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1 Governing equations for acoustic and elec-

tromagnetic waves

1.1 Acoustic Waves

Acoustic waves are mechanical disturbances that propagate in a medium, for
example air, water, or a solid structure such as, for example, the shell of a
ship.
The governing equations that describe how acoustical waves propagate in a
medium are derived from the basic conservation laws for fluids and the laws of
thermodynamics. The detailed derivation can be found in many books (see,
for example, Pierce [8], LD Landau and EM Lifschitz, Fluid Mechanics).
Here we shall just give the main steps.
For a fluid with density ρ and velocity v, the conservation of mass in the
non-relativistic case is expressed as:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.1)

In the presence of a mass source, the r.h.s. will be non-zero. If we have an
ideal fluid, i.e. with zero viscosity, the surface force Fs is directed normally
into the surface, so Fs = −np, where p is the pressure. With this assumption
and neglecting gravity and any other external forces, the conservation of
momentum is expressed as:

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p (1.2)

In general, for a system in local thermodynamic equilibrium, an equation of
state will hold, whereby a function of state can be expressed in terms of any
other two. We shall use the equation of state that relates the pressure to the
entropy S and the density ρ of the system: p = p(ρ, S), where the entropy is a
measure of the disorder of a system and is such that, for a reversible process,
the differential change in entropy equals the differential change in absorbed
heat divided by the system temperature: dS = dQ/T . If one can ignore any
heat flow (so no temperature gradient imposed externally, gradient of the
fluid small), then the fluid motion is adiabatic and the entropy is constant,
S0 (isentropic process). In this case

p = p(ρ, S0) (1.3)

and depends only on the density.

Part III - Classical Wave Scattering 3 O.Rath-Spivack@damtp.cam.ac.uk
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1.1 Acoustic Waves

If sound, i.e. acoustic disturbance, is regarded as a small-amplitude pertur-
bation of an ambient state (ρ0, p0,v0), then when the disturbance is present
one has

p = p0 + p′; ρ = ρ0 + ρ′; v = v0 + v′,

which also satisfy the conservation laws:

∂(ρ0 + ρ′)

∂t
+ ∇ · ((ρ0 + ρ′)v′) = 0 (1.4)

(ρ0 + ρ′)

(

∂v

∂t

′

+ v′ · ∇v′

)

= −∇(p0 + p′) (1.5)

and
p0 + p′ = p(ρ0 + ρ′, S0) (1.6)

Here v0 = 0, so this derivation applies in the absence of mean flow. We shall
also take the fluid to be homogeneous so p0 and ρ0 are constants related by
p0 = p(ρ0, S0).
If p′ is expanded in a Taylor series in ρ′:

p′ =

(

∂p

∂ρ

)

0

ρ′ +
1

2

(

∂2p

∂ρ2

)

0

(ρ′)2 + . . . ,

by using this expansion in the above equations and truncating to first order
we obtain the linear acoustic equations

∂ρ′

∂t
+ ρ0∇ · v′ = 0 (1.7)

ρ0
∂v

∂t

′

= −∇p′ (1.8)

p′ =

(

∂p

∂ρ

)

0

ρ′ = c2ρ′. (1.9)

The quantity c introduced in (1.9) is denoted speed of sound for reasons that
will become clear once we obtain the solution to the equation governing the
time evolution of the acoustic pressure p. The factor of proportionality ρc,
equal to the ratio between pressure and velocity, is called characteristic

impedance of the medium. Let’s now use (1.9) in (1.7):

1

c2

∂p′

∂t
+ ρ0∇ · v′ = 0 (1.10)

Part III - Classical Wave Scattering 4 O.Rath-Spivack@damtp.cam.ac.uk
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1.1 Acoustic Waves

If we then take the partial time derivative of (1.10) and use (1.8), we obtain
the wave equation for the acoustic pressure:

∇2p − 1

c2

∂2p

∂t2
= 0, (1.11)

where we have now dropped the primes.
The wave equation can be formulated alternatively in terms of a velocity

potential. If we take the curl of (1.8) and use the vector identity ∇×(∇ϕ) =
0, valid ∀ϕ, it follows that (again dropping all primes)

∂(∇× v)

∂t
= 0,

i.e. the vorticity (∇×v) is constant in time. Therefore the velocity field is
irrotational (∇× v = 0) if it is irrotational initially, and we can introduce a
velocity potential φ by writing

v = ∇φ. (1.12)

Note that v = ∇φ + v0 will apply if the fluid is initial moving with velocity
v0. Substituting (1.12) in (1.8), we obtain

p = ρ0
∂φ

∂t
. (1.13)

Now, using (1.12), (1.13) and (1.9) in (1.8) gives

∇2φ − 1

c2

∂2φ

∂t2
= 0, (1.14)

which is the wave equation in terms of the velocity potential.
A general solution of (1.11) is

p = f

(

t − ξ

c

)

+ g

(

t +
ξ

c

)

, (1.15)

where f and g are arbitrary functions which will be determined by initial
and boundary conditions, and ξ is the coordinate along which the acoustic
pressure varies, i.e. the direction along which the acoustic disturbance trav-
els. This solution is the sum of two waves travelling at speed c in the +ξ and
−ξ direction respectively.
In an arbitrarily oriented coordinate frame, if n is the unit vector in the
direction of increasing ξ, then at a point x we can write ξ = n · x. If one
assumes, as is usually appropriate from physical considerations, that there

Part III - Classical Wave Scattering 5 O.Rath-Spivack@damtp.cam.ac.uk
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1.1 Acoustic Waves

exists a time t0 in the past before which the wave hasn’t arrived and all field
quantities are zero (causality), then the solution reduces to waves travelling
in the positive direction:

p = f
(

t − n · x
c

)

. (1.16)

For an acoustic disturbance of constant frequency, the field variables oscillate
sinusoidally with time, so

p = |A| cos(ωt − ϕ) = Re{Ae(iϕ−iωt)} , (1.17)

where ω = angular frequency,

ϕ = phase,

and we have T =
2π

ω
= period,

f =
ω

2π
= frequency.

If a sinusoidal wave p = |A| cos(ωt) travels in the n direction, then we must
have p = f(t − n · x/c), and consequently

p = |A| cos
[

ω(t − n · x
c

)
]

= Re{e−iω(t−n·x
c

)} = Re{eik·x−ωt} , (1.18)

where we have used the wavevector k = ω
c
n. The above rightmost expression

is the one usually and most conveniently used in practical calculations.

NOTE: Even though the physical quantity is given by the real part only,
full complex waves are normally used in calculations, and the real part is
subsequently taken as appropriate. Consequently, if the acoustic field is
expressed in terms of a complex velocity potential ψ, we should be careful to
take

p = Re [iωρψ exp(−iωt)]

v = Re [∇ψ exp(−iωt)] (1.19)

when dealing with real physical quantities.
Any acoustic disturbance p(x, t) can be written as a superposition of time-
harmonic waves 1.17. This can be done using a Fourier transform (as long
as | p(x, t) | and | p(x, t) |∈ L2):

p(x, t) =
1

2π

∫ ∞

−∞

p(x, ω) exp(−iωt)dω (1.20)

Part III - Classical Wave Scattering 6 O.Rath-Spivack@damtp.cam.ac.uk
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1.1 Acoustic Waves

where

p(x, ω) =
1

2π

∫ ∞

−∞

p(x, t) exp(iωt)dt (1.21)

If we substitute a harmonic wave p = eik·x−ωt in the wave equation (1.11)
(noting that Re{·} and ∂

∂t
{·} commute), we obtain

ω2

c2
p + ∇2p = 0 ,

or, by using the wavenumber k = ω
c

∇2p + k2p = 0 . (1.22)

This form of the wave equation, suitable for time-harmonic waves, is
usually called the Helmholtz equation, or reduced wave equation.

When considering time-harmonic problems then, it is usual (and obviously
very convenient) to drop the time-dependent part of the wave altogether.
This is possible, at least for part of the calculations, in the case of a non-
monochromatic wave, by decomposing it into monochromatic waves using
Fourier analysis. Since the wave equation is linear, each Fourier component
obeys the Helmholtz equation, and the total field can be reconstracted after
solving the scattering problem for whatever boundary conditions on any finite
surfaces are appropriate. In this case, though, it is not possible to express the
causality condition in the same way as before. Causality then is expressed by
the integrability condition implicit in assuming that a Fourier representation
of the wave exists. What was introduced as a condition in time (initial value),
and cannot in that form be readily applied to a superposition of stationary
waves, is equivalent to a condition in space (boundary condition at infinity):

p(x) = O(| x |−1/2) (1.23)

or, more usually:

|x |
(

∂p(x)

∂ |x | − ikp(x)

)

→ 0 (1.24)

uniformly as | x |→ ∞. This is the Sommerfeld radiation condition,
and it expresses the requirement that the field should contain no incoming
waves as |x |→ ∞. In general, integrability, hence causality, will also result in
restrictions imposed on the contour chosen for the integration in the complex
plane.

Part III - Classical Wave Scattering 7 O.Rath-Spivack@damtp.cam.ac.uk
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1.2 Electromagnetic waves

1.2 Electromagnetic waves

In this section the wave equation obeyed by electromagnetic waves is derived,
and we introduce the general scattering problem for electromagnetic waves.
We shall begin with Maxwell’s equations for an electromagnetic field in a
generic medium with permittivity ǫ and permeability µ, in SI units (also
sometimes called MKS):

∇× E = −∂B

∂t
(1.25)

∇ · B = 0 (1.26)

∇× H =
∂D

∂t
+ J (1.27)

∇ · D = ρ , (1.28)

Here E is the electric field intensity, B is the magnetic induction, H is the
magnetic field intensity, D is the so-called electric displacement, J is the
current density, and ρ is the electric charge density. These quantities are
related by

D = ǫE + P (1.29)

B = µH + M , (1.30)

where P is the electric polarization and M the magnetization.
In free space, we have P = 0 and M = 0, and Maxwell’s equations reduce to

∇× E = −µ0
∂H

∂t
(1.31)

∇ · H = 0 (1.32)

∇× H = ǫ0
∂E

∂t
(1.33)

∇ · E =
ρ

ǫ0

, (1.34)

where ǫ0 and µ0 are the permittivity and permeability of free space respec-
tively.
It is straightforward to see from the Maxwell equations that there exist
scalar and vector potentials for the electromagnetic field. Since ∇·B = 0,
∃ a vector field A such that

B = ∇× A . (1.35)

Using this in the first of Maxwell’s equations shows that E must satisfy:

E = −∇V − ∂A

∂t
, (1.36)

Part III - Classical Wave Scattering 8 O.Rath-Spivack@damtp.cam.ac.uk
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1.2 Electromagnetic waves

where V is a scalar field. A and V are not unique. It is always possible to
find an arbitrary scalar Φ such that the vector

A0 = A −∇Φ

also satisfies (1.35) giving the same B, and the scalar

V0 = V +
∂Φ

∂t

gives the same E. This is a gauge transformation, and any particular choice
of Φ is a choice of gauge.
We shall see that the electric field E and the magnetic field B obey a wave
equation equivalent to that derived in section 1.1 for acoustic waves.
Let us derive the wave equation first in free space, i.e. and in the case when
there are no charges nor currents: ρ = 0,J = 0. We shall start with equation
(1.27), which in this case becomes:

∇× B = µ0ǫ0
∂E

∂t
(1.37)

Noting that ∇ × {·} and ∂
∂t
{·} commute, if we now apply ∂

∂t
to (1.37), and

use equation (1.25), we obtain

∇× (∇× E) = µ0ǫ0
∂2E

∂t2
(1.38)

and, since ∇ · E = 0 in this case, and µ0ǫ0 = c−2, where c is the speed of
light, we arrive at the wave equation for E

∇2E − 1

c2

∂2E

∂t2
= 0 . (1.39)

It is straightforward to derive a wave equation of the same form for the
magnetic field B. A wave equation for E can be similarly derived in the
more general case were charges and currents are present, and has the form:

∇2E − 1

c2

∂2E

∂t2
= ǫ−1

0 ∇ρ + µ0
∂J

∂t
, (1.40)

where the r.h.s. represents source terms due to charges and currents. A
similar equations for B also applies.
We notice here that the vector product E × H has the dimensions of an
energy flux. It is indeed taken as the energy flow at a point (even though it
is not unique), and is called Poynting vector:

S = E × H =
1

µ
E × B (1.41)

Part III - Classical Wave Scattering 9 O.Rath-Spivack@damtp.cam.ac.uk
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1.2 Electromagnetic waves

The Poynting vector gives the direction of the energy flow. Similarly to acous-
tic plane waves, an electromagnetic plane wave shall be written E(r, t) =
E0(t)e

ik·r, from which we can see that for plane waves the energy flow is
perpendicular to the wavefront, and the energy travels in the direction of the
wavevector k. Note that, even though the functional form of an electromag-
netic plane wave is the same as that of an acoustic plane wave, electromag-
netic waves are vector waves, so all the equations are vector equations.
For a time-harmonic field E(r, t) = Re{E(r)e−iωt} we can derive, as in the
case of acoustic waves, a reduced wave equation: the Helmholtz equation for
electromagnetic waves

∇2E(r) − k2E(r) = 0 , (1.42)

where k2 = ω2µǫ.
The radiation condition for electromagnetic waves can be expressed (as
before) in terms of the scalar and vector potentials, but is usually more
conveniently expressed in terms of the field components:

| rE |< K , | rH |< K

r(E + Z0̂ir × H) → 0 , as | r |→ ∞ , (1.43)

r(H − îr × E/Z0) → 0 , as | r |→ ∞ , (1.44)

where Z0 =
√

µ/ǫ = impedance of the medium.

Polarized waves
Plane waves solutions of (1.40) or (1.39) and their equivalents for the mag-
netic field are again fundamental in practical applications, as in the case
of acoustic waves, either because only far-field solutions are of interest, or
because any wave can be represented as a superposition of plane waves.
Of particular interest are plane waves which are linearly polarized. Two kinds
of linear polarizations are possible. Let’s take Cartesian coordinates and a
plane wave with direction of propagation k in the (x, y)-plane. Then, either
the electric vector E is parallel to the z-coordinate:

E = ẑEz , E-polarization (1.45)

or TM wave

or:

H = ẑHz , H-polarization (1.46)

or TE wave .

Part III - Classical Wave Scattering 10 O.Rath-Spivack@damtp.cam.ac.uk
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1.2 Electromagnetic waves

When talking of ”direction of polarization”, one normally refers to the di-
rection of E (but note that the opposite convention is sometime found in
the literature). It is immediately apparent that in many scattering problems
with linearly polarized waves, the vector wave equation will reduce to a scalar
equation for either Ez or Hz.
For example, if a TM wave is incident on a surface that can be described by
S = f(ρ, φ) in cylindrical polar coordinates, independently of z, then for this
scattering problem the incident field is given by

Einc = ẑEinc
z , Hinc = − i

kZ

(

∂Einc
z

∂y
x̂ − ∂Einc

z

∂x
ŷ

)

, (1.47)

where Z =
√

µ/ǫ is the surface impedence, and depends on the properties
of the two media and the surface, and usually varies with the incoming field
at each point. In general, Z is also a function of frequency and angle of
incidence.
Since the boundary conditions are independent of z, then the scattered field
must also be E-polarized, and of the form

Esc = ẑEsc
z , Hsc = − i

kZ

(

∂Esc
z

∂y
x̂ − ∂Esc

z

∂x
ŷ

)

, (1.48)

therefore the scattering problem reduces to finding the scalar function Esc
z ,

and is analogous to the problem of an acoustic field scattered by a soft sur-
face. Similarly, the case of H-polarization is analogous to that of an acoustic
field scattered by a hard surfaces. All problems where the scatterer is ax-
isymmetric and the incident electromagnetic field is polarized in the direction
parallel to the axis of symmetry therefore reduce to a scalar problem.

