Therefore a is unique, for all such integers N with 1

N ∈ I and so
u(t) = eia

m
N for all such N and all m ∈ Z. It follows from the density of m

N in R and the
continuity of u(t) that u(t) = eiat for all t ∈ R .

6.5 Example sheet 4

1. (a) Use the change of variables v(t, x) = etu(t, x) to obtain an “x-space” formula for the
solution to the initial value problem:

ut + u = ∆u u(0, · ) = u0(·) ∈ S(Rn).

Hence show that |u(t, x)| ≤ supx |u0(x)| and use this to deduce well-posedness in the
supremum norm (for t > 0 and all x).

If a ≤ u0(x) ≤ b for all x what can you say about the possible values of u(t, x) for t > 0.

(b) Use the Fourier transform in x to obtain a (Fourier space) formula for the solution of:

utt − 2ut + u = ∆u u(0, · ) = u0(·) ∈ S(Rn), ut(0, ·) = u1(·) ∈ S(Rn).

2. Show that if u ∈ C([0,∞) × Rn) ∩ C2((0,∞) × Rn) satisfies (i) the heat equation, (ii)
u(0, x) = 0 and (iii) |u(t, x)| ≤ M and |∇u(t, x)| ≤ N for some M,N then u ≡ 0. (Hint:
multiply heat equation by Kt0−t(x − x0) and integrate over |x| < R, a < t < b. Apply
the divergence theorem, carefully let R → ∞ and then b → t0 and a → 0 to deduce
u(t0, x0) = 0.)

3. Show that if S(t) is a strongly continuous semigroup of contractions on a Banach space X
with norm ‖ · ‖, then

lim
t→0+

‖S(t0 + t)u− S(t0)u‖ = 0 , ∀u ∈ X and ∀t0 > 0 .
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4. Let Pu = −(pu′)′ + qu, with p and q smooth, be a Sturm-Liouville operator on the unit
interval [0, 1] and assume there exist constants m, c0 such that p ≥ m > 0 and q ≥ c0 > 0
everywhere, and consider Dirichlet boundary conditions u(0) = 0 = u(1). Assume {φn}∞n=1

are smooth functions which constitute an orthonormal basis for L2([0, 1]) of eigenfunctions:
Pφn = λnφn. Show that there exists a number γ > 0 such that λn ≥ γ for all n. Write
down the solution to the equation ∂tu+Pu = 0 with initial data u0 ∈ L2([0, 1]) and show
that it defines a strongly continuous semigroup of contractions on L2([0, 1]), and describe
the large time behaviour.

5. (i) Let ∂tuj + Puj = 0 , j = 1, 2 where P is as in (4.0.1) and the functions uj have the
regularity assumed in theorem 4.4.1 and satisfy Dirichlet boundary conditions: uj(x, t) =
0 ∀x ∈ ∂Ω, t ≥ 0. Assuming, in addition to (4.0.2), that

c ≥ c0 > 0 (6.5.1)

for some positive constant c0 prove that for all 0 ≤ t ≤ T :

sup
x∈Ω
|u1(x, t)− u2(x, t)| ≤ e−tc0 sup

x∈Ω
|u1(x, 0)− u2(x, 0)|.

(ii) In the situation of part (i) with

Pu = −
n∑

j,k=1

∂j(ajk∂ku) +

n∑
j=1

bj∂ju+ cu , (6.5.2)

assuming in addition to (4.0.2) and (6.5.1) also that ajk, bj are C1 and that

n∑
j=1

∂jbj = 0 , in ΩT ,

prove that for all 0 ≤ t ≤ T :∫
Ω

|u1(x, t)− u2(x, t)|2 dx ≤ e−2tc0

∫
Ω

|u1(x, 0)− u2(x, 0)|2 dx.

6. (i) Let Kt be the heat kernel on Rn at time t and prove directly by integration that

Kt ∗Ks = Kt+s

for t, s > 0 (semi-group property). Use the Fourier transform and convolution theorem to
give a second simpler proof.
(ii) Deduce that the solution operators S(t) = Kt∗ define a strongly continuous semigroup
of contractions on Lp(Rn)∀p <∞.
(iii) Show that the solution operator S(t) : L1(Rn) → L∞(Rn) for the heat initial value
problem satisfies ‖S(t)‖L1→L∞ ≤ ct−

n
2 for positive t, or more explicitly, that the solution

u(t) = Stu(0) satisfies ‖u(t)‖L∞ ≤ ct−
n
2 ‖u(0)‖L1 , or:

sup
x
|u(x, t)| ≤ ct−n/2

∫
|u(x, 0)|dx

for some positive number c, which should be found.
(iii) Now let n = 4. Deduce, by considering v = ut, that if the inhomogeneous term
F ∈ S(R4) is a function of x only, the solution of ut − ∆u = F with zero initial data
converges to some limit as t→∞. Try to identify the limit.
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7. (i) Let u(t, x) be a twice continuously differentiable solution of the wave equation on R×Rn
for n = 3 which is radial, i.e. a function of r = ‖x‖ and t. By letting w = ru deduce that
u is of the form

u(t, x) =
f(r − t)

r
+
g(r + t)

r
.

(ii) Show that the solution with initial data u(0, ·) = 0 and ut(0, ·) = G, where G is radial
and even function, is given by

u(t, r) =
1

2r

∫ r+t

r−t
ρG(ρ)dρ.

(iii) Hence show that for initial data u(0, ·) ∈ C3(Rn) and ut(0, ·) ∈ C2(Rn) the solution
u = u(t, x) need only be in C2(R×Rn). Contrast this with the case of one space dimension.

8. Write down the solution of the Schrodinger equation ut = iuxx with 2π-periodic boundary
conditions and initial data u(x, 0) = u0(x) smooth and 2π-periodic in x, and show that
the solution determines a strongly continuous group of unitary operators on L2([−π, π]).
Do the same for Dirichlet boundary conditions i.e. u(−π, t) = 0 = u(π, t) for all t ∈ R.

9. (i) Write the one dimensional wave equation utt−uxx = 0 as a first order in time evolution
equation for U = (u, ut).

(ii) Use Fourier series to write down the solution with initial data u(0, ·) = u0 and ut(0, ·) =
u1 which are smooth 2π-periodic and have zero mean: ûj(0) = 0.

(iii) Show that ‖u‖2
Ḣ1

per

=
∑
m 6=0 |m|2|û(m)|2 defines a norm on the space of smooth 2π-

periodic functions with zero mean. The corresponding complete Sobolev space is the case
s = 1 of

Ḣs
per = {

∑
m6=0

û(m)eim·x : ‖u‖2
Ḣs

per
=
∑
m6=0

|m|2s|û(m)|2 <∞} ,

the Hilbert space of zero mean 2π-periodic Hs functions.

(iv) Show that the solution defines a group of unitary operators in the Hilbert space

X = {U = (u, v) : u ∈ Ḣ1
per and v ∈ L2([−π, π])} .

