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Nonlinear Continuum Mechanics, Problem Sheet 4

1. Slow flow of “generalised Newtonian” fluid satifies the equations

divσ = 0, divv = 0, σij = −pδij + µ((‖D‖)Dij in a domain D,

where ‖D‖ = (DijDij)
1/2, together with v = v0, given, on the boundary ∂D of the domain. Show

that the constitutive relation can be written

σij = −pδij +
∂Ω

∂Dij
, Ω(‖D‖) =

∫ ‖D‖

0

sµ(s)ds.

Assuming that µ(0) > 0 and (sµ(s))′ > 0 for all s ≥ 0, show that the actual flow minimises the
integral

∫

D
Ω(‖D‖)dx,

amongst all incompressible flows v′ for which v′ = v0 on D. [Show that

Ω(‖D′‖) − Ω(‖D‖) − σij(D
′
ij − Dij) ≥ 0,

i.e., that Ω is a convex function; then use the fact that v satisfies all of the conditions above.]

2∗. Let Ω∗(σ) be the potential dual to Ω: Ω∗(σ) = supD {σijDij − Ω(‖D‖)} . Show that the actual
stress minimises the integral

∫

D Ω∗(σ) dx, amongst all divergence-free stress fields. [Show that
Ω∗(σ′) − Ω(σ) − (σ′

ij − σij)Dij ≥ 0, i.e., that Ω∗ is a convex function.]

3. Show that equation (21.11)2 of the notes implies that

dTIJ =

{

ΛIJKL − [ΛIJMN (∂f/∂TMN )][ΛKLRS(∂f/∂TRS)]

h + (∂f/∂TMN )ΛMNRS(∂f/∂TRS)

}

dEKL

during loading. Recall that f and g are related so that f(T) = 0 and g(E) = 0 when T and
E represent stress and strain at the same state of yield; show that ΛIJKL(∂f/∂TKL) must be
co-directional with (∂g/∂EIJ ).[Consider elastic increments.]

4. (a) For the stress σ = diag(σ1, σ2, σ2), show that σ′
ijσ

′
ij = k2 implies that |σ1 − σ2| = (3/2)1/2k.

(b) A hollow sphere of incompressible Von Mises material has, before deformation, inner radius
a0 and outer radius b0. Pressure on the inner boundary is gradually increased, while the outer
boundary remains traction-free. Find the pressure P0 at which the cavity first begins to expand.
[Assume a stress field, in polar coordinates, of the form given in part (a), with σ1 in the radial
direction. The radial equation of equilibrium in polar coordinates is dσrr/dr + 2(σrr − σθθ)/r = 0.]
(c) Suppose now that the internal pressure P (t) is applied, for t ≥ 0, with P (0) > P0. By considering
balance of work-rate or otherwise, show that a(t) satisfies the differential equation

√
6k ln (b/a) + 1

2
ρȧ2

(

3 − 4a/b + a4/b4
)

+ ρä
(

a − a2/b
)

= P (t),

where b3 = a3 + b3
0
− a3

0
and ρ denotes the uniform mass density of the material.

5. (a) In “longitudinal shear” deformation, the only non-zero component of velocity is v3(x1, x2)
and the only non-zero stress components are σ13(x1, x2) and σ23(x1, x2). The Von Mises yield
criterion reduces, under such deformation, to σ2

13
+ σ2

23
= σ2

Y ; it is satisfied identically by taking

σ13 = −σY sin φ, σ23 = σY cos φ.

Show that φ is constant on any line along which dx2/dx1 = tan φ. [Show that (d/ds)φ(x1(s), x2(s)) =
0 on any such line. Such lines form the single family of characteristics.]
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(b) A crack in Von Mises material occupies a segment of the x1-axis and its right-hand end is at
the origin. If the body is in a state of longitudinal shear, symmetric about the x1-axis, show that a
possible pattern of characteristics close to the crack tip is a fan, centred at the origin, and extending
over −π/2 < φ < π/2. Deduce that, relative to cylindrical polar coordinates (r, φ, x3)), the only
non-zero stress component is σφ3 = σY ; assuming also the associated flow law, show that v3 is a
function of φ only. [The state of stress to the left of the centred fan region is a uniform stress σ13,
so the crack surfaces are traction-free. In fact, this solution is asymptotic; the stress there will be
elastic, and will fall below yield as distance from the crack tip increases.]
(c)∗ The purely elastic solution for this crack has the form near the crack tip

σ13 = − K√
2πr

sin(φ/2), σ23 =
K√
2πr

cos(φ/2), u3 =

√

2

π

K

µ

√
r sin(φ/2).

Show that elastic and plastic solutions can be put together by adopting the field constructed in
part (b) in a circular region, of radius a, centred a distance a ahead of the crack, with an elastic
field, of the form given above, just outside it, except that the elastic field is defined by polar
coordinates (r′, θ), centred at the centre of the circle. Find the radius a in terms of the “stress
intensity factor” K. [The elastic field leaves the crack faces traction-free. Stresses and displacement
must be continuous across the elastic-plastic boundary.]

6. In terms of the multiplicative decomposition F = FeFp, show that L = Le + Lp, where Le =
Ḟe(Fe)−1 and Lp = Fe{Ḟp(Fp)−1}(Fe)−1. Show that

A = (Fp)−1(Fe)−1
τFe

(where A is as defined in the notes and τ = {τji} is Kirchhoff stress) and check that

τjiD
p
ij ≡ τjiL

p
ij = AJI Ḟ

p
IJ = T p

JI Ḟ
p
IK{(Fp)−1}KJ ,

where Dp = 1

2
[Lp +(Lp)T ] and Tp = (Fe)−1

τFe. [Thus, Tp has an interpretation in terms of mixed
components of Kirchhoff stress, on a frame deformed from the “intermediate” configuration.]