Part III - Classical Wave Scattering 11 O.Rath-Spivack@damtp.cam.ac.uk
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1.3 Boundary conditions

1.3 Boundary conditions

The constraints imposed on the solutions of the wave equation at a surface
must reflect the nature of the solid object defined by the surface or, if the sur-
face in question is an interface between two fluids, the different characteristic
properties of the two fluids.
If the surface is perfectly reflecting, (for acoustic waves) or perfectly conduct-
ing (for electromagnetic waves), i.e. the tangential component of the total
electric field at the surface is zero:

E − (E · n)n = 0 , (1.49)

then two cases are possible:
Neumann condition, when the normal derivative of the potential field is
given at the boundary, i.e., if n is the unit normal pointing outward from the
surface:

∂ψ(r)

∂n
= 0, r on S. (1.50)

For acoustic waves, this corresponds to an acoustically hard surface, or in the
case of electromagnetic waves in 2D, to a vertically polarized electromagnetic
wave on a perfectly conducting surface.
Dirichlet condition, when the value of the potential field is given at the
boundary:

ψ(r) = 0, r on S. (1.51)

which, for acoustic waves, corresponds to a pressure-release or acoustically
soft surface, and in the case of electromagnetic waves corresponds to a hor-
izontally polarized electromagnetic wave in 2D on a perfectly conducting
surface.
In most real cases the surfaces is neither perfectly reflecting, nor perfectly
conducting, and the boundary condition is of mixed type:
Cauchy condition (also called Robin, or impedance boundary condi-

tion). In this case both the potential and its normal derivative are different
from zero at the boundary, and the boundary condition is then expressed as
an equation relating these two quantities:

∂ψ

∂n
(r) = iZ(r, ω, θ, ...)ψ(r) r on S. (1.52)

For electromagnetic waves the boundary condition relates the tangential com-
ponent of the electric field at the surface to the normal component of the
magnetic field at the surface:

E − (E · n)n = Z(r, ω, θ, ...)n × H , (1.53)

Part III - Classical Wave Scattering 12 O.Rath-Spivack@damtp.cam.ac.uk
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1.3 Boundary conditions

Here Z depends on the properties of the two media and usually varies with
the incoming field at each point. In general, Z is also a function of frequency
and angle of incidence.
The impedance boundary condition can also be expressed as

n ×∇× ET = iZn × (E × n)

in a form similar to the one for scalar waves.
Exact boundary conditions at an interface between two media are given by
the jump (continuity) conditions:

ρ1ψ1 = ρ2ψ2

∂ψ1

∂n
=

∂ψ2

∂n

∂ψ

∂n

(2)

(1.54)

where the subscripts 1 and 2 refer to the two media, and we take n as the
normal directed into medium 1.
For electromagnetic waves, the boundary conditions at an interface are con-
tinuity of the normal component of B and the tangential component of E:

(B2 − B1) · n = 0 (1.55)

n × (E2 − E1) = 0 , (1.56)

plus

(D2 − D1) · n = ρs (1.57)

n × (H2 − H1) = JS , (1.58)

where ρs is surface charge and JS surface current.

Part III - Classical Wave Scattering 13 O.Rath-Spivack@damtp.cam.ac.uk
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1.4 Green’s functions

1.4 Green’s functions

In most problems of practical interest in acoustics, there will be one or more
sources of sound, and the space where the problem needs to be solved will
include one or more surfaces. Consequently, the differential equation to be
solved will be an inhomogeneous version of (1.11) or (1.22), and the solutions
will be subject to other boundary conditions in addition to (1.24). In general
the problem in question will then be defined by a differential equation

∇2p(x, t) + k2p(x, t) = f(x, t) , (1.59)

together with boundary conditions on one or more surfaces and the Sommer-
feld conditions. It is usually not easy to find solutions for such boundary
value problems, but the task is greatly facilitated by the use of an auxil-
iary function associated with the differential equation, known as Green’s

function.
In order to illustrate the concept of a Green’s function, and provide the means
of constructing Green’s functions for different problems, let’s first write (1.59)
in operator form as

Lp(ξ) = f(ξ) , (1.60)

where L is a linear operator, p the unknown function, and f is a known
function determined by the source. The variable ξ denotes a point in an
n-dimensional space which can include time as one of the coordinates. The
solution of (1.60) can be sought in principle by finding the inverse of the
operator L,

p(ξ) = L−1f(ξ) , (1.61)

but this is so far not particularly useful in practice. Since L is a differential
operator, if L−1 exists, it can be reasonably assumed to be an integral oper-
ator. If we assume that L−1 is an integral operator with kernel K, i.e. such
that

L−1f(ξ) =

∫

K(ξ, η)f(η)dη

for any functions f defined in the same domain as p, then we can write

p(ξ) = LL−1p(ξ) = L

∫

K(ξ, η)p(η)dη ,

Since L is a differential operator with respect to the variable ξ, we can for-
mally write

p(ξ) =

∫

LK(ξ, η)p(η)dη .

Part III - Classical Wave Scattering 14 O.Rath-Spivack@damtp.cam.ac.uk
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1.4 Green’s functions

This can be true only if

LK(ξ, η) = δ(η − ξ) , (1.62)

in which case we can write the solution to (1.60) as

p(ξ) =

∫

K(ξ, η)f(η)dη (1.63)

The kernel K of the operator L−1 is called the Green’s function for the
problem and will therefter be denoted by G(ξ, η). We can see from (1.63)
that its knowledge allows us to find the solution of the wave equation for
any known source f(ξ), at least in principle. Equation (1.62) shows that the
Green’s function is the field generated by a delta-function inhomogeneity, i.e.
the solution of the inhomogeneous wave equation (1.60) with the source term
f = δ(η − ξ).
Due to the symmetric property of G:

G(ξ, η) = G∗(η, ξ)

This reciprocity relation means that G(x,y, t, t′) can equivalently represent
the field at a point x due to a ’disturbance’ at y, or the field at y due to a ’dis-
turbance’ at x. In other words, the Green’s function is unchanged if source
and receiver are interchanged. We note that, with regard to the time coor-
dinate, the reciprocity implies time reversal: G(x,y, t, 0) = G(y,x, 0,−t), so
causality is satisfied.
The Green’s function defined above is not unique: it is always possible to
add to it a solution of the homogeneous wave equation, and the result will
of course still satisfy (1.62). The particular solution for the Green’s function
which is independent of any boundary conditions is called the free space

Green’s function, and shall usually be denoted by G0(ξ, η). Any other Green’s
function can be written as

G(ξ, η) = G0(ξ, η) + GH(ξ, η) , (1.64)

where GH(ξ, η) is a solution of

L(ξ)G(ξ, η) = 0 . (1.65)

When GH(ξ, η) is chosen to satisfy the boundary conditions for the problem,
then G(ξ, η) is the exact Green’s function for the problem.

We shall derive here the free space Green’s function for time-dependent wave
equation in 1D, i.e. the function G satisfying:

∂2Gx, t

∂t2
− c2∂2G(x, t)

∂x2
= δ(x − y)δ(t − τ) (1.66)
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1.4 Green’s functions

If we Fourier transform (1.66) in both space and time, it becomes

−ω2Ĝ(k, ω) + c2k2Ĝ(k, ω) = eikye−iωτ , (1.67)

so the transform of the required Green’s function is given by

Ĝ(k, ω) =
1

c2

eikye−iωτ

k2 − ω2/c2
, (1.68)

and G(x, t) can be obtained by transfoming back:

G(x, t) =
1

4π2c2

∫ ∞

−∞

∫ ∞

−∞

e−ik(x−y)eiω(t−τ)

k2 − ω2/c2
dkdω (1.69)

The integral in (1.69) must be calculated taking care that the contour of
integration is chosen in a way that satisfies the causality condition. As dis-
cussed in section 1.1, this means requiring that the time-Fourier transformed
function G(x, ω) must be analytic in Im(ω) ≤ 0. Therefore, when integrat-
ing in the complex k-plane, we need to take the limit from below at the pole
k = ω/c, and the liimit from above at the pole k = −ω/c. In the first case
the contour will have a small indentation above the pole, in the second case,
a small indentation below. With these contraints then, if we first carry out
the inverse in k-space we obtain:

G(x, ω) =
1

4π2c2

∫ ∞

−∞

e−ik(x−y)

k2 − ω2/c2
dk =

e−iω
|x−y|

c

4πiωc
. (1.70)

The inverse transform in time then gives:

G(x, t) =
1

4πic

∫ ∞

−∞

eiω(t−τ−
|x−y|

c
)

ω
dω =

1

2c
H

(

t − τ − | x − y |
c

)

. (1.71)

The time (t − τ − |x−y|
c

) is called retarded time, and is the time at which
the disturbance observed at (x, t) has been emitted by the source at (y).
In 3 dimensions, the free space Green’s function for the time-dependent wave
equation is

G(x, t) =
1

4πc2r
δ(t − τ − r/c) , (1.72)

where r =| x − y |,
and the free space Green’s function for the Helmholtz equation is

G(x, t) =
eikr

4πr
. (1.73)
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1.4 Green’s functions

The above represents a spherically symmetric wave, and can be derived as
the wave generated by a source consisting of an oscillating sphere, in the
limiting case where the radius tends to zero. Such source is called a point

source, or monopole. In the case of electromagnetic waves, a point source
is equivalent to a charge.

It is instructive to consider a source Q(r), uniformly distributed within a
sphere. The Helmholtz equation for the wave field is then

∇2p(x, ω) + k2p(x, ω) = Q(x) . (1.74)

This can now be written, using (1.63), as:

p(x, ω) =
1

4π

∫

eikr

r
Q(y)dy (1.75)

If the radius of the sphere r′ is very small, so r′ ≪ r, then we can expand
(eik|r−r′|/(| r − r′ |) in a power series:

(eik|r−r′|)/(| r − r′ |) =

eikr

r
− r′ · ∇

(

eikr

r

)

+
1

2
(r′ · ∇)2

(

eikr

r

)

+ . . .

If we substitute this expansion in (1.75), we obtain:

p = Q0
eikr

r
+ Qi

eikr

r2
+ Qij

eikr

r3
+ . . . (1.76)

The coefficients Q0, Qi and Qij (obtained by integrating over the volume
of the sphere containing the sources), are called respectively monopole,
dipole and quadrupole strength, and the series just obtained multipole
expansion.
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1.5 The Kirchoff-Helmholtz equation

1.5 The Kirchoff-Helmholtz equation

By using the Green’s function it is possible to derive an integral form of the
Helmholtz equation, which facilitates calculations of sound propagation and
scattering, and allows sources and boundary conditions to be treated in a
simple and convenient way.
In order to derive this integral equation, we shall first recall the following
vector identities. Given any two function f and g, we have:

∇ · (f∇g) = f∇2g + (∇f) · (∇g) . (V 1)

If f∇g is a vector field continuously differentiable to first order, which we
shall denote by F = f∇g, then we can apply to it the following theorem,
which transforms a volume integral into a surface integral:
Gauss theorem If V is a subset of R

n, compact and with piecewise smooth

boundary S, and F is a continuously differentiable vector field defined on v,
then

∫

V

∇ · F dV =

∫

S

F · n dS , (V 2)

where n is the outward-pointing unit normal to the boundary S.
In R

3, for an F1 = f∇g and an F2 = g∇f , we have, using V2 and V1:

∫

V

[

f∇2g + (∇f) · (∇g)
]

dV =

∫

∂V

f∇g · n dS , (1.77)

∫

V

[

g∇2f + (∇g) · (∇f)
]

dV =

∫

∂V

g∇f · n dS , (1.78)

and subtracting (1.78) from (1.77) we obtain:

∫

V

(

f∇2g − g∇2f
)

dV =

∫

∂V

(f∇g − g∇f) · n dS . (1.79)

This result can be used can be used to solve a general scattering problem, in-
volving one or more sources and write the solution in terms of the (unknown)
field and its normal derivative along the boundary. The integral equations
obtained can in principle be solved to find these unknown surface field val-
ues. This approach applies whether the problem involves an interface with a
vacuum or with a second medium.
Consider first a finite region V contained between two smooth closed surfaces
S0 and S1, and containing a source Q(r).
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1.5 The Kirchoff-Helmholtz equation

.

Let G be the free space Green’s function, and ψ the solutions to the inho-
mogeneous equation

∇2ψ + k2ψ = Q(r) . (1.80)

Using the vector identities introduced above, we can write:
∫

V

(

ψ∇2G −∇2ψG
)

dV =

∫

S0+S1

(

ψ
∂G

∂n
− ∂ψ

∂n
G

)

ds , (1.81)

where we have used d/dn = n ·∇. If we let the outer surface S1 go to infinity,
then, provided ψ obeys the Sommerfeld boundary condition at infinity, then
the integral over S1 vanishes.
Substituting in (1.81) the expressions for ∇2ψ and ∇2G obtained by the
appropriate wave equations, i.e.

∇2G = δ(r − r′) − k2G

∇2ψ = Q(r) − k2ψ

we obtain
∫

V

ψ(r′)δ(r − r′) − Q(r′)G(r, r′)dr′ =

∫

S0+S1

(

ψ
∂G

∂n
− ∂ψ

∂n
G

)

ds . (1.82)

But

ψi(r) =

∫

V

Q(r′)G(r, r′)dr′. (1.83)

is the incident field ψi inside the volume V . Using this result, then, we can
write (1.81) as

ψ(r) = ψi(r) +

∫

S0

[

ψ(r0)
∂G(r, r0)

∂n
− ∂ψ

∂n
(r0)G(r, r0)

]

dr0 . (1.84)

This is the Kirchoff-Helmholtz equation, an integral (implicit) form of
the Helmholtz equation, which is of great practical use in calculating the field
induced by sources scattered by finite boundaries.
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1.5 The Kirchoff-Helmholtz equation
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2 Canonical cases

2.1 Scattering from a flat surface

Consider first a time-harmonic scalar (acoustic) wave potential ψ exp(−iωt)
of frequency ω in a 2-dimensional medium (x, z), having density ρ, sound-
speed c. In what follows the time variation e−iωt will be suppressed. It is
useful to start by considering the elementary problem of plane wave reflection
by flat boundaries. Suppose therefore that the boundary between two media
(say medium 1 and medium 2) is an infinite flat surface at z = 0. and suppose
ψ is the solution due to a wave ψi incident on this in the first medium:

ψi = exp(ik[x sin θ − z cos θ])

with reflected and transmitted fields ψs, ψT respectively.
Define the scattered field ψs(x, z) in medium 1 by

ψs = ψ − ψi . (2.1)

Then ψ, ψi, ψs obey the wave equation
(

∇2 + k2
)

ψ = 0 . (2.2)

Suppose the lower medium has density ρ2, wavespeed c2 and corresponding
wavenumber k2 = ω/c2. Denote the total transmitted field in medium 2 by
ψ(2), so that this obeys the wave equation

(

∇2 + k2
)

ψ(2) = 0 . (2.3)

By the wave equation above and the radiation condition (i.e. reflected and
transmitted waves consist of outgoing waves only), the scattered wave has
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2.1 Scattering from a flat surface

the form of specular reflection

ψs = R(θ)ei(kx sin θ+kz cos θ) (2.4)

where R is the reflection coefficient. If the lower medium is not a vacuum we
also have

ψT = T (θ)ei(kx sin θ−zq) (2.5)

where

q =
√

k2
2 − k2 sin2 θ.

Writing ψ = ψi + ψs and using jump conditions (1.54) we obtain

R =
α − 1

α + 1

T =
2ρα

ρ2(α + 1)
=

2k cos θ

q(α + 1)
(2.6)

where

α =
ρ2k cos θ

ρq

The two perfectly reflecting cases can be recovered from this as ρ2 → 0 or
ρ2 → ∞, or by using the boundary conditions (1.51), (1.50) directly in (2.4).
Thus Dirichlet (ψ = 0) gives R = −1, and Neumann becomes R = +1.

Total internal reflection: Suppose that the sound-speed is greater in medium
2, c2 > c. Then k2 < k and we can have total internal reflection. From (2.5)

q2 = k2

[

(

c

c2

)2

− sin2 θ

]

so that when θ > arcsin(c/c2) (critical angle) q becomes imaginary, and we
shall write q = ia(θ) where a(θ) is real. We must choose the positive root
to obey radiation conditions, and ψT is an evanescent wave, i.e. it decays
exponentially away from the boundary,

ψT = Teikx sin θ+za.

(This form is also referred to as an inhomogeneous plane wave, and it may
be considered as propagating at a complex rather than a real angle.) We find
in particular that at the critical angle q vanishes, and we have

R = 1, T = 2.
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2.1 Scattering from a flat surface

Thus the interface appears as rigid when viewed from medium 1, but excites a
non-zero transmitted component. The question then arises of what happens
to the energy at the interface.
Energy flux
Since we will be looking for solutions to the scattering problem in terms of
plane waves, it is important to consider the energy carried by plane waves
across a given plane.
Remember that we started this course by deriving the wave equation from the
linearised versions of the equations of mass and of momentum conservation
for a fluid. An equivalent conservation equation for the energy can also
be written, and is very helpful when trying to describe and understand the
properties of sound fields.
Let us take the linearised momentum conservation equation in the absence
of external forces (1.8), and dot multiply it by v:

ρ0v · ∂v

∂t
+ v · ∇p = 0 , (2.7)

where we have dropped the primes. Using now the vector identity A.4 and
the linearised mass conservation equation in the absence of external sources
(1.7), together with the relationship p = c2ρ, we can re-write this as:

∂

∂t

[(

1

2
ρv2

)

−
(

1

2

p2

ρc2

)]

+ ∇ · (vp) = 0 (2.8)

which can be interpreted as a conservation law for the energy, where

1

2
ρv2 = acoustic kinetic energy density

1

2

p2

ρc2
= acoustic potential energy density

vp = acoustic energy flux

The relevant physical quantity of interest for time-harmonic fields is the
time-averaged energy flux:

E =
1

T

∫ T

0

vpdt , where T =
2π

ω
(2.9)

From 1.19 (which gives p and v in terms of the wave potential ψ) and sincen ·
∇ = ∂

∂n
, we can therefore calculate the time-averaged energy flux (at a point)

in a direction n for a wave ψ:

E(ψ, n) = −ρω

2
Im

{

ψ∗∂ψ

∂n

}

(2.10)
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2.2 Scattering from a semi-infinite plane

This is then integrated across the plane to which n is the normal to obtain
the energy per unit area in the direction n. So for a homogeneous plane
wave, say ψ = exp(ik[x sin(θ − z cos(θ)]), the point-wise energy flux in the
direction n = −z, across some horizontal line in medium 2, is

E(ψ, n) =
ρ2ωk cos(θ)

2
(2.11)

Note that this is independent of x and z.
Now consider an inhomogeneous plane wave ψ = exp(ikx sin(θ)+az). Across
the same horizontal boundary, we find that ψ∗∂ψ/∂n is real, so that

E(ψ, n) ≡ 0,

and as we would expect this means that the transmitted field carries with it
no energy.
(Note: What happens if another boundary is present somewhere below the
first? In that case the radiation conditions are replaced by the appropriate
boundary conditions for this interface. Then instead of just a single decaying
wave, there may be in addition an exponentially growing part corresponding
to the negative root of q above. The coefficient of this will depend on the
boundary conditions and the depth of the layer, and the sum of these waves
will again carry some non-zero energy, while the reflection coefficient R will
no longer be unity.)
Finally consider the sum of two homogeneous plane waves, say

ψ = a1e
ik(x sin(θ1)−z cos(θ1)) + a2e

ik(x sin(θ2)−z cos(θ2)).