(v) Explain the “unitary” part of your answer to (iv) in terms of the energy

E(t) =

∫ π

−π
(u2
t + u2

x) dx .

(vi) Show that ‖U(t)‖Ḣs+1
per ⊕Ḣs

per
= ‖(u0, u1)‖Ḣs+1

per ⊕Ḣs
per

(preservation of regularity).

10. (a) Deduce from the finite speed of propagation result for the wave equation (lemma 5.4.2)
that a classical solution of the initial value problem, 2u = 0, u(0, t) = f, ut(0, x) = g,
with f, g ∈ D(Rn) given is unique.

(b) The Kirchhoff formula for solutions of the wave equation n = 3 for initial data u(0, ·) =
0, ut(0, ·) = g is derived using the Fourier transform when g ∈ S(Rn). Show that the
validity of the formula can be extended to any smooth function g ∈ C∞(Rn).(Hint: finite
speed of propagation).
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11. Write out and prove Stone’s theorem for the case of the finite dimensional Hilbert space
CN (so that each operator U(t) is now a unitary matrix).

Additional questions

1. Solve the Dirichlet problem for the Laplace equation in a square G ⊂ R2

∆u = 0 in G = [0, a]× [0, a] ,

u(x, 0) = f1(x) , u(x, a) = f2(x) , u(0, y) = f3(y) , u(a, y) = f4(y) .

[Hint: Solve the system separately for each of the given boundary conditions, assuming
that the solution is zero on the other three sides of the rectangle. Since the equation is
linear, you can take the sum of these solutions as the solution of the problem.]

Your final solution should be as follows: for the case u(a, y) = f4(y), u(x, y) = 0 on the
rest of ∂G the solution uay is given by

uay(x, y) =

∞∑
n=1

Cn sinh
nπ

a
x sin

nπ

a
y

where:

Cn =
2

a sinhnπ

∫ a

0

f4(y) sin
nπ

a
ydy (6.5.3)

The other three solutions can be obtained through similarly: using obvious notation uxa
satisfying the boundary conditions for u(x, a) is obtained by switching x and y, and re-
placing f4 by f2. Similarly u0y and ux0 are found by substituting uay(a − x, y) and
uxa(x, a − y) respectively, and switching to f3 or f1 respectively. The complete solution
is the superposition u = uay + uxa + u0y + ux0 and is of the form:

u(x, y) =

∞∑
n=1

(
Cayn sinh

nπ

a
x sin

nπ

a
y + Cxan sinh

nπ

a
y sin

nπ

a
x

+ C0yn sinh
nπ

a
(a− x) sin

nπ

a
y + Cx0n sinh

nπ

a
(a− y) sin

nπ

a
x
)

The coefficients are all calculated (6.5.3) up to a switch of x and y etc as just described.

2. Let u0 : R → R, u0 ∈ C1(R), u0(x) ≥ 0 for all x ∈ R. Consider the partial differential
equation for u = u(x, y),

4yux + 3uy = u2, (x, y) ∈ R2

subject to the Cauchy condition u(x, 0) = u0(x).

i) Compute the solution of the Cauchy problem by the method of characteristics.

ii) Prove that the domain of definition of the solution contains

(x, y) ∈ R×
(
−∞, 3

supx∈R (u0(x))

)
.
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3. Define the tempered distributions S ′(R) and the Dirac distribution δa(x) = δ(x− a) and
prove that δa does define a tempered distribution δa ∈ S ′(R).

Show also that if t → X(t) is continuous then the formula T (x, t) = δ(x − X(t)) =
δX(t)(x) defines a tempered distribution T ∈ S ′(R2) via the formula 〈T , φ〉 = 〈δX , φ〉 =∫
R φ(t,X(t)) dt for all Schwartz functions φ ∈ S(R2) .

Define the distributional derivative of a tempered distribution. Starting from this defini-
tion prove that the tempered distribution T just defined satisfies the partial differential
equation

∂tT + x∂xT + T = 0

if X(t) is a C1 solution of the equation Ẋ = X.

4. Calculate the fourier transform of the distribution Tt ∈ S ′(R3) defined, for all t > 0, by:

〈Tt, χ〉 =
1

4πt

∫
‖y−x‖=t

χ(y) dΣ(y) , χ ∈ S(R3) . (6.5.4)

Relate your answer to the wave equation in three space dimensions.

5. For the equation ut − uxx + u = f , where f = f(x, t) is a smooth function which is
2π-periodic in x, and the initial data u(x, 0) = u0(x) are also smooth and 2π-periodic
obtain the solution as a Fourier series u =

∑
û(m, t)eimx and hence verify the parabolic

regularity estimate:∫ T

0

( ‖ut(t)‖2L2 + ‖u(t)‖2H2 ) dt ≤ C ( ‖u0‖2H1 +

∫ T

0

∫ π

−π
|f(x, t)|2 dxdt ) .

6. Write down the solution of

ut = uxxx u(0, x) = u0(x) (6.5.5)

for u0 smooth and 2π-periodic, and show that the solution operator defines a strongly
continuous group of unitary operators on L2([−π, π]).

7. Prove that there exists a constant C such that for s > n/2

max
x∈Rn

|u(x)| ≤ C‖u‖Hs (6.5.6)

for a smooth function which is 2π-periodic in each co-ordinate {xj}nj=1. Deduce from the
density of such smooth functions in Hs

per that (6.5.6) holds for all u ∈ Hs
per.

For the equation
utt −∆u+ u = 0 (6.5.7)

with smooth initial data u(0, x) = u0(x) and ut(0, x) = u1(x) which is 2π-periodic in each
coordinate show that the solution satisfies at each T > 0

max
0≤t≤T

‖(u(t), ut(t))‖2Hs+1×Hs ≤ C ′‖(u0, u1)‖2Hs+1×Hs

for every s = 0, 1, 2 . . . and some positive constant C ′.
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Find a value of s (depending upon n) which ensures that if ‖(u0, u1)‖Hs+1×Hs <∞ then
u(t, x) remains bounded for all time. Do the same for an arbitrary partial derivative
∂αu(t, x).

(In this question use

Hs
per = {u =

∑
m∈Zn

û(m)eim·x ∈ L2 : ‖u‖2Hs =
∑
m∈Zn

(1 + ‖m‖2)s|û(m)|2 <∞} ,

for the Sobolev spaces of functions 2π-periodic in each co-ordinate xj and for s = 0, 1, 2, . . . .)

8. For the equation
utt − uxx +m2u = 0 , (6.5.8)

with Schwartz initial data u(0, ·) = u0(·) ∈ S(R) and ut(0, ·) = u1(·) ∈ S(R) show that
the solution satisfies at each T > 0

max
0≤t≤T

‖(u(t), ut(t))‖2Hs+1×Hs ≤ C‖(u0, u1)‖2Hs+1×Hs

for every s = 0, 1, 2 . . . and some constant C = C(m,T ). Comment on the dependence on
T , distinguishing the case m = 0.

