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Part III Magnetohydrodynamics
Michaelmas 2015

Examples II

1. By expanding the expression derive the three components of the poloidal magnetic
field BP = ∇×∇× (Pr), and thus show that ∇×BP = ∇× (−(∇2P )r).

2. Consider an arbitrary poloidal field P and an arbitrary toroidal field Q. Show that for
any spherical surface S0 with r = const. we must have

∫
S0

P ·Q ds = 0

3. Consider the situation envisaged in lectures for the toroidal theorem for which u·r ≡ 0,
and B = BT = ∇× (Tr). Show that T obeys the equation

∂T

∂t
+ u · ∇T = η∇2T

in r < a, with T = 0 on r = a. Deduce that
∫
r≤a

T 2 dV → 0 as t → ∞.

(*) Does this imply that
∫
r≤a

|BT |
2 dV → 0?

4. For a solenoidal axisymmetric flow u in a sphere V of radius a surrounded by insulator,
and axisymmetric field B = Bφ̂+∇× (Aφ̂) we know that A in V obeys the equation

∂A

∂t
+

1

s
u · ∇(sA) = η(∇2A−

1

s2
A).

Write down the equation satisfied by A in the insulating region. Show, stating carefully
what assumptions you are making, that A → 0 as t → ∞.

5. Consider the mean emf due to a steady solenoidal velocity field u(x) at small mag-
netic Reynolds number Rm. The velocity field is monochromatic, so that ∇2u = −u.
Consider the induction equation in the form

0 = B · ∇u+∇× (u×B′) +
1

Rm

∇2B′,

where B is a constant vector, and B′ is the induced field. Show that the mean emf
E = u×B′, where the overbar denotes an average over all space, can be written in the
form

E = RmE
(1) +R2

mE
(2) + . . . = Rmu×B · ∇u+R2

mu×∇× (u×B · ∇u) + . . .

Show, without using Fourier decomposition, that if E
(p)
i can be written α

(p)
ij Bj, then

α(1) is symmetric.

Derive the result

E
(2)
i = −

∂uj

∂xi

(u×B · ∇u)j .
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6. Prove an exact result for the α-effect, namely that if (u×B′)i = Ei = αijBj, then

E ·B = αijBiBj = −
1

η
B′ · ∇ ×B′,

for a mean field dynamo in a statistically steady state, stating carefully any assumptions
you make. Verify that in the First Order Smoothing limit the expression agress with
the result derived in lectures. [Hint: consider the equation for the vector potential].

7. Find conditions for the existence of a steady α2-dynamo with uniform α satisfying

∂B

∂t
= ∇× (αB) + η∇2B

in a conducting sphere of radius a surrounded by insulator. (Use the poloidal-toroidal
decomposition as for the free decay modes in lectures.) Sketch the lines of poloidal
field and contours of toroidsl field in the case of an axisymmetric solution (which
corresponds to the lowest value of |α|.) Why is a model with constant α unsatisfactory
as a consequence of the effect of rotation in small-scale flows?

8. A nonlinear model of Parker dynamo waves, incorporating the effects of induced zonal
flow, takes the form of four ODEs:

Ȧ = DB − A, Ḃ = iA(1 + U0)−B + iU2A
∗,

U̇0 =
i

2
(A∗B − AB∗)− ν0U0,

U̇2 = iAB − ν2U2.

Here A,B represent poloidal and toroidal fields, respectively, proportional to eikx, while
U0 (real) represents the zonal flow perturbation independent of x, and, U2 the zonal
flow perturbation proportional to e2ikx.

(i) Verify that the nonlinear terms make no contribution to the rate of change of total
”energy” |A|2 + |B|2 + U2

0 + |U2|
2.

(ii) Show that travelling wave solutions, with A,B ∝ eiΩt, U0 steady and U2 ∝ e2iΩt, can
be found, and write down equations giving (in parametric form) the relation between
D, Ω and |A|2. Find approximate formulae for D and Ω when |A|2 is (a) very small
and (b) very large.