We find that E is proportional to

|a1|2 cos(θ1) + |a2|2 cos(θ2) + 2Im
{

a1a
∗
2e

ik[(sin(θ2)−sin(θ1))x−(cos(θ2)−cos(θ1))z]
}

.

The last term is oscillatory and vanishes when spatially averaged, so that the
energy in the plane waves adds linearly.

2.2 Scattering from a semi-infinite plane

When looking at scattering from a body with a finite boundary, additional
restrictions may have to be applied. In particular, if the scatterer has a
sharp edge, issues of uniqueness and singularity must be addressed. The
restrictions on the field and its derivative near an edge are known as edge

conditions. The appropriate requirement is that the energy in any finite
region should be bounded, which is equivalent to requiring that the edge
should not radiate energy of its own accord.

Part III - Classical Wave Scattering 24 O.Rath-Spivack@damtp.cam.ac.uk



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

2.2 Scattering from a semi-infinite plane

Following the derivation in [3], let’s consider a 2-dimensional time-harmonic
plane wave φinc exp(−ωt) = exp(i(k0x cos θ + k0y sin θ − ωt) incident on a
semi-infinite surface defined by y = 0, x > 0. We shall remove the time
factor e−iωt throughout. φ is an odd function of y, hence φ(x, 0) = 0 for
x < 0, and we may confine attention to the half space y > 0, since for y < 0,
φ(x, y) = −φ(x,−y). The governing equation is the Helmholtz equation

∂2φ

∂x2
+

∂φ

∂y2
+ k2

0φ = 0 , y ≥ 0 , (2.12)

with boundary conditions on the plane y = 0

φ = 0, x < 0 , y = 0 , (2.13)

∂φ

∂y
= −ik0 sin θ exp(ik0x cos θ), x > 0 , y = 0 , (2.14)

and boundary conditions at infinity

φ ∼ −eik0x cos θ+ik0y sin θ + f1(x)eik0x, x → +∞ , (2.15)

φ ∼ f2(x)e−ik0x, x → −∞ , (2.16)

for any fixed y > 0, where f1 and f2 are algebraic functions. The edge
conditions are:

φ bounded (2.17)

| φ | = O(xα) , for some α > −1, as x → ±0 . (2.18)

The solution is obtained by a straightforward application of the Wiener-Hopf
technique. This is a method for solving partial differential equations by using
the complex Fourier transform, and exploiting their analiticity properties.
We shall therefore define full and half-range transforms as follows:

Φ(s, y) =

∫ +∞

−∞

φ(x, y)eisxdx = Φ−(s, y) + Φ+(s, y) , (2.19)

with

Φ+(s, y) =

∫ +∞

0

φ(x, y)eisxdx (2.20)

Φ−(s, y) =

∫ 0

−∞

φ(x, y)eisxdx . (2.21)

If we assign a small imaginary part to k0 = k + iε, then we can see that
Φ+(s, y) is analytic for s > −ε cos θ, and Φ−(s, y) is analytic for s < ε. The
full-range Fourier transform (2.19) then is analytic in the strip:

S : −ε cos θ < s < ε . (2.22)
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2.2 Scattering from a semi-infinite plane

It follows that the Fourier transform of (2.12) is

∂2Φ(s, y)

∂y2
− s2Φ(s, y) + k2

0Φ(s, y) = 0 , s in the strip S , (2.23)

with solutions
Φ(s, y) = e±γy , (2.24)

where
γ = (s2 − k2

0)
1/2 , γ(0) = −ik0 (2.25)

has branch cuts from ±k0 to ∞ in the first and third quadrant. With this
choice of cuts Reγ ≥ 0 for all s in S.
The solution that remains bounded as y → ∞ is

Φ(s, y) = A(s)e−γy , (2.26)

and A(s) has to be determined from the boundary conditions 2.13 and 2.14,
which give:

Φ−(s, 0) = 0 , (2.27)

∂Φ+(s, 0)

∂y
=

k0 sin θ

s + k0 cos θ
. (2.28)

Setting y = 0 in the solution (2.26) gives

Φ+(s, 0) + Φ−(s, 0) = A(s) (2.29)

and the y-derivative at y = 0 gives

∂Φ+(s, y)

∂y

∣

∣

∣

∣

y=0

+
∂Φ−(s, y)

∂y

∣

∣

∣

∣

y=0

= −γ(s)A(s) (2.30)

Eliminating A(s) from these equations, and using the boundary conditions,
gives:

γ(s)Φ+ + Φ′
− =

k0 sin θ

s + k0 cos θ
. (2.31)

This equation can be written in the general (standard) form

K(s)U+(s) + U−(s) = P (s) , (2.32)

known as Wiener-Hopf equation, where the kernel K is

K(s) = γ(s) = (s2 − k2
0)

1/2 . (2.33)
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2.2 Scattering from a semi-infinite plane

This is solved by the following steps:

Step 1: Multiplication decomposition of K(s).

K(s) = K(s)+K−(s) , α < Im(s) < β , (2.34)

where α and β are such that K(s)+ is analytic in the half-plane Im(s) > α,
and K(s)− is analytic in the half-plane Im(s) < β, and

K(s)+ = O(sn) as | s |→ ∞in Im(s) > α

K(s)−1
− = O(sm) as | s |→ ∞in Im(s) < β

then the Wiener-hopf equation can be recast as:

K+(s)U+(s) + U−(s)/K−(s) = P (s)/K−(s) , (2.35)

Step 2: Sum decomposition of R(s) = P (s)/K−(s).

R(s) = R(s)+ + R−(s) , (2.36)

where R(s)+ and R−(s) are analytic and of algebraic growth in the respective
half-planes.
Step 3: Completion
We can now write the Wiener-Hopf equation as

K+(s)U+(s) − R+(s) = −U−(s)/K−(s) + R−(s) . (2.37)

Here the l.h.s. is analytic in the whole half-plane Im(s) > α, and the r.h.s. is
analytic in the whole half-plane Im(s) < β. So each side analytically contin-
ues the other to define a function E(s) analytic in the whole s-plane. E(s)
can be found by using the conditions on the edge for the inverse transforms
u+(x) and u−(s). The Abelian theorem relates the behaviour of u±(x) as
x → ±0 to the behaviour of U±(s) as | s |→ ∞.) If

l.h.s. = O(sn) and r.h.s. = O(sm)

as | s |→ ∞ in their respective half-planes, then

E(s) = polynomial of degree N ,

where N is the lesser of n,m, and the solution is complete.

In our case of scattering by semi-infinite plane, the factorization (Step 1)
of K can be done by inspection, giving:

K+K− = (s + k0)
1/2(s − k0)

1/2, whereK± = (s ± k0)
1/2. (2.38)
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2.2 Scattering from a semi-infinite plane

The Wiener-Hopf equation (2.31) can be recast as (dividing by K−)

(s + k0)
1/2Φ+ + (s − k0)

−1/2Φ′
− =

−k0 sin θ

(s + k0 cos θ)(s − k0)1/2
. (2.39)

Now we need (Step 2) a sum decomposition of the r.h.s. of this equation,
such that R(s) = R(s)+ + R−(s). This can be done by

1

(s + k0 cos θ)(s − k0)1/2
=

1

(s + k0 cos θ)

[

1

(s − k0)1/2
− 1

(−k0 cos θ − k0)1/2

]

+

1

(−k0 cos θ − k0)1/2(s + k0 cos θ)
.

So the Wiener-Hopf equation can be written as:

(s + k0)
1/2Φ+ +

k0 sin θ

(−k0 cos θ − k0)1/2(s + k0 cos θ)
=

−(s − k0)
1/2Φ′

− −

k0 sin θ

(s + k0 cos θ)

[

1

(s − k0)1/2
− 1

(−k0 cos θ − k0)1/2

]

≡ E(s)

This gives us the function E(s), analytic in the whole complex plane, since
the l.h.s. defines the analytic continuation in the upper plane, and the r.h.s.
the analytic continuation in the lower plane.
We now need to find E(s), or possibly Φ+ and Φ′

−. Using the Abelian
theorem), we can say something about the behaviour of Φ+ and Φ′

− at ∞ from
the behaviour of their inverse half-transform at 0. From the edge conditions,
we have:

φ(x, 0) bounded as x → +0
⇒ Φ+ = O

(

1
s

)

as |s| → ∞, in Im(s) > −εcos(θ)

∂φ+(s,y)
∂y

∣

∣

∣

y=0
= O(xα(α > −1) as x → −0

⇒ Φ− = O
(

1
s1+α

)

as |s| → ∞, in Im(s) < ε

Therefore, E(s) → 0 as |s| → ∞ , hence E(s) ≡ 0 by Liouville theorem.
This tells us that our solution is unique, but the Wiener-Hopf equation still
has 2 unknown: Φ+ and Φ′

−. We can eliminate one of them by using the
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2.2 Scattering from a semi-infinite plane

boundary conditions at the surface. Remember that the appropriate form of
the solution Φ = Φ+ + Φ− is

Φ = A(s)exp(−γy) , (2.40)

so at y = 0 we have Φ+ + Φ− = A(s) (equation (2.26)). But the boundary

condition at the surface:

φ(x, 0) = 0 (x < 0) (2.41)

gives Φ−(s, 0) = 0, so
Φ+(s) = A(s)

Using these results in the Wiener-Hopf equation we have:

Φ+ =
k0 sin θ

(s + k0)1/2(−k0 cos θ − k0)1/2(s + k0 cos θ)
=

=
−ik

1/2
0 sin θ

(s + k0)1/2(1 + cos θ)1/2(s + k0 cos θ)
= A(s)

and we can inverse-transform the solution (2.40) to obtain

φ(x, y) =
−i

2π

k
1/2
0 sin(θ)

(1 + cos θ)

∫

C

e−γy−isx

(s + k0)1/2(s + k0 cos θ)
ds ′ (2.42)

where we have now taken the limit ε → 0, and the integration path is along
the real axis, avoiding the branch cuts from −k0 and k0, and the pole at
−k0 cos(θ).
Exact integration of (2.42) gives the total field due to scattering of an incident
plane wave by the wedge. A contribution to this field will come from the pole
at −k0 cos θ0. Writing x = r cos θ and y = r cos θ, then letting r → ∞ and
deforming the integration path, it becomes clear that the pole contribution
will be included only for some values of θ (i.e. only some observers), and it
corresponds to the geometrical optics contribution. Only the result will be
given here.
When θ > θ0, the contribution from the pole is the plane wave

−ei(k0x cos θ0+k0y sin θ0) , (2.43)

which cancels exactly with the incident wave;
When θ < −θ0, it is the plane wave

−ei(k0x cos θ0−k0y sin θ0) , (2.44)
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2.2 Scattering from a semi-infinite plane

i.e. the reflected wave. According to geometrical optics alone, there is a
shadow zone (no field) for θ > θ0, both reflected and incident waves for
θ < −θ0, and only the incident field when −θ0 < θ < θ0, and therefore the
field is discontinuous along the lines θ = ±θ0. Exact integration of (2.42)
will give includes a diffracted field that penetrates the shadow zone, and is
not discontinuous along θ = ±θ0.
It is possible to write the total field in terms of Fresnel integrals as follows:

φT =

(

1

π

)1/2

e
iπ
4
−ikr

[

F ((2kr)
1

2 sin
1

2
(θ − θ0))

− F ((2kr)
1

2 sin
1

2
(θ + θ0))

]

,

where

F (z) =
(π

2

)1/2

eiz2

[

e−
iπ
4 − (2π)

1
2

(

C

(

2
1

2 z

π
1

2

)

− iS

(

2
1

2 z

π
1

2

))]

and

C(z) =

∫ z

0

cos

(

1

2
πt2

)

dt S(z) =

∫ z

0

sin

(

1

2
πt2

)

dt

are the Fresnel integrals, related by:

C(z) − iS(z) =

∫ z

0

e
1

2
πt2dt .

When |z| ≫ 1

F (z) = − i

2z
+

1

4z3
+ O

(

1

|z|5
)

. (2.45)

When |z| ≪ 1

F (z) =
1

2
π

1

2 e−
iπ
4 − z + O(|z|2) . (2.46)

Near the edge, the total field behaves like

φT ∼ 1 − 2

(

2kr

π

)
1

2

e
iπ
4 cos

θ0

2
sin

θ

2
(2.47)

Let’s now look at the diffracted field (i.e. the field left after the geometrical
optics contribution has been extracted). In the far field, it behaves like

φdiff ∼
(

2

πkr

)
1

2

e−
iπ
4
−ikr sin θ

2
cos θ0

2

cos θ0 − cos θ
, (2.48)
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2.2 Scattering from a semi-infinite plane

therefore it is a wave with cylindrical spreading r−1/2 for kr ≫ 1.
This asymptotic expression is not valid when θ is close to ±θ0. In fact we
can see from (2.42) that in this case the argument of F may be small even
when kr ≫ 1. The regions where this happens and the asymptotic expression
above does not hold are regions along the lines ±θ0, bounded by the parabolae
2kr sin2 1

2
(θ± θ0) = const. In these regions the full expression (2.42) must be

used and there is no simpler approximation. The diffracted and the incident
wave are of the same order of magnitude
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2.3 Scattering from a wedge

2.3 Scattering from a wedge

The geometry of the wedge shall be defined as follows. The (infinite) wedge
will be defined by the surfaces y = 0, x > 0 and y = r sin β, x = r cos β,
where β is the exterior angle of the wedge and r the radial distance along
the surface, and the edge of the wedge coincides with z-axis. In a cylindrical
coordinate system {r, θ, z}, one face of the wedge is at θ = 0 and the other
at θ = β.

We shall consider scattering from the wedge due to a harmonic point source
of strength Q at rs = (xs, ys, 0), and will seek a solution for the acoustic pres-
sure field which satisfies the Helmholtz equation with Sommerfeld boundary
conditions at infinity, and hard surface boundary conditions at the faces of
the wedge:

∂p

∂θ
= 0 at θ = 0, θ = β . (2.49)

It is convenient to introduce a wedge index

ν =
π

β
, (2.50)

and to express the distance between source and observer as a function

R(ϕ) = (r2 + r2
s − 2rrs cos ϕ + z2)1/2 . (2.51)

R(ϕ) is the distance in the free-space Green’s function

G(ϕ) =
eikR(ϕ)

R(ϕ)
. (2.52)

The acoustic field at a point (r, θ, z) due to the source, without any surfaces
present, is

p0(r, θ, z) = Q
eikR(θ−θs)

R(θ − θs)
. (2.53)

We shall define R(ϕ) so that R is positive for real ϕ, and R is analytic except
at branch cuts, extending from branch points above and below the real axis.
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2.3 Scattering from a wedge

We can see from (2.51) that the branch points are at

ϕ = 2πl ± iα where l is any integer

α = cosh−1 r2 + r2
s + z2

2rrs

Since G(θ− θs) satisfies the Helmholtz equation, from the principle of super-
position we know that, given a position-independent contour C and function
f ,

p =

∫

C

f(ϕ)G(ϕ − θ)dϕ

or

p =

∫

Cθ

f(ϕ + θ)G(ϕ)dϕ

(where we have made the change of variable δ = ϕ− θ, and renamed δ ≡ ϕ)
will also satisfy the Helmholtz equation.
We need to find an appropriate function f(ϕ + θ) and contour C.