Prove that a C2 solution verfies

∂t

(
u2
t + u2

x + u2

2

)
− ∂x

(
utux

)
= 0

and deduce from this and the divergence theorem, applied on the solid backward light
cone, a finite propagation speed result for (6.5.8).

9. (i) Derive, from the definition of Fourier transform on S ′(Rn), a formula for the Fourier
transform of δ0 and its derivatives. For n = 1 find the Fourier transform of the Heaviside
distribution.

(ii) If T ∈ S ′(Rn) and φ ∈ S(Rn), prove that φ̂T = (2π)−nφ̂ ? T̂ .

10. Write down the Kirchoff formula for the solution of the wave equation in three space
dimensions with initial data u(0, x) = 0, ut(0, x) = u1(x) for g ∈ S(R3). What can you
say about the behaviour of u(t, x) for large t?

Prove that ∫
|u(t, x)|2 dx ≤ t2

∫
|g(x)|2 dx .

Prove this cannot be improved in the sense that, given t = T > 0 there exists a sequence
of data gn ∈ S(R3) with the property that if un is the corresponding solution to the above
Cauchy problem, then

sup
n

∫
|un(t, x)|2 dx∫
|gn(x)|2 dx

= T 2.

(Hint: consider solutions which are independent of x, and then use finite propagation
speed to approximate.) Contrast this behaviour with that of the equation (6.5.8) with
m2 > 0.
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11. (i) Use the Fourier transform to obtain a representation for the solution to the initial value
problem (6.5.5) for u0 a Schwartz function. Deduce that the solution obtained satisfies
the well-posedness estimate for all times t:∫ +∞

−∞
|u(t, x)− v(t, x)|2dx ≤

∫ +∞

−∞
|u(0, x)− v(0, x)|2dx

(Global well-posedness in L2 uniformly in time). Show that the formula defines a strongly
continuous group of unitary operators on L2(R).

12. Using the representation of the solution of the initial value problem

(∗∗) ∂tu−∆u = 0 u(0, x) = f(x), f ∈ S(Rn)

given by the fundamental solution show that if supx∈Rn f(x) ≤M then supx∈Rn u(t, x) ≤
M for all t > 0. Let u be a smooth solution of the initial value problem (**) which lies in
the Schwartz class S(Rn) for each fixed t > 0. Compute, assuming you can differentiate
under the integral sign, d

dt

∫
Rn |u(t, x)|2dx and hence prove that there is only one such

solution of (**). Compute also

d

dt

∫
Rn

φ
(
u(t, x)

)
dx

where φ ∈ C2(R) is a positive function. For which φ is your answer ≤ 0?

13. (i) Starting from the Kirchoff formula in the case that ut(0, x) = u1(x) depends only on
x1, x2 and is independent of x3, obtain a formula for the solution of the wave equation
utt−∆u = 0 in two space dimensions with initial data u(0, x1, x2) = 0 and ut(0, x1, x2) =
u1(x1, x2).

(ii) For the solution of the inhomogeneous Cauchy problem 2u = h with h a Schwartz
function as obtained by the Duhamel principle determine the domain of dependence for a
point (t0, x0) on the values of h. Comment on the difference between the cases of two and
three space dimensions.

Old exam questions

1. (a) Solve the equation
∂u

∂x
+
∂u

∂y
= u2

together with the boundary condition on the x-axis:

u(x, 0) = f(x) ,

where f is a smooth function. You should discuss the domain on which the solution is
smooth. For which functions f can the solution be extended to give a smooth solution on
the upper half plane {y > 0}?
(b) Solve the equation

x
∂u

∂x
+ y

∂u

∂y
= 0

together with the boundary condition on the unit circle:

u(x, y) = x when x2 + y2 = 1.
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2. Define the Schwartz space S(R) and the corresponding space of tempered distributions
S ′(R) .

Use the Fourier transform to give an integral formula for the solution of the equation

−d
2u

dx2
+
du

dx
+ u = f (∗)

for f ∈ S(R). Prove that your solution lies in S(R). Is your formula the unique solution
to (∗) in the Schwartz space?

Deduce from this formula an integral expression for the fundamental solution of the oper-

ator P = − d2

dx2 + d
dx + 1.

Let K be the function:

K(x) =


1√
5
e−(
√

5−1)x/2 forx ≥ 0,

1√
5
e(
√

5+1)x/2 forx ≤ 0.

Using the definition of distributional derivatives verify that this function is a fundamental
solution for P .

3. Write down a formula for the solution u = u(t, x), for t > 0 and x ∈ Rn, of the initial
value problem for the heat equation:

∂u

∂t
−∆u = 0 u(0, x) = f(x),

for f a bounded continuous function f : Rn → R. State (without proof) a theorem which
ensures that this formula is the unique solution in some class of functions (which should
be explicitly described).

By writing u = etv, or otherwise, solve the initial value problem

∂v

∂t
+ v −∆v = 0, v(0, x) = g(x), (†)

for g a bounded continuous function g : Rn → R and give a class of functions in which
your solution is the unique one.

Hence, or otherwise, prove that for all t > 0:

sup
x∈Rn

v(t, x) ≤ sup
x∈Rn

g(x)

and deduce that the solutions v1(t, x) and v2(t, x) of (†) corresponding to initial values
g1(x) and g2(x) satisfy, for t > 0,

sup
x∈Rn

|v1(t, x)− v2(t, x)| ≤ sup
x∈Rn

|g1(x)− g2(x)|.

4. (a) Solve the equation, for a function u(x, y),

∂u

∂x
+
∂u

∂y
= 0 (∗)
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together with the boundary condition on the x-axis:

u(x, 0) = x.

Find for which real numbers a it is possible to solve (∗) with the following boundary
condition specified on the line y = ax:

u(x, ax) = x.

Explain your answer in terms of the notion of characteristic hypersurface, which should
be defined.

(b) Solve the equation
∂u

∂x
+ (1 + u)

∂u

∂y
= 0

with the boundary condition on the x-axis

u(x, 0) = x,

in the domain D = {(x, y) : 0 < y < (x+1)2/4, −1 < x <∞}. Sketch the characteristics.

5. (a) Define the convolution f ∗ g of two functions. Write down a formula for a solution
u : [0,∞)× Rn → R to the initial value problem

∂u

∂t
−∆u = 0

together with the boundary condition

u(0, x) = f(x)

for f a bounded continuous function on Rn. Comment briefly on the uniqueness of the
solution.

(b) State and prove the Duhamel principle giving the solution (for t > 0) to the equation

∂u

∂t
−∆u = g

together with the boundary condition

u(0, x) = f(x)

in terms of your answer to (a).

(c) Show that if v : [0,∞)× Rn → R is the solution to

∂v

∂t
−∆v = G

together with the boundary condition

v(0, x) = f(x)

with G(t, x) ≤ g(t, x) for all (t, x) then v(t, x) ≤ u(t, x) for all (t, x) ∈ (0,∞)× Rn.
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Finally show that if in addition there exists a point (t0, x0) at which there is strict in-
equality in the assumption i.e.

G(t0, x0) < g(t0, x0),

then in fact
v(t, x) < u(t, x)

whenever t > t0.

6. Define the Schwartz space S(Rn) and the space of tempered distributions S ′(Rn). State
the Fourier inversion theorem for the Fourier transform of a Schwartz function.

Consider the initial value problem:

∂2u

∂t2
−∆u+ u = 0 , x ∈ Rn , 0 < t <∞ ,

u(0, x) = f(x) ,
∂u

∂t
(0, x) = 0

for f in the Schwartz space S(Rn).

Show that the solution can be written as

u(t, x) = (2π)−n/2
∫
Rn

eix·ξû(t, ξ)dξ ,

where
û(t, ξ) = cos

(
t
√

1 + |ξ|2
)
f̂(ξ)

and

f̂(ξ) = (2π)−n/2
∫
Rn

e−ix·ξf(x)dx.

State the Plancherel-Parseval theorem and hence deduce that∫
Rn

|u(t, x)|2dx ≤
∫
Rn

|f(x)|2dx.

7. (a) Define characteristic hypersurfaces and state a local existence and uniqueness theorem
for a quasilinear partial differential equation with data on a non-characteristic hypersur-
face.

(b) Consider the initial value problem

3ux + uy = −yu, u(x, 0) = f(x),

for a function u : R2 → R with C1 initial data f given for y = 0. Obtain a formula for
the solution by the method of characteristics and deduce that a C1 solution exists for all
(x, y) ∈ R2.

Derive the following (well-posedness) property for solutions u(x, y) and v(x, y) correspond-
ing to data u(x, 0) = f(x) and v(x, 0) = g(x) respectively:

sup
x
|u(x, y)− v(x, y)| 6 sup

x
|f(x)− g(x)| for all y.
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(c) Consider the initial value problem

3ux + uy = u2, u(x, 0) = f(x),

for a function u : R2 → R with C1 initial data f given for y = 0. Obtain a formula for the
solution by the method of characteristics and hence show that if f(x) < 0 for all x, then
the solution exists for all y > 0. Show also that if there exists x0 with f(x0) > 0, then the
solution does not exist for all y > 0.

8. (a) If f is a radial function on Rn (i.e. f(x) = φ(r) with r = |x| for x ∈ Rn) , and n > 2,
then show that f is harmonic on Rn − {0} if and only if

φ(r) = a+ br2−n

for a, b ∈ R.

(b) State the mean value theorem for harmonic functions and prove it for n > 2.

(c) Generalise the statement and the proof of the mean value theorem to the case of a
subharmonic function, i.e. a C2 function such that ∆u 6 0.

9. Consider the initial value problem

∂2u

∂t2
−∆u = 0 (1)

to be solved for u : R× Rn → R, subject to the initial conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = 0 (2)

for f in the Schwarz space S(Rn). Use the Fourier transform in x to obtain a representation
for the solution in the form

u(t, x) =

∫
eix·ξA(t, ξ)f̂(ξ)dnξ (3)

where A should be determined explicitly. Explain carefully why your formula gives a
smooth solution to (1) and why it satisfies the initial conditions (2), referring to the
required properties of the Fourier transform as necessary.

Next consider the case n = 1. Find a tempered distribution T (depending on t, x) such
that (3) can be written

u =< T, f̂ >

and (using the definition of Fourier transform of tempered distributions) show that the
formula reduces to

u(t, x) =
1

2

[
f(x− t) + f(x+ t)

]
.

State and prove the Duhamel principle relating to the solution of the n-dimensional inho-
mogeneous wave equation

∂2u

∂t2
−∆u = h
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to be solved for u : R× Rn → R, subject to the initial conditions

u(0, x) = 0,
∂u

∂t
(0, x) = 0

for h a C∞ function. State clearly assumptions used on the solvability of the homogeneous
problem.

[Hint: it may be useful to consider the Fourier transform of the tempered distribution
defined by the function ξ 7→ eiξ·a.]

10. (a) State and prove the Mean Value Theorem for harmonic functions.

(b) Let u ≥ 0 be a harmonic function on an open set Ω ⊂ Rn. Let B(x, a) = {y ∈ Rn :
|x− y| < a}. For any x ∈ Ω and for any r > 0 such that B(x, 4r) ⊂ Ω, show that

sup
{y∈B(x,r)}

u(y) ≤ 3n inf
{y∈B(x,r)}

u(y) .

11. (a) State and prove the Duhamel principle for the wave equation.

(b) Let u ∈ C2([0, T ]× Rn) be a solution of

utt + ut −∆u+ u = 0

where ∆ is taken in the variables x ∈ Rn and ut = ∂tu etc.

Using an ‘energy method’, or otherwise, show that, if u = ut = 0 on the set {t = 0, |x −
x0| ≤ t0} for some (t0, x0) ∈ [0, T ]× Rn, then u vanishes on the region K(t, x) = {(t, x) :
0 ≤ t ≤ t0, |x − x0| ≤ t0 − t}. Hence deduce uniqueness for the Cauchy problem for the
above PDE with Schwartz initial data.

12. (i) Find w : [0,∞) × R −→ R such that w(t, ·) is a Schwartz function of ξ for each t and
solves

wt(t, ξ) + (1 + ξ2)w(t, ξ) = g(ξ) ,

w(0, ξ) = w0(ξ) ,

where g and w0 are given Schwartz functions and wt denotes ∂tw. If F represents the
Fourier transform operator in the ξ variables only and F−1 represents its inverse, show
that the solution w satisfies

∂t(F−1)w(t, x) = F−1(∂tw)(t, x)

and calculate lim
t→∞

w(t, ·) in Schwartz space.

(ii) Using the results of Part (i), or otherwise, show that there exists a solution of the
initial value problem

ut(t, x)− uxx(t, x) + u(t, x) = f(x)

u(0, x) = u0 ,

with f and u0 given Schwartz functions, such that

‖u(t, ·)− φ‖L∞(R) −→ 0

as t→∞ in Schwartz space, where φ is the solution of

−φ
′′

+ φ = f.
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13. Consider the equation

x2
∂u

∂x1
− x1

∂u

∂x2
+ a

∂u

∂x3
= u, (∗)

where a ∈ R, to be solved for u = u(x1, x2, x3). State clearly what it means for a
hypersurface

Sφ =
{

(x1, x2, x3) : φ(x1, x2, x3) = 0
}
,

defined by a C1 function φ, to be non-characteristic for (∗). Does the non-characteristic
condition hold when φ(x1, x2, x3) = x3?

Solve (∗) for a > 0 with initial condition u(x1, x2, 0) = f(x1, x2) where f ∈ C1(R2). For
the case f(x1, x2) = x2

1 + x2
2 discuss the limiting behaviour as a→ 0+.