Let’s start with the simpler case of a

wedge with integer index
If ν = integer, then the problem can be solved with the method of images.
The symmetry of this problem will require 2ν − 1 image sources, located
periodically around the edge of the wedge at angles 2mπ

ν
− θs and 2mπ

ν
+ θs,

m = 0, 1, . . . (ν − 1).
The solution is therefore:

p = Q
ν−1
∑

m=0

[

G(2m
π

ν
− θs − θ) + G(2m

π

ν
+ θs − θ)

]

. (2.54)

Alternatively we can express the sum above as a contour integral

p =
Q

2πi

∫

C

G(ϕ) [h(ϕ + θ + θs) + h(ϕ + θ − θs)] dϕ , (2.55)

where the function h has poles at ϕ = 2mπ
ν

with residue = 1 at each. The
contour C should enclose one pole each for which m = 0, 1, . . . (ν − 1), for
example all poles between −π and π.
A suitable choice for h(ϕ) is:

h(ϕ) =
ν

2
cot

(ν

2

)

. (2.56)
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2.3 Scattering from a wedge

The residue at the poles ϕ = 2mπ
ν

is 1. The integral (2.55) form is useful for
extending this result to non-integer ν.
The closed-contour choice for C is unsuitable for non-integer ν, though, be-
cause in that case the number of enclosed poles varies with θ. We will need
to find a different contour that does not cross the real axis.
Note that, since the integrand is periodic of period 2π, integration along the
downward infinite path from π+ i∞ to π− i∞ will cancel exactly integration
along the upward path from −π − i∞ to −π| + i∞. Therefore adding these
paths to the integral (2.55) will leave it unchanged. We shall therefore:
1. add the two infinite downward and upward paths;
2. deform the upper arc of the closed-circuit path in such a way that it
continues from the downward path from π + ı∞ and joins the upward path
going to −π| + ı∞;
3. deform the lower arc of the closed-circuit path in such a way that it
continues from the upward path from −π− ı∞ and joins the downward path
going to π| − ı∞;
⇒ we have constructed an integration path split into two contours, CU and
CL, neither of which crosses the real axis. CU must pass below the branch
points at ϕ = iα, and CL must pass above the branch points at ϕ = −iα.

Extension to non-integer wedge indices
It is claimed that the solution (2.55), with the function h(ϕ) in the integrand
defined by (2.56), and where the contour of integration C is CU + CL, is also
the solution of the scattering problem for a wedge with non-integer index ν.

This can be confirmed by verifying that this solution satisfies the Helmholtz
equation and all the required boundary conditions. To do this, it is conve-
nient to express (2.55) as

p =
Q

2πi

∫

CL

G(ϕ)
∑

hdϕ , (2.57)
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2.3 Scattering from a wedge

where
∑

h =
2

∑

n,m=1

nu

2
cot

(nu

2
(ϕ + (−1)nθ + (−1)mθs)

)

. (2.58)

We can do this, because R(ϕ) = R(−ϕ), and the contour CU is the inversion
of CL.

We can now verify:
(1) - The solution (2.57) satisfies the Helmholtz equation.
Since G(ϕ) satisfies the Helmholtz equation:

(

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂ϕ2
+

∂2

∂z2
+ k2

)

G(ϕ) = 0 , (2.59)

it follows that

(∇2 + k2)p =
Q

2πi

∫

CL

1

r2

[

G(ϕ)
∂2

∂θ2

∑

h −
∑

h
∂2G

∂ϕ2

]

dϕ , (2.60)

and the r.h.s. vanishes.
(2) - The solution (2.57) obeys the boundary conditions at the edge faces:

∂p

∂θ
= 0 at θ = 0, θ = β .

This follows from the expression (2.58), and because h(ϕ) is an odd function
of its argument, so

∑

h is even in θ for fixed ϕ, and the derivative is zero at
θ = 0. The derivative is zero also at θ = β, because h(ϕ) is periodic in ϕ
with period 2β.
(3) - The solution (2.57) obeys the Sommerfeld radiation condition. This is
because the Green’s function will impose the correct limiting behavior to the
integral for any function

∑

h.
(4) - The solution (2.57) exhibits the right behaviour when approaching the
singular point at the source location. When approaching the source, i.e. in
the limit r → rs, z → 0, θ → θs, then α → 0, and a pole of h(ϕ + θ − θs)
approaches the origin. It is possible to isolate the contribution from this pole
using an appropriate contour, and it gives QG(θs−θ), which is just the direct
wave from the source.

As before, the contribution from the poles gives the geometrical optics con-
tribution to the field, and what is left over after extracting the solutions
obtained from geometrical optics is the diffracted field.
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2.3 Scattering from a wedge

General observations:
The contribution from the poles yields terms representing spherical waves
diverging from an image, which correspond to a possible ray path connecting
source and observer.
If β < π, field is accounted for by geometrical optics
If β > π, geometrical optics leads to field discontinuities at the boundaries of
the shadow zone, and evaluation of all contributions to the integral is needed
to estimate the acoustic field.
There is no diffracted wave contribution if the index ν is integer.
The case of the infinite half-plane is recovered in the limit β → 2π.
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3 Approximations

In general, the solution of most scattering problems can only be expressed
analytically as some kind of integral, or as an implicit integral equation.
Calculation of the actual values of the field then has to be obtained by com-
putationally intensive numerical solutions. For many problems, though, it
is possible to obtain approximate analytical solutions. We shall review the
main ones in this chapter.

3.1 Born Approximation

The Born approximation is based on expressing the total wave field ψ, which
is in general the solution of a scattering problem in a volume with sources
and surfaces, as the sum of the incident field plus a ’small’ perturbation:

ψ = ψi + ψs , (3.1)

The actual solution in this approximation will take various forms, depending
on how the perturbation is expressed.
We can immediately see how the Born approximation can be applied to the
integral form of the wave equation (1.84), to obtain a first Born approxima-
tion

ψ(1)(r) = ψi(r) +

∫

S0

[

ψi(r0)
∂G(r, r0)

∂n
− ∂ψi

∂n
(r0)G(r, r0)

]

dr0 , (3.2)

and higher terms can be obtaind by iteration.
The Born approximation will only be valid when ψs ≪ ψi, which intuitively
must apply to some kind of ’weak scattering’. In order to understand better
what this means in practice, to relate it to the physical features of a scattering
problem, and find boundaries for its range of validity, we shall derive it here
for some particular cases.
We shall consider the case where the scattered field is the result of a varying
refractive index n(r). The total field satisfies

∇2ψ + k2(r)ψ = 0 . (3.3)

We can then write

k(r) = k0n(r) = k0(1 + nδ(r)) , (3.4)

where it is assumed nδ(r) ≪ 1. Substituting k0n(r) into (3.3) we get:

∇2ψ + k2
0(r)ψ = −k2

0(n
2(r) − 1)ψ ≡ −V (r)ψ . (3.5)
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3.1 Born Approximation

Using (3.1), and the fact that the incident field satisfies

∇2ψi + k2(r)ψi = 0 , (3.6)

we can write the wave equation for the scattered wave

∇2ψs + k2(r)ψs = −V (r)ψ . (3.7)

We can then solve for ψs using the free space Green’s function, with −V (r)ψ
as the source term

ψs(r) =

∫

G(r − r′)[V (r′)ψ(r′)]dr′ . (3.8)

But ψs = ψ − ψi, so

ψ = ψi(r) +

∫

G(r − r′)[V (r′)ψ(r′)]dr′ . (3.9)

We can write the above implicit integral equation as an infinite series of ex-
plicit integral equations by forming successive approximations starting from
the unperturbed incident field ψi:

ψ(0) = ψi

ψ(1) = ψi(r) +

∫

G(r − r′)[V (r′)ψ(0)(r′)]dr′

ψ(2) = ψi(r) +

∫

G(r − r′)[V (r′)ψ(1)(r′)]dr′

ψ(3) = . . .

The first iteration in this series, ψ(1), is know as the first-order Born approx-

imation, usually referred to just as Born approximation.
This can also be put in a more compact form by writing the integration with
Green’s function as an operator:

∫

G(r − r′)[f(r′)]dr′ ≡ Ĝf

so (3.9) becomes ψ = ψ0 − ĜV ψ, and the series becomes

ψ(0) = ψi

ψ(1) = ψ(0) + ĜV ψ(0)

ψ(2) = ψ(0) + ĜV ψ(0) + ĜV ĜV ψ(0)

. . .

ψ(n) = ψ(0) + ĜV ψ(0) + · · · + (ĜV )nψ(0)
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3.2 Rytov Approximation

This form of the Born series helps visualising the structure of the n-th or-
der approximation, and is the one usually found in quantum mechanics, for
scattering of a wave on a potential V .
Naturally the (first-order) Born approximation is good only if the first cor-
rection is smaller than the incident field, and in general will be valid only if
the series converges.
Note: in the Born approximation, if the wave is expressed as a sum of inci-
dent and diffracted secondary wave, the scattering of the secondary wave is
neglected. So no multiple scattering.

3.2 Rytov Approximation

The Rytov approximation is obtained by representing the total field as a
complex phase:

ψ(r) = eφ(r) . (3.10)

Then, from the Helmholtz wave equation for ψ we have:

∇2eφ(r) + k2eφ(r) (3.11)

Since
∇2eφ(r) = ∇2φeφ(r) + (∇φ)(∇φ)eφ(r) ,

we get the following Riccati equation for the phase φ(r):

∇2φ + (∇φ)(∇φ) + k2 = 0 . (3.12)

Let us now again write the refractive index as

k(r) = k0n(r) = k0(1 + nδ(r)) . (3.13)

The field for n(r) = 1, i.e. the field in a non-refractive medium, can be
written as ψi(r) = eφi(r); it is of course the incident field, and its phase will
satisfy

∇2φi + (∇φi)
2 + k2

0 = 0 (3.14)

If we write φ = φi + φs and subtract (3.14) from (3.12), we get

∇2φs + 2(∇φi)(∇φs) = −
(

(∇φs)(∇φs) + k2
0(n

2 − 1)
)

. (3.15)

Now, using the identity

∇2(ψiφs) = (∇2ψi)φs + 2ψi(∇φi)(∇φs) + ψi∇2φs ,
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3.2 Rytov Approximation

equation (3.15) becomes:

∇2(ψiφs) + k2ψiφs =
(

(∇φs)(∇φs) + k2
0(n

2 − 1)
)

ψi , (3.16)

whose solution can be written as an integral using the free-space Green’s
function, to give:

φs(r) =
1

ψi(r)

∫

G(r − r′)
[

(∇φs(r
′))(∇φs(r

′)) + k2
0(n

2(r′) − 1)
]

ψi(r
′)dr′

(3.17)
This equation is exact, but it’s implicit and in practice provides no solution
as it is. If we assume that the scattered phase φs is very small, then we
can neglect (∇φs)

2, and we obtain an approximate solution for the scattered
phase

φs(r) ≃
1

ψi(r)

∫

G(r − r′)[k2
0(n

2(r′) − 1)]ψi(r
′)dr′ (3.18)

The corresponding solution for the total field is then

ψ(r) ≃ ψi(r)e
φs . (3.19)

This approximation is known as the (first) Rytov approximation. It cor-
responds to taking the first order term in an infinite power series expansion
of the phase φ(r). It is valid when (∇φs)

2 ≪ k2
0(n

2(r′) − 1).
It is interesting to compare the validity of the Born and Rytov approxima-
tions.
Note that the Born approximation can be seen as a Taylor series approxi-
mation of the field ψ(r, ε) in powers of ε, where ε is a measure of the in-
homogeneity. The Rytov approximation can also be seen as a Taylor series
approximation of log ψ(r, ε) in powers of ε. In our case, ε was the space-
dependent variation nδ from a constant refractive index.
We shall reproduce here the analysis by Keller (see Keller J.B. 1969 ’Accuracy

and validity of the Born and Rytov approximations’, J. Opt Soc. Am. 59,
1003-04) and consider the one-dimensional case of a wave travelling in a
inhomogeneous medium given by

ψ(x, ε) = eik(ε)x , (3.20)

and assume that k(ε) is analytic in ε for |ε| sufficiently small, so that it can
be expanded in a power series in ε with coefficients kj:

k(ε) =
∞

∑

j=0

kjε
j . (3.21)
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3.2 Rytov Approximation

The Born expansion gives

ψ(x, ε) = eik0x

∞
∑

s=0

εs

s
∑

l=0

(ix)l

l!

∑

j1+···+jl=s

kj1 · · · kjl
(3.22)

The nth Born approximation ψ
(n)
B (x, ε) is the sum of the first n + 1 terms in

the expression above:

ψ
(n)
B (x, ε) = eik0x

n
∑

s=0

εs

s
∑

l=0

(ix)l

l!

∑

j1+···+jl=s

kj1 · · · kjl
(3.23)

The Rytov expansion gives

ψ(x, ε) = eik(
P∞

j=0 kjεj) , (3.24)

and the nth Rytov approximation ψ
(n)
R (x, ε) is obtained by taking the first

n + 1 terms in the sum in the exponent:

ψ(x, ε) = eik(
Pn

j=0 kjεj) . (3.25)

The size of the error of the nth Born approximation ψ−ψ
(n)
B for small ε and

large |x| can be found by examining the coefficient of εn+1 in (3.22). That
coefficient contains a term proportional to xn+1. So

ψ − ψ
(n)
B = eik0xO(εn+1xn+1) . (3.26)

Dividing this by ψ, and noting that ψ differs from eik0x by terms of the order
ε, we obtain for the relative error:

ψ − ψ
(n)
B

ψ
= O(εn+1xn+1) . (3.27)

The error for the nth Rytov approximation ψ − ψ
(n)
R is:

psi − ψ
(n)
R = eik(

P∞
j=0 kjεj) − eik(

Pn
j=0 kjεj)

= ψ
(

1 − e−ik(
P∞

j=n+1 kjεj)
)

= ψO(εn+1x)

Dividing this by ψ gives for the relative error

ψ − ψ
(n)
R

ψ
= O(εn+1x) . (3.28)
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3.2 Rytov Approximation

We can see then that the relative errors of the Born and the Rytov approx-
imation are of the same order in the inhomogeneity parameter ε. However,
the expressions obtained for the relative errors also show that they vary in a
very different way as functions of x. For a single plane wave, the nth Rytov
approximation is valid over a much larger range than is the nth Born ap-
proximation, however this advantage is lost for fields containing more than
one wave, where the Rytov method must be applied to each wave separately
and not to the total field ψ.
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3.3 WKB Method

3.3 WKB Method

The WKB method (named after Wentzel, Kramers and Brioullin) is similar
in concept to the Rytov approximation, since in this case also the field is
assumed to have exponential form, and the exponent (phase) is approximated
by a perturbation series. It is a method of obtaining approximate solutions
to equations of the form

d2ψ

dx2
+ q(x)ψ = 0 , (3.29)

where q(x) is a slowly varying function of x. We derive this here for the
one-dimensional case to keep the calculations simple. The generalization to
higher dimensions can be found in Bremmer H and Lee SW 1984 ’Propagation

of a geometrical field in an isotropic inhomogeneous medium’ Radio Science

19, 243-57. We shall take here q(x) = k2(x). If q(x) were constant, then
equation (3.29) would have solutions of the form:

ψ(x) = aeiφ(x) , (3.30)

with a constant and φ(x) = ∓kx. If k2 varies slowly and the solution is
written in the form

ψ(x) = a(x)eiφ(x) , (3.31)

it is reasonable to expect φ(x) to vary rapidly and a(x) to vary slowly. In-
serting (3.31) into the Helmholtz equation (3.29) gives:

d2a(x)

dx2
+ 2i

dk2(x)

dx

dφ(x)

dx
+ ia(x)

d2φ(x)

dx2
− a(x)

(

dφ(x)

dx

)2

+ k2(x)a(x) = 0

(3.32)
We now choose φ(x) such that

(

dφ(x)

dx

)2

− k2(x) = 0 , (3.33)

i.e. such that

φ(x) = ∓
∫ x

k(x′)dx′ . (3.34)

Since we made the assumption that a(x) vary slowly, while φ(x) varies
rapidly, we can neglect ä in comparison to aφ̇. Therefore equation (3.32)reduces
to:

2
ȧ

a
+

φ̈

φ̇
= 0 , (3.35)
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3.3 WKB Method

which can be integrated to give

a(x) =∝ φ̇−1/2 = ∓k−1/2 . (3.36)

Hence, the approximate solution to (3.29) is

ψ(x) =
1

k1/2

[

A exp

(

i

∫ x

0

k(x′)dx′

)

+ B exp

(

−i

∫ x

0

k(x′)dx′

)]

, (3.37)

where A and B are arbitrary constants. It is apparent from the approxima-
tion made earlier (equation (3.33)), that this method is only valid for high
frequencies. The nature of this approximation would have been even clearer
if we had started with a ’trial solution’ given by

ψ(x) = Aeiωτ(x) , (3.38)

with A constant, which would have given in the end the same k−1/2 depen-
dance of the amplitude of the solution. Briefly, we can see that using (3.38)
in the Helmholtz equation gives

iωτ̈(x) − ω2(τ̇(x))2 + k2(x) = 0 . (3.39)