14. Define a fundamental solution of a linear partial differential operator P . Prove that the
function

G(x) = 1
2e
−|x|

defines a distribution which is a fundamental solution of the operator P given by

P u = −d
2u

dx2
+ u .

Hence find a solution u0 to the equation

−d
2u0

dx2
+ u0 = V (x) ,

where V (x) = 0 for |x| > 1 and V (x) = 1 for |x| ≤ 1.

Consider the functional

I[u] =

∫
R

{
1

2

[(du
dx

)2

+ u2
]
− V u

}
dx .

Show that I[u0 + φ] > I[u0] for all Schwartz functions φ that are not identically zero.

15. Write down a formula for the solution u = u(t, x) of the n-dimensional heat equation

wt(t, x)−∆w = 0, w(0, x) = g(x),

for g : Rn → C a given Schwartz function; here wt = ∂tw and ∆ is taken in the variables
x ∈ Rn. Show that

w(t, x) ≤
∫
|g(x)| dx

(4πt)n/2
.

Consider the equation
ut −∆u = eitf(x) , (∗)

where f : Rn → C is a given Schwartz function. Show that (∗) has a solution of the form

u(t, x) = eitv(x) ,

where v is a Schwartz function.

Prove that the solution u(t, x) of the initial value problem for (∗) with initial data u(0, x) =
g(x) satisfies

lim
t→+∞

∣∣u(t, x)− eitv(x)
∣∣ = 0 .
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16. Write down the solution of the three-dimensional wave equation

utt −∆u = 0 , u(0, x) = 0 , ut(0, x) = g(x) ,

for a Schwartz function g. Here ∆ is taken in the variables x ∈ R3 and ut = ∂u/∂t
etc. State the “strong” form of Huygens principle for this solution. Using the method of
descent, obtain the solution of the corresponding problem in two dimensions. State the
“weak” form of Huygens principle for this solution.

Let u ∈ C2([0, T ]× R3) be a solution of

utt −∆u+ |x|2u = 0 , u(0, x) = 0 , ut(0, x) = 0 . (∗)

Show that
∂te+∇ · p = 0 , (∗∗)

where
e = 1

2

(
ut

2 + |∇u|2 + |x|2u2
)
, and p = −ut∇u .

Hence deduce, by integration of (∗∗) over the region

K =
{

(t, x) : 0 ≤ t ≤ t0 − a ≤ t0, |x− x0| ≤ t0 − t
}

or otherwise, that (∗) satisfies the weak Huygens principle.

17. (a) State a local existence theorem for solving first order quasi-linear partial differential
equations with data specified on a smooth hypersurface.

(b) Solve the equation
∂u

∂x
+ x

∂u

∂y
= 0

with boundary condition u(x, 0) = f(x) where f ∈ C1(R), making clear the domain
on which your solution is C1. Comment on this domain with reference to the non-
characteristic condition for an initial hypersurface (including a definition of this concept).

(c) Solve the equation

u2 ∂u

∂x
+
∂u

∂y
= 0

with boundary condition u(x, 0) = x and show that your solution is C1 on some open set
containing the initial hypersurface y = 0. Comment on the significance of this, again with
reference to the non-characteristic condition.

18. Define a fundamental solution of a constant-coefficient linear partial differential operator,
and prove that the distribution defined by the function N : R3 → R

N(x) = (4π|x|)−1

is a fundamental solution of the operator −∆ on R3.

State and prove the mean value property for harmonic functions on R3 and deduce that
any two smooth solutions of

−∆u = f , f ∈ C∞(R3)

which satisfy the condition
lim
|x|→∞

u(x) = 0

are in fact equal.
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19. Write down the formula for the solution u = u(t, x) for t > 0 of the initial value problem
for the n-dimensional heat equation

∂u

∂t
−∆u = 0 ,

u(0, x) = g(x) ,

for g : Rn → C a given smooth bounded function.

State and prove the Duhamel principle giving the solution v(t, x) for t > 0 to the inhomo-
geneous initial value problem

∂v

∂t
−∆v = f ,

v(0, x) = g(x) ,

for f = f(t, x) a given smooth bounded function.

For the case n = 4 and when f = f(x) is a fixed Schwartz function (independent of t),
find v(t, x) and show that w(x) = limt→+∞ v(t, x) is a solution of

−∆w = f .

[Hint: you may use without proof the fact that the fundamental solution of the Laplacian
on R4 is −1/(4π2|x|2).]

20. (a) State the Fourier inversion theorem for Schwartz functions S(R) on the real line. Define
the Fourier transform of a tempered distribution and compute the Fourier transform of the
distribution defined by the function F (x) = 1

2 for −t ≤ x ≤ +t and F (x) = 0 otherwise.
(Here t is any positive number.)

Use the Fourier transform in the x variable to deduce a formula for the solution to the
one dimensional wave equation

utt − uxx = 0 , with initial data u(0, x) = 0 , ut(0, x) = g(x) , (∗)

for g a Schwartz function. Explain what is meant by “finite propagation speed” and briefly
explain why the formula you have derived is in fact valid for arbitrary smooth g ∈ C∞(R).

(b) State a theorem on the representation of a smooth 2π-periodic function g as a Fourier
series

g(x) =
∑
α∈Z

ĝ(α)eiαx

and derive a representation for solutions to (∗) as Fourier series in x.

(c) Verify that the formulae obtained in (a) and (b) agree for the case of smooth 2π-periodic
g.

21. (i) Consider the problem of solving the equation

n∑
j=1

aj(x)
∂u

∂xj
= b(x, u)

for a C1 function u = u(x) = u(x1, . . . , xn), with data specified on a C1 hypersurface
S ⊂ Rn

u(x) = φ(x), ∀x ∈ S.
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Assume that a1, . . . , an, φ, b are C1 functions. Define the characteristic curves and explain
what it means for the non-characteristic condition to hold at a point on S. State a local
existence and uniqueness theorem for the problem.

(ii) Consider the case n = 2 and the equation

∂u

∂x1
− ∂u

∂x2
= x2u

with data u(x1, 0) = φ(x1, 0) = f(x1) specified on the axis {x ∈ R2 : x2 = 0}. Obtain a
formula for the solution.

(iii) Consider next the case n = 2 and the equation

∂u

∂x1
− ∂u

∂x2
= 0

with data u(g(s)) = φ(g(s)) = f(s) specified on the hypersurface S, which is given
parametrically as S ≡ {x ∈ R2 : x = g(s)} where g : R→ R2 is defined by

g(s) = (s, 0), s < 0,

g(s) = (s, s2), s ≥ 0.

Find the solution u and show that it is a global solution. (Here “global” means u is C1

on all of R2.)

(iv) Consider next the equation
∂u

∂x1
+

∂u

∂x2
= 0

to be solved with the same data given on the same hypersurface as in (iii). Explain, with
reference to the characteristic curves, why there is generally no global C1 solution. Discuss
the existence of local solutions defined in some neighbourhood of a given point y ∈ S for
various y. [You need not give formulae for the solutions.]