This can be solved using the perturbation series

τ(x) = τ0(x) +
1

ω
τ1(x) + . . . , for ω → ∞ . (3.40)

Note that iωτ̈0(x) ≪ k2(x) as ω → ∞, because k2(x) is proportional to
ω2. Therefore, by substituting the perturbation series into the Helmholtz
equation (3.33) and collecting leading terms, we have

ω2(τ̇0(x))2 = k2(x) = ω2s2(x) , (3.41)

where s2(x) = k/ω, which is independent of frequency. This differential
equation can be solved to give

τ0(x) = ±
∫ x

x0

s(x′)dx′ + C0 . (3.42)

By collecting first order terms in (3.39), we have:

iωτ̈0(x) − 2ωτ̇0(x))τ̇1(x)) = 0. (3.43)

This gives

τ1(x) =
i

2
ln τ̇0(x) + C1 =

i

2
ln s(x) + C1± . (3.44)
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3.3 WKB Method

By substituting the first two terms into the series, we find that the phase
therefore is

τ(x) = ±
∫ x

x0

s(x′)dx′ +
i

2ω
ln s(x) + C . (3.45)

Using this result then we find the first order approximation to the field to be

ψ(x) ≃ 1

s1/2

[

A exp

(

iω

∫ x

0

k(x′)dx′

)

+ B exp

(

−iω

∫ x

0

k(x′)dx′

)]

,

(3.46)
where A and B are arbitrary constants.
We can make some observations regarding the physical meaning of the WKB
solution. It consists of a wave ψ+(x) travelling in the +x direction, and a
wave ψ−(x) travelling in the −x direction The integrals in the exponents
imply that the phase of a wave going from x0 to x is proportional to the
summation of all the phases gained locally at x′ over the range from x0 to x.
In fact, this physical picture of the way the phase propagates is only valid if
the multiple reflections of the wave can be neglected, and in general within
the range of validity of this approximation.
Let us examine further the range of validity of (3.46). If we substitute the
approximate solution ψ+(x) in the Helmholtz equation (3.29), we get

d2ψ+

dx2
+ q(x)ψ+ = f 6= 0 , (3.47)

so we need to have
| f |≪| q(x)ψ+ | . (3.48)

In our case, q(x) is related to the refractive index by q(x) = k2(x) = k2
0n

2(x),
so the condition (3.48) is:

1

k2
0

∣

∣

∣

∣

∣

3

4n4

(

dn(x)

dx

)2

− 1

2n3(x)

d2n(x)

dx2

∣

∣

∣

∣

∣

≪ 1 . (3.49)

The refractive index, therefore, must be a slowly varying function of x for the
WKB approximation to hold. Also, we see that the solution becomes infinite
and the approximation is not valid whenever n(x) ≃ 0 (or s(x) ≃ 0. The
critical values x0 at which this happens is called the turning point. It can
be shown that, in the case of scattering at an interface between two media
with different refractive index, it corresponds to the case when the angle of
incidence is the critical angle θc (see section 2.1).

Part III - Classical Wave Scattering 45 O.Rath-Spivack@damtp.cam.ac.uk



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

3.4 Parabolic Equation

3.4 Parabolic Equation

Consider first a scalar plane wave ψ in free space (where we again assume
and suppress a time-harmonic variation e−iωt), with wavenumber k in a two-
dimensional medium (x, z). As before x is horizontal and z is vertical. So
ψ obeys the Helmholtz wave equation (∇2 + k2) ψ = 0. Suppose that ψ is
propagating at a small angle α to the horizontal, say

ψ(x, z) = eik(x cos α+z sin α) . (3.50)

Since sin α is small we can approximate

cos α =
√

1 − sin2 α ∼= 1 − sin2 α/2.

Now the fastest variation of ψ is close to the x direction, so define the ‘slowly-
varying’ part E of ψ by

E = ψe−ikx

so that
E ∼= eik(−x sin2 α/2+z sin α). (3.51)

(E is also referred to as the reduced wave.) It then follows that

∂E

∂x
=

i

2k

∂2E

∂z2
. (3.52)

This is one form of the parabolic wave equation in free space, and
holds for any superposition of plane waves travelling at small angles to the
horizontal. (Also referred to as the paraxial or forward scatter equation.)
It is straightforward to write the exact solution of (3.52) in terms of an initial
value.
Let E be a field obeying (3.52). Define the Fourier transform of E with
respect to z,

Ê(x, ν) =
1

2π

∫ ∞

−∞

E(x, z)eiνz dz. (3.53)

Taking the z-transform of (3.52) gives an equation for Ê,

∂Ê

∂x
= − iν2

2k
Ê. (3.54)

This has solution (in terms of E at vertical plane x = 0)

Ê(x, ν) = e−iν2x/2k Ê(0, ν). (3.55)

Note that equation (3.52) can also be derived by substituting the form E =
ψeikx into the Helmholtz wave equation for ψ, and neglecting terms of the
form ∂2E/∂x2.
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3.4 Parabolic Equation

We shall now consider the more general case of a harmonic source in a refrac-

tive medium. Let us consider a point source. It is natural then to use cylin-
drical coordinates (r, z, θ), and we shall restrict the problem to one where we
assume azimuthal symmetry, so effectively again 2-dimensional, as the field
is not dependent on θ. The Helmholtz equation is therefore

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

∂2ψ

∂z2
+ k2

0n
2ψ = 0 , (3.56)

where k0 = ω/c0 is a reference wave number, and n(r, z) = c0/c(r, z) is the
index of refraction of the medium.
Let us now rewrite the solution as

ψ(r, z) =
u(r, z)√

r
, (3.57)

so we can go on to solve the Helmholtz equation for the wave u(r, z), with
the cylindrical spreading removed. In the far field, we obtain

∂2u

∂r2
+

∂2u

∂z2
+ k2

0n
2u = 0 . (3.58)

If we now denote the operators appearing in this equation by

A =
∂

∂r
, B =

√

1

k2
0

∂2

∂z2
+ n2 , (3.59)

we can factor equation (3.58) as

(A − ik0B)(A + ik0B)u − ik0[A,B]u = 0 . (3.60)

For a range-independent medium, where the refractive index does not depend
on r, so n ≡ n(z), A and B commute and the last term in (3.59) is zero.
The remaining term corresponds to factorisation into one outgoing and one
incoming wave component. Selecting only the outgoing wave component we
obtain the one-way wave equation

Au = ik0Bu (3.61)

or

∂u

∂r
= ik0

(
√

1

k2
0

∂2

∂z2
+ n2

)

u (3.62)

In order to use this equation in practice, a further approximation is necessary,
to resolve the square root operator. If we write B as

B =
√

1 + b , (3.63)
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3.4 Parabolic Equation

where

b =
1

k2
0

∂2

∂z2
+ n2 − 1 , (3.64)

then, if b is small, we can Taylor expand B and keep the first 2 terms to give
the approximation

B ≃ 1 +
b

2
= 1 +

1

2k2
0

∂2

∂z2
+

n2 − 1

2
. (3.65)

Substituting this expression into (3.62) we obtain a parabolic equation for
the ’full’ wave in a refractive medium:

∂u

∂r
=

i

2k0

∂2u

∂z2
+

ik0

2
(n2 + 1)u . (3.66)

If, as in the free space case, we again separate a ’slowly-varying’ part E by
defining

E = u(r, z)e−ikr = ψ(r, z)
√

re−ikr , (3.67)

then the Helmholtz equation for E is

∂2E

∂r2
+ 2ik0

∂E

∂r
− k2

0E +
∂2E

∂z2
+ k2

0n
2E = 0 , (3.68)

and the operator A in the factorisation is

A =
∂

∂r
+ ik0 , (3.69)

leading to the more usual parabolic equation in a refractive medium:

∂E

∂r
=

i

2k0

∂2E

∂z2
+

ik0

2
(n2 − 1)E . (3.70)

It is seen here that the effect of the medium is contained in the second term
on the right hand side. We may loosely think of the first term on the right
as the diffraction term, and the second as the scattering term.
Other forms of the parabolic wave equation can be obtained by using different
approximations for the square root operator.
This parabolic wave equation can also be derived (rather non-rigorously), as
follows.
Again restricting ourselves to 2 dimensions, by regarding the wave as equiv-
alent to the far field of a cylindrically spreading wave in a 3-dimensional
medium with cylindrical symmetry, we shall take as starting point the same
Helmholtz equation (3.56). As we are in the far field of this wave, we can
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3.4 Parabolic Equation

replace the range r by the horizontal coordinates x, and take z as the vertical
coordinate. We then denote by E the slowly varying part of φ,

E(x, z) = ψ(x, z)
√

xe−ik0x. (3.71)

By substituting (3.71) into (3.56), and neglecting

1. all terms O
(

x− 3
2

)

and higher order, since we are in the far field,

2. the term ∂2E
∂x2 , which corresponds to slow variation across wavefronts

and can be assumed to be small,

we obtain again the parabolic equation

∂E

∂x
=

i

2k

∂2E

∂z2
+

ik

2
(n2 − 1)E. (3.72)
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4 Scattering from randomly rough surfaces

4.1 Rayleigh criterion

We considered in section 2.1 the scattering of plane waves from a flat bound-
ary between two media in 2 dimensions. This is an idealized case where
analytical solutions to the scattering problem are straightforward and well-
known. All real surfaces are rough. The scattering problem will then depend
on the ’roughness’ of the surface, and exact analytical solutions will not be
generally available. In this chapter we shall look at ways of characterizing
the surface, and consider some approximate solutions.
Suppose then that a time-harmonic plane wave

ψi = exp(ik[x sin θ − z cos θ])

is incident on a boundary which is now an irregular function of position.
(We suppress above and in what follows the harmonic time dependence).
We will assume here that the surface normal is well-defined and continuous
everywhere along the boundary. One of the earliest treatments of the rough
surface problem was by Rayleigh (1907), who considered the phase change
due to height differences in the case when the wavelength is small compared
with the horizontal scale of surface variation.

Calculating the phase difference ∆φ between wavefronts along two specularly
reflected rays as in the schematic diagram gives

∆φ = 2k(h2 − h1) cos θ

where h1, h2 are the heights at the two points of incidence. The interference
between these two rays depends on the magnitude of ∆φ with respect to
π. When the surface is nearly flat, ∆φ ≪ π and the two rays are in phase
(so interfere constructively), but for large deviations we may have ∆φ ∼ π,
giving destructive interference. This lead to the so-called Rayleigh criterion
for distinguishing different roughness scales, by which surfaces may be called
‘rough’ or ‘smooth’ according to whether ∆φ greater than or less than π/2.
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4.2 Surface Statistics

If this is averaged across the surface, then (h2 − h1) may be replaced by the
average r.m.s. surface height σ, which gives the surface r.m.s. deviation from
a flat surface, and is defined by σ2 =< h2(x) >. The Rayleigh criterion for
’smoothness’ is then expressed by

kσ cos θ <
π

4
. (4.1)

The quantity kσ cos θ is referred to as the Rayleigh parameter. Note that
this is dependent on angle of incidence, and implies that all surfaces become
‘smooth’ for low grazing angles. At optical wavelengths this is often reason-
able, but is less true, for example, for typical radar wavelengths of 3cm or
whenever the roughness length scale becomes comparable to a wavelength. In
that case the Rayleigh criterion fails to take into account ‘multiple scattering’
effects such as shadowing and diffraction.

4.2 Surface Statistics

When we go on to the study of the Helmholtz integral equation, one of
the main goals is to find dependence of averaged quantities on the statistics
of the surface. We therefore require a few concepts and results for surface
statistics and characterisation. (The necessary results are not extensive but
some familiarity with them is essential in the manipulation of the statistical
quantities which arise, see for example Papoulis [7].)
Let S be a continuous irregular boundary, varying about a plane at, say,
z = 0. We will assume that S can be represented as a function h(x) of x, so
that we can model this as a continuous stochastic process. We can think of
h as a member of a given ensemble of surfaces all having the same statistical
nature. All averages < h(x) > etc are averages over this ensemble. (The
angled brackets denote ensemble averages.)
Main assumptions: A number of assumptions are usually made about the
statistics of the rough surfaces. This is for analytical convenience, but in
most cases the assumptions are physically reasonable.

(1) The mean surface is flat, i.e. < h(x) >= constant for all x (so we can
choose < h >= 0).

(2) The surface h is statistically stationary in x, i.e. all statistics are
translationally invariant. Thus, in particular the autocorrelation function
< h(x)h(x + ξ) > is a function of the spatial separation ξ only, and is
constant in x.

(3) Surface heights are often assumed to be normally distributed (also
referred to as Gaussian distributed, or simply as normal), i.e. they have
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4.2 Surface Statistics

probability density function

f(h) =
1

σ
√

2π
e−h2/2σ2

. (4.2)

For normal random variables we have the following:
If h is normal, then so is h(x1) + h(x2), and

∫

h(x)dx over any interval.
All the one-point statistics are determined by the mean < h > and variance
< h2 >. For example we have < h2n+1(x) >= 0 for all n, and

< h4(x) >= 3σ2 < h2 > (4.3)

This can be seen by writing

< hn >=

∫

h′nf(h′)dh′

and integrating by parts, noting that in the case where f(h) is Gaussian
hf(h) = −σ2 d

dh
(f(h)).

The assumption of normal distributed heights is often physically reasonable;
many rough surfaces arise as the result of a large number of independent ran-
dom events ad are therefore normal by the Central Limit Theorem. However,
it is wrong for important cases such as the sea surface. (The sea typically
has sharper peaks than troughs, so the height distribution is not symmet-
ric about the mean, as would be required by the symmetry of the normal
distribution about the origin.)
There are three main measures with which to characterise roughness:

(1) r.m.s. height σ =
√

< h2(x) > (since we assume < h >= 0).

(2) Autocorrelation function (a.c.f)

ρ(x1, x2) =< h(x1)h(x2) >

By stationarity we can write this as a function of spatial separation only:

ρ(ξ) =< h(x)h(x + ξ) >

(3) Correlation length L: This is defined as the value of separation ξ
at which ρ(ξ) = e−1ρ(0). So large L corresponds to a slowly varying surface.
Instead of L we often use the mean slope, < |dh/dx| >. Clearly, slope scales
with 1/L.
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4.2 Surface Statistics

The most general of these measures is clearly the a.c.f. (2), since this deter-
mines both the correlation length and r.m.s. height. It provides information
about the spatial variation of the surface height, but is not related to the
distribution of surface heights. The a.c.f. can have various forms depending
on the nature of the irregularities.
Examples:

(a) Gaussian a.c.f.: ρ(ξ) = σ2e−ξ2/L2

(b) Fractal surface: ρ(ξ) = σ2e−|ξ|/L

(c) Fourth order power law: ρ(ξ) = σ2(1 + |ξ|)e−|ξ|/a

Unlike (b), the functions (a) and (c) are smooth at the origin, i.e. dρ/dξ = 0
at ξ = 0. Thus ‘under a microscope’ a surface of this type would appear
smooth. The autocorrelation function (c) often occurs in other contexts,
such as turbulence. We can assume that ρ is an even function, and falls from
its maximum σ at ξ = 0 to zero at large |ξ|.
We also need the roughness spectrum (or power spectrum), that is the
Fourier transform of the a.c.f.:

S(ν) =

∫ ∞

−∞

ρ(ξ)eiξνdξ

Finally in this section, the scattering solutions we seek are functions of the
rough surface, involving integrals and derivatives of h. We therefore often
need to evaluate the statistics of such functions, so we need some basic prop-
erties or rules for averaging.

(1) If F (x) is a deterministic function, and A(h) is any functional of the
surface h, then

〈
∫

A(h(x))F (x)dx

〉

=

∫

〈A(h(x))〉F (x)dx

This follows by linearity of the integral.

(2) A function which sometimes arises is the average of the product of h
and its slope:

〈

h(y)
dh(x)

dx

〉

=
dρ

dξ

∣

∣

∣

∣

ξ=y−x

.

In order to prove (2), write

h(y)h′(x) = h(y) lim
ǫ→0

1

ǫ
[h(x + ǫ) − h(x)]
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4.2 Surface Statistics

The result follows by averaging the right-hand-side and taking the average
inside the limit sign.

Numerical generation of random surfaces
It is instructive in the manipulation of averages to consider how a continuous
rough surface h(x) may be simulated. The simplest method is to represent
h(x) as a sum of sinusoidal components as follows:
Suppose we wish to represent an example of a surface with a given a.c.f. ρ(ξ).
The basic steps are:
(1) Define A(ν) =

√

B(ν) where B is the cosine transform of ρ,

B(ν) =
2

π

∫ ∞

−∞

ρ(ξ) cos(ξν) dξ.