22. Define (i) the Fourier transform of a tempered distribution T ∈ S ′(R3), and
(ii) the convolution T ∗ g of a tempered distribution T ∈ S ′(R3) and a Schwartz function
g ∈ S(R3). Give a formula for the Fourier transform of T ∗ g (“convolution theorem”).

Let t > 0. Compute the Fourier transform of the tempered distribution At ∈ S ′(R3)
defined by

〈At, φ〉 =

∫
‖y‖=t

φ(y)dΣ(y), ∀φ ∈ S(R3),

and deduce the Kirchhoff formula for the solution u(t, x) of

∂2u

∂t2
−∆u = 0,

u(0, x) = 0,
∂u

∂t
(0, x) = g(x), g ∈ S(R3) .

Prove, by consideration of the quantities e = 1
2 (u2

t + |∇u|2) and p = −ut∇u, that any C2

solution is also given by the Kirchhoff formula (uniqueness).
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Prove a corresponding uniqueness statement for the initial value problem

∂2w

∂t2
−∆w + V (x)w = 0,

w(0, x) = 0,
∂w

∂t
(0, x) = g(x), g ∈ S(R3)

where V is a smooth positive real-valued function of x ∈ R3 only.

23. Write down the formula for the solution u = u(t, x) for t > 0 of the initial value problem
for the heat equation in one space dimension

∂u

∂t
− ∂2u

∂x2
= 0 ,

u(0, x) = g(x) ,

for g : R→ C a given smooth bounded function.

Define the distributional derivative of a tempered distribution T ∈ S ′(R). Define a fun-
damental solution of a constant-coefficient linear differential operator P , and show that
the distribution defined by the function 1

2e
−|x| is a fundamental solution for the operator

P = − d2

dx2
+ 1.

For the equation
∂u

∂t
− ∂2u

∂x2
= etφ(x), (∗)

where φ ∈ S(R), prove that there is a unique solution of the form etv(x) with v ∈ S(R).
Hence write down the solution of (∗) with general initial data u(0, x) = f(x) and describe
the large time behaviour.

24. State and prove the mean value property for harmonic functions on R3.

Obtain a generalization of the mean value property for sub-harmonic functions on R3, i.e.
C2 functions for which

−∆u(x) ≤ 0

for all x ∈ R3.

Let φ ∈ C2(R3;C) solve the equation

−∆φ+ iV (x)φ = 0 ,

where V is a real-valued continuous function. By considering the function w(x) = |φ(x)|2
show that, on any ball B(y,R) = {x : ‖x− y‖ < R} ⊂ R3,

sup
x∈B(y,R)

|φ(x)| 6 sup
‖x−y‖=R

|φ(x)|.

25. (i) State the local existence theorem for the first order quasi-linear partial differential
equation

n∑
j=1

aj(x, u)
∂u

∂xj
= b(x, u),
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which is to be solved for a real-valued function with data specified on a hypersurface S.
Include a definition of “non-characteristic” in your answer.

(ii) Consider the linear constant-coefficient case (that is, when all the functions a1, . . . , an
are real constants and b(x, u) = cx+d for some c = (c1, . . . , cn) with c1, . . . , cn real and d
real) and with the hypersurface S taken to be the hyperplane x ·n = 0 . Explain carefully
the relevance of the non-characteristic condition in obtaining a solution via the method of
characteristics.

(iii) Solve the equation
∂u

∂y
+ u

∂u

∂x
= 0,

with initial data u(0, y) = −y prescribed on x = 0, for a real-valued function u(x, y).
Describe the domain on which your solution is C1 and comment on this in relation to the
theorem stated in (i).

26. Consider the initial value problem for the so-called Liouville equation

ft + v · ∇xf −∇V (x) · ∇vf = 0, (x, v) ∈ R2d, t ∈ R,

f(x, v, t = 0) = fI(x, v),

for the function f = f(x, v, t) on R2d×R. Assume that V = V (x) is a given function with
V , ∇xV Lipschitz continuous on Rd.

[(i)] Let fI(x, v) = δ(x− x0, v− v0), for x0, v0 ∈ Rd given. Show that a solution f is given
by

f(x, v, t) = δ(x− x̂(t, x0, v0), v − v̂(t, x0, v0)),

where (x̂, v̂) solve the Newtonian system

˙̂x = v̂, x̂(t = 0) = x0,

˙̂v = −∇V (x̂), v̂(t = 0) = v0.

(You may wish to do question 3 in the list of additional questions first.)

[(ii)] Let fI ∈ L1
loc(R

2d), fI ≥ 0. Prove (by using characteristics) that f remains non-
negative (as long as it exists).

[(iii)] Let fI ∈ Lp(R2d), fI ≥ 0 on R2d. Show (by a formal argument) that

‖f(·, ·, t)‖
Lp(R2d

)
= ‖fI‖Lp(R2d

)

for all t ∈ R, 1 ≤ p <∞.

[(iv)] Let V (x) = |x|2
2 . Use the method of characteristics to solve the initial value problem

for general initial data.

27. [(a)] Solve the initial value problem for the Burgers equation

ut +
1

2
(u2)x = 0, x ∈ R, t > 0,

u(x, t = 0) = uI(x),
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where

uI(x) =


1, x < 0,

1− x, 0 < x < 1,

0, x > 1.

Use the method of characteristics. What is the maximal time interval in which this (weak)
solution is well defined? What is the regularity of this solution?

[(b)] Apply the method of characteristics to the Burgers equation subject to the initial
condition

uI(x) =

{
1, x > 0,

0, x < 0.

In {(x, t) | 0 < x < t} use the ansatz u(x, t) = f(xt ) and determine f .

[(c)] Using the method of characteristics show that the initial value problem for the Burgers
equation has a classical solution defined for all t > 0 if uI is continuously differentiable
and

duI
dx

(x) > 0

for all x ∈ R.

28. [(a)] Consider the nonlinear elliptic problem{
∆u = f(u, x), x ∈ Ω ⊆ Rd,
u = uD, x ∈ ∂Ω.

Let ∂f
∂u (y, x) ≥ 0 for all y ∈ R, x ∈ Ω. Prove that there exists at most one classical

solution.

[Hint: use the weak maximum principle.]

[(b)] Let ϕ ∈ C∞0 (Rn) be a radial function. Prove that the Fourier transform of ϕ is radial
too.

[(c)] Let ϕ ∈ C∞0 (Rn) be a radial function. Solve

−∆u+ u = ϕ(x), x ∈ Rn

by Fourier transformation and prove that u is a radial function.

[(d)] State the Lax–Milgram lemma and explain its use in proving the existence and
uniqueness of a weak solution of

−∆u+ a(x)u = f(x), x ∈ Ω,

u = 0 on ∂Ω,

where Ω ⊆ Rd bounded, 0 ≤ a ≤ a(x) ≤ a <∞ for all x ∈ Ω and f ∈ L2(Ω).