(We can assume that B(ν) has compact support.)
(2) Choose some number N of equally-spaced frequencies νj = j∆ν, say,
where N and νN are large enough to resolve the features of B adequately.
(3) Choose N independent random phases φj, uniformly in [0, 2π).
(4) Define a function h(x) by

h(x) =
√

∆ν
N

∑

n=1

An sin(νnx + φn),

where An = A(νn). Then h is a continuous function of x with the required
statistics, as we can show. The random part of this definition is in the
choice of random phases (3). Each different set of phases gives rise to a new
realisation of a random process h, and averages can therefore be taken over
this ensemble.
First, it is easy to check that < h >= 0, and for large N the values h(x) are
normally distributed by the central limit theorem. To calculate the a.c.f. of
h, first write xn = νnx + φn, and yn = νny + φn. Then since φn is uniform in
[0, 2π), it is easy to show for example that

< sin xn > = 0

< sin xn cos xn > = 0

< sin2 xn > = 1/2

< sin xn sin yn > =
1

2
cos(νnξ)

where ξ = y − x.
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4.2 Surface Statistics

So the a.c.f. can be written

< h(x)h(y) > = ∆ν
N

∑

m,n=1

AmAn < sin xn sin ym >

= ∆ν
N

∑

n=1

A2
n < sin xn sin yn >

=
∆ν

2

N
∑

n=1

A2
n cos(νnξ)

∼=
∫ ∞

−∞

B(ν) cos(νξ) dξ

= ρ(ξ)

as required. Here we have used the fact that sin xn and sin ym are indepen-
dent.
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4.3 Properties and Approximate Solutions of Scattering
Equations

4.3 Properties and Approximate Solutions of Scatter-
ing Equations

We will consider here the main methods used in solving the Helmholtz inte-
gral equations in the case of scattering from a rough surface, and the prop-
erties of the solutions.
Suppose that a plane wave

ψi(x, z) = eik(x sin θ−z cos θ)

impinges on a random rough surface h(x). We will consider h to be a member
of a statistical ensemble, which is stationary with respect to translation in
x, with rms height < h2 >= σ2, autocorrelation function ρ(ξ). We usually
require:

the scattered field ψs;
the coherent (or mean) field < ψs >;
and the field coherence function

m(ξ) =< ψs(x)ψ∗s(y) > , where ξ = y − x ,

so that m(0) is the mean intensity of the scattered field. It is often most
important to find the angular spectrum |ψ̂(ν)|2 or its average < |ψ̂(ν)|2 >,
where

ψ̂(ν) =
1

2π

∫ ∞

−∞

ψs(x, 0)e−iνx dx (4.4)

i.e. the Fourier transform of ψs along the horizontal mean plane, z = 0. Each
Fourier component ψ̂(ν) will be scattered away from the surface z = 0 as
another plane wave

ψ̂(ν)eiqz

satisfying the Helmholtz equation. This gives q =
√

k2 − ν2, where we have
taken the positive (or positive imaginary) root to ensure that the scattered
field consists of outgoing waves.
The field at a point (x, z) in the medium can therefore be written

ψs(x, z) =

∫ ∞

−∞

ψ̂(ν)ei(νx+qz)dν (4.5)

General properties:
We can state some general properties of these quantities.
(1)Relation between m(ξ) and |ψ̂(ν)|2:
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4.3 Properties and Approximate Solutions of Scattering
Equations

Consider the autocorrelation of ψ̂. From (4.4) we obtain

〈

ψ̂(ν ′)ψ̂∗(ν)
〉

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

〈ψ(x)ψ∗(y)〉 e−iνx+iν′y dx dy. (4.6)

Make the changes of variables ξ = (x − y)/2, Y = (x + y)/2. This then
becomes

〈

ψ̂(ν)ψ̂∗(ν ′)
〉

=
1

π2

∫ ∞

−∞

∫ ∞

−∞

m(2ξ)e−i(ν+ν′)ξ−i(ν−ν′)Y dξ dY

=
2

π
δ(ν − ν ′)

∫ ∞

−∞

m(ξ)e−iνξ dξ. (4.7)

This is just 2/πδ(ν − ν ′) times the Fourier transform of m(ξ). Notice the
important corollary of this, that < ψ̂(ν)ψ̂(ν ′) >= 0 for ν 6= ν ′.

(2) Energy conservation, i.e. the average energy flux across a boundary in
one direction must equal the average energy flux at the same point in the
opposite direction. The averaged energy flux in a direction n was derived in
section 2.1, and is given by (equation (2.10)):

E(ψ, n) = −ρω

2
Im

{

ψ∗∂ψ

∂n

}

. (4.8)

For the incident plane wave then, the average energy flux in the direction
n = −z across some horizontal line is (equation (2.11)):

E(ψi, n) =
ρωk cos θ

2
, (4.9)

and for the scattered field (4.5), the average energy flux in the direction n = z
is

E(ψs(x, z)) =
ρωk

2

∫ ∞

−∞

|ψ̂(ν)|2qdν (4.10)

So energy conservation implies

cos θ =

∫ ∞

−∞

q|ψ̂(ν)|2 dν (4.11)

where q =
√

k2 − ν2.
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4.3 Properties and Approximate Solutions of Scattering
Equations

(3) The mean field is specular, i.e.

< ψs(x, z) >= Re(θ) eik[x sin θ+z cos θ] (4.12)

where the (generally unknown) constant Re is an ‘effective reflection coeffi-
cient’ which depends on the angle and the surface statistics. This result is a
generalised form of Snell’s law, and the mean transmitted field can be writ-
ten similarly as a plane wave at the Snell’s law angle. (Correspondingly, the
mean spectrum < ψ̂ > consists of a single delta-function peak.) The result
follows from the assumption that the rough surface is statistically stationary.
A corollary of this is that the mean of the full complex field shows no
backscatter, or indeed any scatter outside the specular direction. This may
initially surprising, but note that it does not apply to the mean amplitude
< |ψ̂| > or the mean intensity or energy.

We now consider the two simplifying regimes of small surface height or small
slope which allow approximate analytical solutions to be found.

(a) Small surface height kσ ≪ 1:
In this case perturbation theory can be applied. The method is essentially
to expand the functions appearing in the problem to form a simpler boundary
problem on the mean plane, i.e. on z =< h(x) >= 0.
We seek the solution for the scattered field ψs and its mean < ψs >. Suppose
that the surface obeys the Dirichlet condition, ψ(x, h) = 0. We proceed as
follows:

(1) Expand the boundary condition to order h. Thus we obtain

ψi(x, 0) + ψs(x, 0) + h(x)

(

∂ψi

∂z
+

∂ψs

∂z

)

= 0 + O(h2) (4.13)

using ψ = psii+ψs. Here and below, unless specified otherwise, the functions
are to be evaluated on the mean plane z = 0.

(2) Next, assume that the scattered field everywhere can be expanded in
powers of kh, say

ψs(x, z) = ψ0(x, z) + ψ1(x, z) + ψ2(x, z) + ... (4.14)

where ψn is of order O(hn) for all n, so that ψ0 is the known, deterministic
flat surface reflected field, and ψn is stochastic for n ≥ 1 since it depends on
the specific choice of surface h(x).

(3) Now truncate (4.14) at O(h), substitute into (4.13), and neglect terms
of order O(h2). This gives an approximate boundary condition which holds
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4.3 Properties and Approximate Solutions of Scattering
Equations

on the mean plane

ψi + ψ0 + ψ1 + h(x)

(

∂ψi

∂z
+

∂ψ0

∂z

)

= 0 (4.15)

where again all functions are evaluated at points (x, 0). In this equation the
third term ψ1 is the only unknown component, since the remaining functions
are the zero order (flat surface) forms, so we have an explicit approximation
to the solution along the mean plane.
The first two terms in (4.15) cancel, since they represent the total field which
would exist in the case of a flat surface, which vanishes by the Dirichlet
boundary condition. We can now equate terms of equal order. Equating
O(h) (first order) terms gives

ψ1 = −h(x)
∂(ψi + ψ0)

∂z

∣

∣

∣

∣

(x,0)

which gives

ψ1(x, 0) = −2h(x)
∂ψi

∂z
. (4.16)

This solves for ψ1 explicitly on the mean plane. From this we can obtain the
scattered field everywhere to O(h), using ψs = ψ0 + ψ1 + O(h2). Once ψ1 is
known on any plane we can split it into Fourier components, and propagate
these outwards (using radiation conditions to determine the direction):
Consider in particular the case of an incident plane wave, ψi = eik(x sin θ−z cos θ).
We then have

ψ1(x, 0) = −2h(x)ik cos θ eikx sin θ. (4.17)

Denote by ĥ the transform of h,

ĥ(ν) =
1

2π

∫ ∞

−∞

h(x)e−iνx dx ,

then, from (4.4) and (4.17) we get

ψ̂(ν) =
1

2π

∫ ∞

−∞

ψs(x, 0)e−iνx dx = −ik
cos θ

π
ĥ(ν − k sin θ) , (4.18)

so that

ψ1(x, z) = −ik
cos θ

π

∫ ∞

−∞

ĥ(ν − k sin θ) ei(νx+qz) dν (4.19)

where as before q =
√

k2 − ν2.
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4.3 Properties and Approximate Solutions of Scattering
Equations

Averaging:
The dependence of the field on the surface is now clear to first order in
surface height. Taking the average of (4.19) immediately gives the mean of
this perturbation as

< ψ1 >= 0

everywhere, since < h(x) >= 0, so that first order perturbation theory pre-

dicts no change in the coherent field. (Equivalently, the effective reflection
coefficient is the same to first order as the flat surface coefficient.) Although
we have examined the Dirichlet condition it holds for arbitrary boundary
conditions since the first order term is always linear in the boundary itself.

Angular spectrum:
Now consider the angular spectrum to find the scattered energy. For a plane
wave incident at angle θ on a given surface, the far-field intensity is given by
Iθ(ν) = |ψ̂(ν)|2, so from (4.4), (4.17) we have

〈

|ψ̂(ν)|2
〉

=

〈

k2 cos2 θ

π2

∫ ∞

−∞

∫ ∞

−∞

h(x)h(x′)ei(k sin θ−ν)(x−x′) dx′ dx

〉

.

(4.20)
Making the change of variables ξ = (x − x′), X = (x + x′), this becomes

〈

|ψ̂(ν)|2
〉

=
k2 cos2 θ

π2

∫ ∞

−∞

∫ ∞

−∞

ρ(ξ)ei(k sin θ−ν)ξ dξ dX

= 2
δ(ν)

π
k2 cos2 θ S(k sin θ − ν) (4.21)

where S is again the surface spectrum and δ is the delta-function.
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4.3 Properties and Approximate Solutions of Scattering
Equations

(b) Small surface slope:
We have been dealing with approximate solution in the case of small surface
height. Now suppose that the surface slopes are small, i.e. < |dh/dx| >≪ 1.
This approximation is used with the integral form of the wave equation (1.84),
so the scattered field at r is given by

ψsc(r) =

∫

S

ψ(r0)
∂G(r, r0)

∂n
− G(r, r0)

∂ψ

∂n
(r0)dr0 , (4.22)

where r0 is on the surface and ψ and ∂ψ/∂n are unknown. We note that
the use of this integral form implies integration over a closed surface, so will
introduce errors (due to the edges) when the surface is not infinite.
The unknowns are approximated by using the Kirchhoff approximation
(sometimes referred to as the tangent plane, or the geometrical optics so-
lution), which treats any point on the scattering surface as though it were
part of an infinite plane, parallel to the local surface tangent. We make the
following assumptions:

(1) that the surface can be treated as ‘locally flat’;
(2) and that the incoming field at each point is just ψi.

The second assumption neglects multiple scattering, which can give rise to
secondary illumination of any point on the surface.
Consider for simplicity the Dirichlet boundary condition, so that we are solv-
ing the integral equation

ψsc(rs) = −
∫

S

G(r, r0)
∂ψ

∂n
(r0)dr0 . (4.23)

Under the assumptions above, we can approximate ∂ψ/∂n at each point by
the value it would take for a flat surface with slope dh/dx:

∂ψ

∂n
∼= −2

∂ψi

∂n
. (4.24)

This neglects curvature and shadowing by other parts of the surface. The
field then becomes

ψs(r) = 2

∫

G(r, r0)
∂ψi

∂n
(r0)dr0. (4.25)

Similar formulae are easily obtained for Neumann condition and more gen-
erally an interface between two media.
When the surface is not perfectly reflecting, the normal derivative of the field
at the surface will be given by

∂ψ

∂n
∼= (1 − R(r0))

∂ψi

∂n
, (4.26)
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4.3 Properties and Approximate Solutions of Scattering
Equations

where R(r0) is the flat surface reflection coefficient; and the field at the
surface by:

ψ ∼= (1 + R(r0))ψi . (4.27)

If we further consider the far-field approximation, we can approximate the
argument of the free space Green’s function, k|r − r0| by

k|r − r0| ∼= kr − kr̂ · r0 , (4.28)

where r̂ is the unit vector in the direction of observation r. The derivative
of the Green’s function can then be approximated by

∂G(r, r0)

∂n
∼= − ieikr

4πr
(n · ksc)e

−iksc·r0 , (4.29)

where ksc = kr̂ is the wavevector of the scattered wave. Using these approx-
imations in equation (4.22), we obtain for the scattered field

ψsc(r) =
ieikr

4πr

∫

S

((Rk− − k+) · n)e−ik−·r0dr0 , (4.30)

where

k− = ki − ksc

k+ = ki + ksc .

If θ1 is the angle of incidence (measured from the normal), and θ2 and θ3 are,
respectively, the angle of the scattered wave with the normal, and the angle
of the scattered wave with the x-axis in the plane (x, y), then

ki = k(x̂ sin θ1 − ẑ cos θ1)

ksc = k(x̂ sin θ2 cos θ3 + ŷ sin θ2 sin θ3 + ẑ cos θ2) .
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4.3 Properties and Approximate Solutions of Scattering
Equations

We can now convert the integration in equation (4.30) to integration over
the mean plane of the surface, SM , by noting that an area element of the
rough surface, dr0, projects onto the mean plane of an area element of the
mean plane drM , with the area elements related by

ndr0
∼=

(

x̂
∂h

∂x0

− ŷ
∂h

∂y0

+ k

)

drM . (4.31)

The scattered field can therefore be written in the general form

ψsc(r) =
ieikr

4πr

∫

SM

(

a
∂h

∂x0

+ b
∂h

∂y0

− c

)

eik(Ax0+By0+Ch(x0,y0))dx0dy0 , (4.32)

where

A = sin θ1 − sin θ2 cos θ3

B = − sin θ2 sin θ3 (4.33)

C = −(cos θ1 + cos θ2) ;

and

a = sin θ1(1 − R) + sin θ2 cos θ3(1 + R)

b = sin θ2 sin θ3(1 + R) (4.34)

c = cos θ2(1 + R) − cos θ1(1 − R) .

Note that this approximation for the scattered field has been derived within
the far-field approximation, and for an incident plane wave. In order to make
analytical manipulations possible, further approximations are usually made.
Note: the following part of Ch. 4 is non-examinable.

In general, the reflection coefficient is a function of position on the surface.
We shall assume instead that R is constant. With this approximation, and for
C 6= 0, we can eliminate the terms involving partial derivatives of the surface
by performing a partial integration. Carrying out the integration with the
assumption of independent integration limits for x0 and y0, and taking the
surface to be of finite extent, defined by −X ≤ x0 ≤ X and −Y ≤ y0 ≤ Y ,
gives a scattered field of the form

ψsc(r) = − ieikr

4πr
2F (θ1, θ2, θ3)

∫

SM

eikφ(x0,y0)dx0dy0 + ψe , (4.35)

where the phase function φ(x0, y0) is

φ(x0, y0) = Ax0 + By0 + Ch(x0, y0) , (4.36)
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4.3 Properties and Approximate Solutions of Scattering
Equations

the angular factor F (θ1, θ2, θ3) is

F (θ1, θ2, θ3) =
1

2

(

Aa

C
+

Bb

C
+ c

)

, (4.37)

and the term ψe is given by

ψe(r) = − ieikr

4πr

[

ia

kC

∫

(

eikφ(X,y0) − eikφ(−X,y0)
)

dy0

+
ib

kC

∫

(

eikφ(x0,Y ) − eikφ(x0,−Y )
)

dx0

]

(4.38)

In the above approximation the angular factor depends on the boundary
conditions. The term ψe is often referred to as ’edge effects’, since it involves
the values of the phase function at the surface edges.