29. (a) Solve by using the method of characteristics

x1
∂

∂x1
u+ 2x2

∂

∂x2
u = 5u , u(x1, 1) = g(x1) ,
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where g : R→ R is continuous. What is the maximal domain in R2 in which u is a solution
of the Cauchy problem?

(b) Prove that the function

u(x, t) =

 0 , x < 0 , t > 0 ,
x/t , 0 < x < t , t > 0 ,
1 , x > t > 0 ,

is a weak solution of the Burgers equation

∂

∂t
u+

1

2

∂

∂x
u2 = 0 , x ∈ R, t > 0 , (∗)

with initial data

u(x, 0) =

{
0 , x < 0 ,
1 , x > 0 .

(c) Let u = u(x, t), x ∈ R, t > 0 be a piecewise C1-function with a jump discontinuity
along the curve

Γ : x = s(t)

and let u solve the Burgers equation (∗) on both sides of Γ. Prove that u is a weak solution
of (1) if and only if

ṡ(t) =
1

2
(ul(t) + ur(t))

holds, where ul(t), ur(t) are the one-sided limits

ul(t) = lim
x↗s(t)−

u(x, t) , ur(t) = lim
x↘s(t)+

u(x, t) .

[Hint: Multiply the equation by a test function φ ∈ C∞0 (R × [0,∞)), split the integral
appropriately and integrate by parts. Consider how the unit normal vector along Γ can be
expressed in terms of ṡ.]

30. Consider the Schrödinger equation

i∂tΨ = − 1

2
∆Ψ , x ∈ Rn , t > 0 ,

for complex-valued solutions Ψ(x, t) and where ∆ is the Laplacian.

(a) Derive, by using a Fourier transform and its inversion, the fundamental solution of the
Schrödinger equation. Obtain the solution of the initial value problem

i∂tΨ = − 1

2
∆Ψ , x ∈ Rn, t > 0 ,

Ψ(x, 0) = f(x) , x ∈ Rn ,
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as a convolution.

(b) Consider the Wigner-transform of the solution of the Schrödinger equation

w(x, ξ, t) =
1

(2π)n

∫
Rn

Ψ(x+ 1
2 y, t) Ψ̄(x− 1

2 y, t) e
−iy·ξ dny ,

defined for x ∈ Rn, ξ ∈ Rn, t > 0. Derive an evolution equation for w by using the
Schrödinger equation. Write down the solution of this evolution equation for given initial
data w(x, ξ, 0) = g(x, ξ).

31. Solve the Dirichlet problem for the Laplace equation in a disc in R2

∆u = 0 in G = {x2 + y2 < R2} ⊆ R2 , R > 0 ,

u = uD on ∂G ,

using polar coordinates (r, ϕ) and separation of variables, u(x, y) = R(r)Θ(ϕ). Then use
the ansatz R(r) = rα for the radial function.

32. Let H = H(x, v), x, v ∈ Rn, be a smooth real-valued function which maps R2n into R.
Consider the initial value problem for the equation

ft +∇vH · ∇xf −∇xH · ∇vf = 0, x, v ∈ Rn, t > 0 ,

f(x, v, t = 0) = fI(x, v), x, v ∈ Rn ,

for the unknown function f = f(x, v, t).

(i) Use the method of characteristics to solve the initial value problem, locally in time.

[(ii)] Let fI ≥ 0 on R2n. Use the method of characteristics to prove that f remains
non-negative (as long as it exists).

[(iii)] Let F : R→ R be smooth. Prove that∫
R2n

F (f(x, v, t)) dx dv =

∫
R2n

F (fI(x, v)) dx dv ,

as long as the solution exists.

[(iv)] Let H be independent of x, namely H(x, v) = a(v), where a is smooth and real-
valued. Give the explicit solution of the initial value problem.

33. Consider the Schrödinger equation

i∂tψ(t, x) = −1

2
∆ψ(t, x) + V (x)ψ(t, x) , x ∈ Rn, t > 0 ,

ψ(t = 0, x) = ψI(x) , x ∈ Rn ,

where V is a smooth real-valued function.

Prove that, for smooth solutions, the following equations are valid for all t > 0:

[(i)] ∫
Rn
|ψ(t, x)|2 dx =

∫
Rn
|ψI(x)|2 dx .
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[(ii)] ∫
Rn

1

2
|∇ψ(t, x)|2 dx+

∫
Rn

V (x)|ψ(t, x)|2 dx

=

∫
Rn

1

2
|∇ψI(x)|2 dx+

∫
Rn

V (x)|ψI(x)|2 dx .

34. [(a)] State the local existence theorem of a classical solution of the Cauchy problem

a(x1, x2, u)
∂u

∂x1
+ b(x1, x2, u)

∂u

∂x2
= c(x1, x2, u) ,

u|Γ = u0 ,

where Γ is a smooth curve in R2.

[(b)] Solve, by using the method of characteristics,

2x1
∂u

∂x1
+ 4x2

∂u

∂x2
= u2 ,

u(x1, 2) = h ,

where h > 0 is a constant. What is the maximal domain of existence in which u is a
solution of the Cauchy problem?

35. Consider the functional

E(u) =
1

2

∫
Ω

|∇u|2 dx+

∫
Ω

F (u, x) dx ,

where Ω is a bounded domain in Rn with smooth boundary and F : R×Ω→ R is smooth.
Assume that F (u, x) is convex in u for all x ∈ Ω and that there is a K > 0 such that

−K ≤ F (v, x) ≤ K
(
|v|2 + 1

)
∀v ∈ R, x ∈ Ω .

[(i)] Prove that E is well-defined on H1
0 (Ω), bounded from below and strictly convex. As-

sume without proof that E is weakly lower-semicontinuous. State this property. Conclude
the existence of a unique minimizer of E.

[(ii)] Which elliptic boundary value problem does the minimizer solve?

36. Let u0 : R → R, u0 ∈ C1(R), u0(x) ≥ 0 for all x ∈ R. Consider the partial differential
equation for u = u(x, y),

4yux + 3uy = u2, (x, y) ∈ R2

subject to the Cauchy condition u(x, 0) = u0(x).

i) Compute the solution of the Cauchy problem by the method of characteristics.

ii) Prove that the domain of definition of the solution contains

(x, y) ∈ R×
(
−∞, 3

supx∈R (u0(x))

)
.
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37. Consider the elliptic Dirichlet problem on Ω ⊂ Rn, Ω bounded with a smooth boundary:

∆u− eu = f in Ω, u = uD on ∂Ω.

Assume that uD ∈ L∞(∂Ω) and f ∈ L∞(Ω).

(i) State the strong Minimum-Maximum Principle for uniformly elliptic operators.

(ii) Prove that there exists at most one classical solution of the boundary value problem.

(iii) Assuming further that f ≥ 0 in Ω, use the maximum principle to obtain an upper
bound on the solution (assuming that it exists).

38. Consider the nonlinear partial differential equation for a function u(x, t), x ∈ Rn, t > 0,

ut = ∆u− α|∇u|2, (6.5.9)

subject to u(x, 0) = u0(x), (6.5.10)

where u0 ∈ L∞(Rn).

(i) Find a transformation w := F (u) such that w satisfies the heat equation

wt = ∆w, x ∈ Rn,

if (6.5.9) holds for u.

(ii) Use the transformation obtained in (i) (and its inverse) to find a solution to the initial
value problem (6.5.9), (6.5.10).
[Hint. Use the fundamental solution of the heat equation.]

(iii) The equation (6.5.9) is posed on a bounded domain Ω ⊆ Rn with smooth bound-
ary, subject to the initial condition (6.5.10) on Ω and inhomogeneous Dirichlet boundary
conditions

u = uD on ∂Ω,

where uD is a bounded function. Use the maximum-minimum principle to prove that
there exists at most one classical solution of this boundary value problem.

39. i) State the Lax–Milgram lemma.

ii) Consider the boundary value problem

∆2u−∆u+ u = f in Ω,

u = ∇u · γ = 0 on ∂Ω,

where Ω is a bounded domain in Rn with a smooth boundary, γ is the exterior unit normal
vector to ∂Ω, and f ∈ L2(Ω). Show (using the Lax–Milgram lemma) that the boundary
value problem has a unique weak solution in the space

H2
0 (Ω) :=

{
u : Ω→ R;u = ∇u · γ = 0 on ∂Ω

}
.

[Hint. Show that

‖∆u‖2L2(Ω) =

n∑
i,j=1

∥∥∥ ∂2u

∂xi∂xj

∥∥∥2

L2(Ω)
for all u ∈ C∞0 (Ω),
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and then use the fact that C∞0 (Ω) is dense in H2
0 (Ω). In addition, you may assume that

H2
0 (Ω)) is a Hilbert space (and so complete) with the norm

∥∥∥u∥∥∥2

L2(Ω)
+

n∑
j=1

∥∥∥ ∂u
∂xj

∥∥∥2

L2(Ω)
+

n∑
i,j=1

∥∥∥ ∂2u

∂xi∂xj

∥∥∥2

L2(Ω)

and that the functions in it satisfy the boundary conditions given at the beginning of the
question, in an appropriate sense. ]

40. (a) Discuss briefly the concept of well-posedness for a Cauchy problem for a partial differ-
ential equation.

Solve the Cauchy problem

∂2u+ x1∂1u = au2 , u(x1, 0) = φ(x1)

where a ∈ R and φ ∈ C1(R).

For the case a = 0 show that the solution satisfies max
x1∈R

|u(x1, x2)| = ‖φ‖C0 and de-

duce that the Cauchy problem is then well-posed in the uniform metric (i.e. the metric
determined by the C0 norm below).

(b) State the Cauchy-Kovalevskaya theorem and deduce that the following Cauchy problem
for the Laplace equation:

∂2
1u+ ∂2

2u = 0 , u(x1, 0) = 0 , ∂2u(x1, 0) = φ(x1) (6.5.11)

has a unique analytic solution in some neighbourhood of x2 = 0 for any analytic φ = φ(x1).
Write down the solution for the case φ(x1) = sin(nx1) and hence give a sequence of initial
data {φn(x1)}∞n=1 with the property that

‖φn‖Cr → 0 , as n→∞, for each r ∈ N ,

whereas un, the corresponding solution of (6.5.11), satisfies

max
x1∈R

|un(x1, x2)| → +∞ , as n→∞, for any x2 6= 0 .

In this question use the following definition

‖u‖Cr =

r∑
i=0

max
x∈R
|∂i1φ(x1)|

for the Cr norm on functions φ = φ(x1) of one variable, with r = 0, 1, 2 . . . and write
∂1φ = ∂x1φ = ∂φ

∂x1
etc.

41. State the Lax-Milgram lemma.

Let V = V(x1, x2, x3) be a smooth vector field which is 2π-periodic in each co-ordinate
xj for j = 1, 2, 3. Formulate the definition of weak H1

per solution for the equation

−∆u+
∑

Vj∂ju+ u = f (6.5.12)
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to be solved for u = u(x1, x2, x3) given f = f(x1, x2, x3) in H0, both also 2π-periodic in
each co-ordinate.

For the case that the vector field is divergence free

div V =

3∑
j=1

∂jVj = 0

prove that there exists a unique H1
per weak solution for all such f .

For the case that V is the constant vector field with components (1, 0, 0) write down the
solution in terms of Fourier series, and show that there exists a number C > 0 such that

‖u‖H2 ≤ C‖f‖H0 . (6.5.13)

In this question use the definition

Hs
per = {u =

∑
m∈Z3

û(m)eim·x ∈ L2 : ‖u‖2Hs =
∑
m∈Z3

(1 + ‖m‖2)s|û(m)|2 <∞} ,

for the Sobolev spaces of functions 2π-periodic in each co-ordinate xj and for s = 0, 1, 2, . . . .

42. Define the parabolic boundary ∂parΩT of the domain ΩT = (0, 1)× (0, T ] for T > 0.

Let u = u(x, t) be a smooth real valued function on ΩT which satisfies the inequality:

ut − auxx + bux + cu ≤ 0 .

Assume the coefficients a, b and c are smooth functions and that there exist positive
constants m,M such that m ≤ a ≤M everywhere, and c ≥ 0. Prove that

max
(x,t)∈ΩT

u(x, t) ≤ max
(x,t)∈∂parΩT

u+(x, t) . (6.5.14)

(Here u+ = max{u, 0} is the positive part of the function u.)

Consider a smooth real valued function φ on ΩT such that

φt − φxx − (1− φ2)φ = 0 , φ(x, 0) = f(x)

everywhere, and φ(0, t) = 1 = φ(1, t) for all t ≥ 0. Deduce from (6.5.14) that if f(x)2 ≤ 1
for all x ∈ [0, 1] then φ(x, t) ≤ 1 for all (x, t) ∈ ΩT . Hint: consider u = φ2−1 and compute
ut − uxx.

43. (i) Show that an arbitrary C2 solution of the one dimensional wave equation utt−uxx = 0
can be written in the form u = F (x− t) +G(x+ t).

Using this deduce the formula for the solution at arbitrary t > 0 of the Cauchy problem:

utt − uxx = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) , (6.5.15)

with initial data given by arbitrary Schwartz functions u0, u1.

Deduce from this formula a theorem on finite propagation speed for the one dimensional
wave equation.
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(ii) Define the Fourier transform of a tempered distribution. Compute the Fourier trans-
form of the tempered distribution Tt ∈ S ′(R) defined for all t > 0 by the function

Tt(y) =

{
1
2 if |y| ≤ t,
0 if |y| > t.

(i.e. 〈Tt , f 〉 = 1
2

∫ +t

−t f(y) dy for all f ∈ S(R)). By consideration of the Fourier transform
in x deduce from this the formula for the solution of (6.5.15) that you obtained in part
(i) in the case u0 = 0.
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