We can now calculate average quantities of the scattered field, when h(x, y)
is a random surface with some probability density f(h). The average of the
scattered field, i.e. the coherent field is given by

ψsc(r) = − ieikr

4πr
2F

∫

SM

∫ ∞

−∞

eikφ(x0,y0)f(h)dhdx0dy0 . (4.39)

Assuming stationarity, and using the explicit expression for the phase func-
tion given by equation (4.36), we obtain

ψsc(r) = − ieikr

4πr
2F f̂(kC)

∫

SM

eik(Ax0+By0dx0dy0 , (4.40)

where f̂(kC) is the Fourier transform of the probability density function,
with respect to the transform variable kC.
The average of the intensity, i.e. the angular spectrum, is given by

〈

|ψsc|2
〉

= 〈ψscψ∗sc〉 − 〈ψsc〉 〈ψ∗sc〉 . (4.41)

This expression is far more complicated than the equivalent one obtained in
the ’small height’ approximation, because the coherent field is now different
from zero. Further approximations will be necessary to obtain an expression
of practical use for the angular spectrum in the Kirchoff approximation.
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5 Wave Propagation through Random Media

References:

A. Ishimaru, Wave Propagation and Scattering in Random Media
B.J. Uscinski, Elements of Wave Propagation in Random Media

Remarks
This section concerns waves scattered by randomness or irregularities in the
medium through which they are propagating. In many situations the wave
speed varies randomly, for example in the atmosphere or the ocean. Some-
times this variation may be highly localized, such as a patch of turbulent air
(e.g. over a hot road) or bathroom glass. These effects cause focusing, some-
what like that of a lens, and produce regions of both high and low intensity.
(Familiar examples include the twinkling of stars, or the pattern of light in
a swimming pool.)
There are essentially two mechanisms which contribute to this:

(i) diffraction (distance effect): i.e. the evolution of an irregular wave
beyond a fixed plane. This allows focusing of rays as in a lens even when the
medium is homogeneous; and

(ii) scattering, i.e. the continuous evolution of phase with propagation
due to extended irregularities, causing bending of rays.
In an extended medium these effects of course occur simultaneously. We
will consider these mechanisms only for weakly scattering media. Roughly
speaking, ‘weak scattering’ corresponds to small angles of scatter, so that
a plane wave may become scattered into a narrow range of directions close
to the original direction. This allows us to use the parabolic wave equation,
derived in section 3.4, which was derived as a small angle approximation.

Throughout this section we will assume that the parabolic equation holds,
and that there is a definite predominant direction of propagation (which can
be taken to be horizontal). It will be helpful to have the exact solution of the
parabolic wave equation in free space, equation (3.52), in terms of an initial
value.
We shall first consider the case in which the random irregularities occur
within a thin layer.

5.1 Propagation beyond a thin phase screen

Suppose that we have initially a plane wave ψ = eikx of unit amplitude prop-
agating horizontally, so that the reduced wave, i.e. ψe−ikx, is just E(x, z) ≡ 1.
Suppose that E encounters a thin vertical layer in the region x ∈ [−ξ, 0], say,
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5.1 Propagation beyond a thin phase screen

in which the wave speed c(z) is slightly irregular. (This may represent for
example a jet of hot air, or a turbulent layer.)

Denote the refractive index n(z) = c0/c(z), where c0 is the background or
free wave speed. Write

n(z) = 1 + w(z) , (5.1)

where the function w(z) is small: w(z) ≪ 1. We will assume that w(z) is a
continuous random fluctuation, with mean zero, i.e. < w(z) >= 0 for all z,
stationary in z, and normally distributed.
Initial effect: In the assumption of weak scattering and for a thin enough
layer, the field will only suffer a phase change on going through the layer. If
a wave has wavenumber k before entering the layer, the wavenumber in the
layer will be given by kn(z) = k + kw(z), and the reduced wave will acquire
a phase

φ(z) = kξw(z), (5.2)

where ξ is the thickness of the layer.
Then E emerges from the layer with a pure phase change,

E(0, z) = eiφ(z) (5.3)

Evolution of the field and the moment equations

A primary aim of the study of random media is to examine the evolution
of the field E with distance beyond the layer and find its statistics. (There
are many reasons for this requirement: For example in ocean acoustics one
can almost never know the refractive index in detail, but statistical infor-
mation can help overcome communications and navigational problems, or
may be used for remote sensing of the environment. In other situations the
measurement devices themselves may be detecting time or spatial averages.)
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5.1 Propagation beyond a thin phase screen

We introduce here some of the basic quantities and ideas, that will be devel-
oped further for an extended random medium. One notion providing a pow-
erful tool for the analysis of wave statistics is that of the moment equations.
This is applicable particularly in the case of the extended random medium,
but best introduced first for the simpler case of propagation beyond a phase
screen. Suppose for example we wish to find the mean intensity of the field.
For a given medium it will not be possible to obtain a general solution for
the wavefield or its intensity as a function of position. However, it is found
that some of the statistical moments, such as field autocorrelation, them-
selves obey evolution equations. These take a relatively simple form since
the fluctuations in the medium have been ‘averaged out’, and they can be
solved or their solutions approximated analytically. We shall first consider
first and second moments.

Denote the first moment or mean field by

m1(x) = 〈E(x, z)〉 . (5.4)

This is a function of x only, by stationarity.
Similarly the second moment (transverse autocorrelation ) of the field is
defined as

m2(x, η) = 〈E(x, z)E∗(x, z + η)〉 (5.5)

so that the mean of the intensity I(x, z) = |E|2 can be written < I(x) >=
m2(x, 0).
We also denote the transverse autocorrelation ρ of the layer φ by

ρ(η) =< φ(z)φ(z + η) > (5.6)

with variance
σ2 = ρ(0) (5.7)

and the power spectrum

S(ν) =

∫ ∞

−∞

ρ(η)eiνη . (5.8)

The initial intensity (immediately beyond the layer) is unchanged, so that
< I(0, z) >≡ 1, and the initial mean field is

m1(0) =< eiφ(z) >= e−σ2/2 . (5.9)

(This is exact for the normal distribution as assumed here, in which case the
the probability density function of φ is

f(φ) =
1

σ
√

2π
e−φ2/2σ2

.
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5.1 Propagation beyond a thin phase screen

and approximate in general. It can be obtained from the definition

< eiφ >=

∫ ∞

−∞

eiφf(φ)dφ , (5.10)

or simply by expanding the exponential and averaging term by term,

< eiφ >= 1 + i < φ > − < φ2 > /2 − i < φ3 > /3+ ...) (5.11)

As the field evolves, the pure phase fluctuations which are imposed initially
become converted to amplitude variations. (In terms of ray theory, this
happens as the layer focuses or de-focuses the rays passing through it, and
the intensity changes with the ray density.)
This can be quantified roughly as follows:
At a small distance x beyond the layer, we can take a Taylor expansion of
the field E(x, z) about E(0, z) = eiφ(x), using (5.3) and the parabolic wave
equation (3.52):

E(x, z) ∼=
[

1 +
i

2k
x(iφ′′ − φ′2)

]

eiφ , (5.12)

where the prime denotes derivative, φ′ = dφ/dz etc., so that

I(x, z) ∼= 1 − x

k
φ′′ +

x2

4k2
(φ′′2 + φ′2) (5.13)

neglecting higher powers of x. This describes the initial mechanism for the
build-up of amplitude fluctuations across the wavefront. As mentioned above,
however, we can form evolution equations, i.e. differential equations govern-
ing the behaviour of the moments. These can be solved to find the far-field.
Although the first few moment equations are trivial in the case of propagation
beyond a layer we give them here as an introduction to the concept.

Evolution of the first moment (mean field):
By equation (5.9) we can write

< Ê(0, ν) > =

∫ ∞

−∞

m1(0) eiνz dz =
√

2π δ(ν) e−σ2/2.

Taking the average of (3.55) then gives

< Ê(x, ν) > =
√

2π δ(ν) e−iν2x/2k e−σ2/2,

so that (because of the delta function) < Ê(x, ν) >=< Ê(0, ν) > for all z,
i.e.

dm1

dx
= 0. (5.14)

so that the mean field is unchanged with distance.
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5.1 Propagation beyond a thin phase screen

Evolution of the second moment (vertical correlation of field):
We are also interested in mean intensity < I(x) >. Although we cannot
form an evolution equation for < I(x) > itself, we can do so for m2(x, η) and
obtain < I > by solving and setting η = 0.
The initial condition for m2 at x = 0 is given by

m2(0, η) =
〈

ei[φ(z1)−φ(z2)]
〉

where η = z1 − z2. Since φ is normally distributed, so is the difference
φ(z1) − φ(z2). The variance of this difference is

〈

[φ(z1) − φ(z2)]
2
〉

= 2
[

σ2 − ρ(η)
]

This gives the initial value

m2(0, η) = e−[σ2−ρ(η)]. (5.15)

Now consider the ‘transform’ moment M2 defined by

M2(x, ν1, ν2) =
〈

Ê(x, ν1)Ê
∗(x, ν2)

〉

.

By equation (3.54) we get

∂M2

∂x
=

i

2k
(ν2

2 − ν2
1) M2 (5.16)

However we can write M2 directly in terms of E, as

M2(x, ν1, ν2) =

∫ ∞

−∞

∫ ∞

−∞

〈E(x, z1)E
∗(x, z2)〉 ei(ν1z1−ν2z2) dz1 dz2

=

∫ ∞

−∞

∫ ∞

−∞

m2(x, η) ei(ν1−ν2)Y/2−i(ν1+ν2)η/2 dη dY (5.17)

where we have made the change of variables η = z1 − z2, Y = z1 + z2.
Evaluating the Y -integral in (5.17) gives

M2(x, ν1, ν2) =
√

2π δ(ν1 − ν2)

∫ ∞

−∞

m2(x, η) ei(ν1+ν2)η/2 dη (5.18)

so that M2 vanishes unless ν1 = ν2. Hence we see from equation (5.16) that
M2, and therefore m2, does not evolve with x, i.e.

∂M2

∂x
=

∂m2

∂x
= 0. (5.19)
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5.2 Propagation in an extended random medium

In particular the mean intensity remains constant. (It will be seen later that
this no longer holds for an extended random medium.) We therefore need
to go to higher moments to describe the intensity fluctuations which the eye
and most ‘square law’ detectors observe in waves propagating through an
irregular layer. Before doing that, we shall consider the evolution of the first
and second moments in an extended random medium.

5.2 Propagation in an extended random medium

Consider now the second mechanism which can produce field fluctuations,
that of extended refractive index irregularities. This is common in many
situations, e.g. underwater acoustic, or atmospheric radio wave propagation.
(Apart from any random irregularities there is often an underlying profile;
for example the ocean sound channel which causes upward refraction of ray
paths, confining sound to a region near the surface. This will not be treated
here.)

Consider again a 2-dimensional medium (x, z) and a time-harmonic wave
φeiωt. Let c(x, z) be the wave speed in the medium, and c0 be the ‘reference’
or average wave speed. (We will take this as constant here although the
actual profile may depend on depth.) Let k = ω/c0 be the corresponding
wavenumber.
Denote the refractive index by n(x, z) = c0/c(x, z). We can write

n = 1 + nd(z) + µW (x, z) (5.20)

where nd is the deterministic profile which, for example, allows for chan-
nelling, but which will be set to zero in the following derivation. µW is the
random part, where W has been normalised, so that

< W >= 0, < W 2 >= 1,
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5.2 Propagation in an extended random medium

and therefore µ2 is the variance of n. We will take W to be normally dis-
tributed, and stationary in x and z. We can then define the 2-dimensional
autocorrelation function

ρ(ξ, η) = µ2 〈W (x, z) W (x + ξ, z + η)〉 (5.21)

so that ρ(0, 0) = µ2. Note that ρ is assumed to decay to zero as ξ → ∞ or
η → ∞. (This is reasonable unless there is an underlying periodicity in the
medium.)
Further define the horizontal and vertical length scales H, L defined by

ρ(H, 0) = ρ(0, L) = µ2e−1.

There are thus at least three measures affecting the scattering in different
ways: µ2, H, and L. We will look at their various effects on the field.

Weak scatter assumptions: We make the following assumptions, which
correspond to different forms of weak scattering restrictions.

(1) Small variation of refractive index, µ2 ≪ 1 (or equivalently |n2−1| ≪
1).

(2) Small angles of scatter, expressed as

λ0 ≪ L

where λ0 is the reference wavelength, λ0 = 2π/k0.

(3) Weakly scattering medium, i.e. the phase fluctuations imposed over a
distance H are small,

k0µH ≪ 1

Note: It will be seen below that ‘stretching’ the scale size H increases the
scattering effect, whereas stretching the vertical scale L weakens it.

Under these weak scatter assumptions we shall be able to use the parabolic
equation for an extended random medium, which was derived in section 3.4:

∂E

∂x
=

i

2k

∂2E

∂z2
+

ik

2
(n2(x) − 1)E. (5.22)

We will go on now to consider effects on the propagating field. First we
investigate heuristically the effect of the horizontal length scale, and then
will form and solve the basic moment equations.
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5.2 Propagation in an extended random medium

Scattering effect of extended irregularities: For a given form of the
medium W and its statistics, what is the effect of changes in the length scale
H? For the moment we ignore diffraction and examine only the scattering
term in (5.22).
Consider therefore a vertical layer consisting of the region [x, x+d]. Subdivide
this into n thin subregions each of width ∆x = d/n.

Each of these subregions, for j = 1, ..., n, imposes a normally-distributed
phase change φj(z) with mean zero, whose variance is assumed to be given,
say:

〈φj〉 = 0,
〈

φ2
j(z)

〉

= δ2. (5.23)

So since we are ignoring diffraction the wave emerging at x + d has the form

E(x + d, z) = E(x, z) eiφ(z) (5.24)

where

φ(z) =
n

∑

i=1

φi(z).

Now, since φ is normally distributed, the mean of this phase modification is
〈

eiφ
〉

= e−<φ2>/2 (5.25)

so we want to examine the dependence of < φ2 > on H. Consider two
extreme cases:

(1) H small, say H ≤ ∆x: Then we can treat φi, φj as independent for
all i 6= j, so that

〈

φ2
〉

=

〈(

n
∑

i=1

φi(z)

)2〉

=
n

∑

i=1

〈

φ2
i (z)

〉

(5.26)

= nδ2
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5.2 Propagation in an extended random medium

so that scattering scales linearly with n

(2) H large, say H ≫ d: Then we can suppose that the medium at each
depth z is approximately constant over the interval [x, x + d],

φi(z) = φj(z) for all i, j,

so that
< φ2 > =

〈

[nφ1(z)]2
〉

= n2 δ2. (5.27)

Thus, increasing H magnifies the scattering effect of the medium.

Moment equations for an extended random medium

We now return to the problem of formulating and solving equations for the
evolution of the moments, analogous to those for the thin layer.
Define again the first moment

m1(x) = < E(x, z) > (5.28)

where this quantity is again independent of z by the stationarity of W . Thus
all z-derivatives dnm1/dzn vanish, so that all effects on the mean field are

due to the scattering term only (in eq. (5.22)).
In order to derive the first moment equation, consider first the phase change
φ(z) over a distance d > H due to the scattering term only:

E(x + d, z) = E(x, z) eiφ(z) (5.29)

where

φ(z) = k0µ

∫ x+d

x

W (x′, z) dx′. (5.30)

Square and average (5.30) to get

< φ2 > = k2
0µ

2

∫ x+d

x

∫ x+d

x

〈W (x′, z)W (x′′, z)〉 dx′ dx′′

= k2
0µ

2

∫ x+d

x

∫ x+d

x

ρ(x′ − x′′, 0) dx′ dx′′ ,

where we have used the definition (5.21) for the transverse autocorrelation
ρ(x′ − x′′, 0). We now make the change of variables

ξ = x′ − x′′

X = (x′ + x′′)/2
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5.2 Propagation in an extended random medium

and use d > H together with the fact that ρ(X, 0) ∼ 0 for large X to obtain

〈

φ2
〉 ∼= k2

0µ
2

∫ d

0

∫ ∞

−∞

ρ(ξ, 0) dξ dX.

Therefore
〈

φ2
〉

= k2
0µ

2dσ0 (5.31)

where

σ0 =

∫ ∞

−∞

ρ(ξ, 0) dξ.

Now, averaging (5.29) and using (5.31) gives

m1(x + d) ≡ 〈E(x + d, z)〉 ∼= m1(x) e−k2
0µ2dσ0/2 (5.32)

where we have made a further key assumption: the field becomes independent

of the medium, due to the cumulative effect of scattering., i.e. for large x

〈

E(x, z)eiφ(z)
〉

∼ 〈E(x, z)〉
〈

eiφ(z)
〉

.

It now follows directly from (5.32) that

m1(x) = e(−k2
0µ2σ0/2)x m1(0). (5.33)

Equivalently (or expanding m1(x+ξ) in ξ and comparing terms of O(ξ) with
a Taylor series) we can write

dm1

dx
= −(

1

2
k2

0µ
2σ0)m1 . (5.34)

Thus m1(x) decays exponentially and is purely real.
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5.2 Propagation in an extended random medium

Equation (5.34) for the evolution of the first moment due to the scattering
term only, is also valid for a more general incident wave in 3 dimension, and
amplitude different from 1, where the wave emerging from from a screen of
width d is given by:

E(x + ξ, y, z) = E(x, y, z)eφ(x+ξ,y,z) ,

and we have
∂m1

∂x
= −(

1

2
k2

0µ
2σ0)m1 . (5.35)

In general, we cannot disregard the ’diffraction’ term, and we need to use

∂E

∂x
=

i

2k0

(

∂2

∂z2
+

∂2

∂y2

)

E +
ik0

2
(n2 − 1)E . (5.36)

Therefore the equation for the first moment is

∂m1

∂x
=

i

2k0

(

∂2

∂z2
+

∂2

∂y2

)

m1 − (
1

2
k2

0µ
2σ0)m1 . (5.37)

Since the medium is stationary, and therefore m1 is independent of the trans-
verse directions y, z, this reverts to equation (5.35)above.
For higher moments, the ∇2 term must be retained, and the evolution equa-
tions can be solved by applying some small perturbations method, for exam-
ple Born or Rytov, but only for small intensity fluctuations. Such solutions
are of very limited use, since we know from experimental results and ob-
servations that even small randomness can give rise to very large intensity
fluctuations.
It is possible to find a solution that allows for large intensity fluctuations by
a local application of the method of small perturbation, and we shall derive
moment equations and their solutions in this way. Conceptually then, using
these moment equations to describe the evolution of the field is equivalent to
using repeated applications of the Born approximation for successive (thin)
screens.
Let us now consider the second moment

m2 =< E1(x, y1, z1)E
∗
2(x, y2, z2) > , (5.38)

where E1 and E2 represent E at two separate points in the same transverse
plane at x.
Let us derive first the ’diffraction’ term (or ’distance effect’). Consider

∂

∂z
E1E

∗
2 = E∗

2

∂E1

∂z
+ E∗

1

∂E2

∂z
.

Part III - Classical Wave Scattering 75 O.Rath-Spivack@damtp.cam.ac.uk



C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

5.2 Propagation in an extended random medium

The diffraction term for the field at a single point Ei is

∂Ei

∂x
= − i

2k0

(

∂2

∂y2
i

+
∂2

∂z2
i

)

≡ − i

2k0

∇2
TiEi . (5.39)

Therefore
∂

∂z
E1E

∗
2 = − i

2k0

(

E∗
2∇2

T1E1 − E1∇2
T2E

∗
2

)

,

and taking the ensemble average

∂

∂x
< E1E

∗
2 >= − i

2k0

(

∇2
T1 −∇2

T2

)

< E1E
∗
2 > . (5.40)

We shall now consider the ’scattering’ effect due to a screen of thickness d,
so how the second moment < E1E

∗
2(x) > evolves onto < E1E

∗
2(x + d) > .

We have:
E1E

∗
2(x + d) = E1E

∗
2(x)ei[φ(x+d,y1,z1)−φ(x+d,y2,z2)] (5.41)

and

E1E
∗
2(x + d) = E1E

∗
2(x) − ∂

∂x
< E1E

∗
2 > d , (5.42)

so

E1E
∗
2(x+d) = E1E

∗
2(x)[1+i(φ(y1, z1)−φ(y2, z2))

1

2
(φ(y1, z1)−φ(y2, z2))

2+... ,

(5.43)
where we have equated (5.41) and (5.42), and expanded the exponent. Taking
the ensemble average, and remembering that < φ >= 0, we have

∂

∂x
< E1E

∗
2 > d = −1

2

〈

(φ(y1, z1) − φ(y2, z2))
2
〉

< E1E
∗
2 > . (5.44)

Now consider
〈

(φ1 − φ2)
2
〉

=
(

< φ2
1 > −2 < φ1φ2 > + < φ2

2 >
)

, (5.45)

where φ1 = φ(yi, zi) In the same way as we previously derived < φ2 >,
(equation (5.31)), we can derive

〈φ1φ2〉 ∼= k2
0µ

2

∫ d

0

∫ ∞

−∞

ρ(ξ, 0) dξ dX.

Therefore
〈φ1φ2〉 = k2

0µ
2dσ0 (5.46)

where

σ0 =

∫ ∞

−∞

ρ(ξ, 0) dξ,
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5.2 Propagation in an extended random medium

and ρ is the normalised autocorrelation function of the refractive index fluc-
tuation:

ρ(ξ, η, ζ) =
1

µ2
< W (x1, y1, z1)W (x2, y2, z2) > .

We can now use (5.46) in (5.45) to obtain

〈

(φ1 − φ2)
2
〉

= 2k2
0µ

2d(σ(0, 0) − σ(η, ζ)) . (5.47)

Therefore the evolution due to the scattering only is

∂

∂x
< E1E

∗
2 >= −k2

0µ
2(σ(0, 0) − σ(η, ζ)) < E1E

∗
2 > (5.48)

Now, combining (5.48) and (5.40), we obtain the second moment equation

∂m2

∂x
= − i

2k0

(

∇2
T1 −∇2

T2

)

m2 − k2
0µ

2(σ(0, 0) − σ(η, ζ))m2 . (5.49)

Let us consider the fourth moment defined by

m4 =< E1E
∗
2E3E

∗
4 > . (5.50)

We can derive an equation for the fourth moment in the same way as before:
The ’distance’ effect:

∂

∂x
(E1E

∗
2E3E

∗
4) =

∂E1

∂x
(E∗

2E3E
∗
4)+E1

∂E2

∂x
(E3E

∗
4)+E1E

∗
2

∂E3

∂x
(E∗

4)+E1E
∗
2E

∗
3

∂E4

∂x
.

(5.51)
But

∂Ei

∂z
= − i

2k0

∇2
TiEi ,

therefore:

∂

∂x
< (E1E

∗
2E3E

∗
4) >=

i

2k0

(∇2
T1 −∇2

T3 + ∇2
T3 −∇2

T4) < (E1E
∗
2E3E

∗
4) > .

(5.52)
The ’scattering’ effect:
We have

(E1E
∗
2E3E

∗
4)(x + d) = (E1E

∗
2E3E

∗
4)(x)eφ1−φ2+φ3−φ4 , (5.53)

and

(E1E
∗
2E3E

∗
4)(x + d) = (E1E

∗
2E3E

∗
4)(x) +

∂(E1E
∗
2E3E

∗
4)

∂x
d . (5.54)
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5.2 Propagation in an extended random medium

Equating (5.53) and (5.54), and expanding the exponent, we get

(E1E
∗
2E3E

∗
4)(x+d) = (E1E

∗
2E3E

∗
4)(x)[1+i(φ1−φ2+φ3−φ4)−

1

2
(φ1−φ2+φ3−φ4)

2+...

(5.55)
So, truncating the expansion and taking the ensemble average, we have

∂
∂x

< E1E
∗
2E3E

∗
4 > d = −1

2
(φ1 − φ2 + φ3 − φ4)

2 < E1E
∗
2E3E

∗
4 >

= −1

2

(

4 < φ4 > +2 < φ1φ3 > +2 < φ2φ4 > (5.56)

− 2 < φ1φ2 > −2 < φ1φ4 > −2 < φ2φ3 > −2 < φ3φ4 >) < E1E
∗
2E3E

∗
4 > ,

where we have used
< φiφj >=< φjφi >

and
< φiφi >=< φ2

i > .

Now, proceeding as before, and remembering that (equation (5.46)),

< φiφj >= k2
0µ

2σ(ηj, ζj)d , (5.57)

we can combine the ’distance’ and ’scattering effects to obtain the fourth
moment equation

∂m4

∂x
= − i

2k0

(∇2
T1 −∇2

T3 + ∇2
T3 −∇2

T4)m4

− k2
0µ

2σ(0, 0)(2 + σ13 + σ24 − σ12 − σ14 − σ23 − σ34)m4 .(5.58)

This is more usefully often written in the slightly different form:

∂m4

∂x
= − i

2k0

(∇2
T1 −∇2

T3 + ∇2
T3 −∇2

T4)m4

− β(2 + f13 + f24 − f12 − f14 − f23 − f34)m4 , (5.59)

where
β = k2

0µ
2σ(0, 0) (5.60)

and
fi,j = σ(yi − yj , zi − zj)/σ(0, 0) . (5.61)

The quantity β defined above is the so-called attenuation coefficient, which
is a useful parameter of physical significance. β is of course related to the
attenuation of the mean field < E > by the medium, since

< E >= E0e
−β/2 ,
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5.2 Propagation in an extended random medium

and to the ’unscattered’ power < E >2 by

< E >2= E0e
−β , (5.62)

It has a further physical significance in terms of the mean free path of a
photon in a random medium. Suppose the incident (electromagnetic) field is
regarded as a unidirectional flux of photons. The incident field is attenuated
exponentially like

ex/xm

as it passes through the medium, where xm is the mean free path of the
photon in the medium. The number of photons in the unscattered flux is
proportional to the unscattered power, so, comparing with (5.62), we see
that β−1 may be interpreted as the mean free path of a photon in a random
medium.

Let us now find the solutions for the second and fourth moment.

Solution of the second moment equation
It is convenient to use the set of variables

ξ = x1 − x2 , η = y1 − y2 , ζ = z1 − z2

X = x1 + x2 , Y = y1 + y2 , Z = z1 + z2 (5.63)

and to set
< E1E

∗
2 > eβx = u(βx, η, ζ) . (5.64)

The equation for the second moment then can be written as

∂u

∂(βx)
= − 2i

k0β

(

∂2u

∂Y ∂η
+

∂2u

∂Z∂ζ

)

+
σ(η, ζ)

σ(0, 0)
u . (5.65)

It is convenient to transform this equation using the transform pair

u(Y, η;Z, ζ) =

∫ ∫

û(η, ζ; ǫ1, ǫ2)e
i(ǫ1Y +ǫ2Z)dǫ1dǫ2 ,

û(η, ζ; ǫ1, ǫ2) =
1

2π

∫ ∫

u(Y, η;Z, ζ)e−i(ǫ1Y +ǫ2Z)dY dZ .

to obtain
∂û

∂(βx)
= B1

∂û

∂η
+ C1

∂û

∂ζ
+

σ(η, ζ)

σ(0, 0)
û , (5.66)

where
B1 = 2ǫ1/kβ , C1 = 2ǫ2/kβ .
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5.2 Propagation in an extended random medium

The general solution of (5.66)is

û = û0(η+B1βx, ζ+C1βx) exp

[
∫ βx

0

σ(η + B1(βx − βx′); ζ + C1(βx − βx′))

σ(0, 0)
d(βx′)

]

,

(5.67)
where û0 is the solution of the transform equation (5.66) when σ(ξ, η, ζ) = 0.
The second moment then is given by the inverse transform, which, in our
case where Y = Z = 0, reduces to

u(Y, η;Z, ζ) =

∫ ∫

ûdǫ1dǫ2 . (5.68)

If the incident field is a plane wave with amplitude E0 at x = 0 and propa-
gating parallel to the x-direction, then

û0 = δ(ǫ1)δ(ǫ2) (5.69)

and from (5.67) and the inverse transform we have:

u = E2
0 exp

[
∫ βx

0

σ(η; ζ)d(βx′)

σ(0, 0)

]

= E2
0 exp

[

−βx

(

1 − σ(η; ζ)

σ(0, 0)

)]

. (5.70)
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5.2 Propagation in an extended random medium

Solution of the fourth moment equation
We shall now seek a solution of equation (5.59):

∂m4

∂x
= − i

2k0

(∇2
T1 −∇2

T3 + ∇2
T3 −∇2

T4)m4

− k2
0µ

2σ0(2 + f13 + f24 − f12 − f14 − f23 − f34)m4 , (5.71)

We shall follow similar steps to those used to find a solution of the second
moment equation, so we shall first make an appropriate change of variables,
then use Fourier transforms.
Denote by L the scale size of the inhomogeneities transverse to the direction
of propagation x, and define a new variable, scaling x by the so-called ’Fresnel
length’ kL2:

X =
x

kL2
(5.72)

Introduce also the following scaled variables:

ζa = (z1 − z2 − z3 + z4)/2L

ζb = (z1 + z2 − z3 − z4)/2L

ζc = (z1 − z2 + z3 − z4)/2L (5.73)

Z = (z1 + z2 + z3 + z4)/L

and analogous ones relating in the y coordinate:

ηa = (y1 − y2 − y3 + y4)/2L

ηb = (y1 + y2 − y3 − y4)/2L

ηc = (y1 − y2 + y3 − y4)/2L (5.74)

Y = (y1 + y2 + y3 + y4)/L

We shall also define the parameter

Γ = k3µ2σ0L
2 (5.75)

For simplicity, we shall restrict the following to 2 dimensions, in the plane
(x, z). It will be straightforward to extend the final result to include the y
coordinate. In this case then, and with the new variables defined above, the
fourth moment equation becomes

∂m4

∂X
= −i

(

∂2m4

∂ζa∂ζ2

+
∂2m4

∂ζc∂Z

)

− 2Γ(1 − g(ζa, ζb, ζc))m4 , (5.76)

We shall now seek the solution in 2D, for a plane wave of unit amplitude
normally incident onto the half-space x > 0. Equation (5.71) then simplifies
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5.2 Propagation in an extended random medium

further, since in this case the 4th moment is independent of the transverse
direction Z, and all the field quantities in (5.76) can be written as functions
of 2 new variables only. We have:

∂m4

∂X
= −i

∂2m4

∂ζa∂ζ2

− 2Γ(1 − g(ζa, ζb))m4 , (5.77)

where now

g = f(ζa) + f(ζB) + −1

2
f(ζa + ζb/2) − 1

2
f(ζa − ζb/2)

Similarly to the procedure followed to find the solution for the second mo-
ment, set

m4e
2ΓX = m ,

then use this in (5.77), and multiply the resulting equation by e−2ΓX , to
obtain

∂m

∂X
= −i

∂2m

∂ζa∂ζ2

+ 2Γgm , (5.78)

Again we transform this equation using Fourier transforms:

M =
1

2π

∫ ∫

m(ζa, ζb, X)e−i(νaζa+νbζb)dζadζb ,

G =
1

2π

∫ ∫

g(ζa, ζb)e
−i(νaζa+νbζb)dζadζb ,

and obtain

∂M

∂X
= iνaνbM + 2Γ

∫ ∫

G(νa − ν
′

a, νb − ν
′

b)M(ν
′

a, ν
′

b, X) (5.79)

In order to solve this integrodifferential equation, we shall now represent M
as a series:

M =
∞

∑

n=0

Mn , (5.80)

where
M0 = M(νa, νb, 0) = δ(νa)δ(νb) , (5.81)

which we take as the initial condition for (5.79). Using now the series (5.80)
in (5.80) gives:

∂Mn

∂X
= iνaνbMn + 2Γ

∫ ∫

G(νa − ν
′

a, νb − ν
′

b)Mn−1(ν
′

a, ν
′

b, X) (5.82)
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5.2 Propagation in an extended random medium

We can solve (5.82) starting from M1:

∂Mn

∂X
= iνaνbMn + 2ΓG(νa, νb) , (5.83)

with initial condition M1(νa, νb, 0) = 0. This has solution

M1(νa, νb, X) = 2Γ

∫ X

0

G(νa, νb)e
νaνb(X−X1)dX1 (5.84)

Now we can use M1 to solve for M2:

∂M2

∂X
= iνaνbM2 + 2Γ

∫ ∫

G(νa − ν
′

a, νb − ν
′

b)M1(ν
′

a, ν
′

b, X)dν
′

adν
′

b (5.85)

with initial condition M2(νa, νb, 0) = 0. This has solution

M2(νa, νb, X) =

(2Γ)2

∫ X

0

∫ ∞

−∞

∫ ∞

−∞

G(νa − νa1
, νb − νb1)M1(νa1

, ν
′

b, X2)e
iνaνb(X−X2)dX2dνa1

dνb1

= (2Γ)2

∫ X

0

∫ X2

0

∫ ∞

−∞

∫ ∞

−∞

G(νa − νa1
, νb − νb1)G(νa − νa1

, ν
1
b,X2) ×

eiνaνb(X−X2)+iνa1
νb1

(X2−X1)dX2dνa1
dνb1

and the nth term in the series is:

Mn(νa, νb, X) = (2Γ)n

∫ X

0

∫ Xn

0

...

∫ X2

0

∫ ∞

−∞

...

∫ ∞

−∞

G(νa1
, νb1)

× G(νa2
− νa1

, νb2 − νb1)

× G(νa3
− νa2

, νb3 − νb2)

.

.

.

× G(νa − νan−1
, νb − νbn−1

)

× ei(νa1
νb1

(X2−X1)+νa2
νb2

(X3−X2)+...+νaνb(X−Xn)

× dνa1
...dνan−1

dνb1...dνbn−1
dX1...dXn

Replacing all the terms G by their inverse transform and carrying out all the
possible integrals gives:

Mn(νa, νb, X) =
(2Γ)n

(2π)2n+2

∫ X

0

∫ Xn

0

...

∫ X2

0

∫ ∞

−∞

...

∫ ∞

−∞

n
∏

j=1

g(ζa1
, ζb + Qj)

× eiζaj
(νaj

−νaj−1
)−iνbζb

× dζbdζa1
...dζan

× dνa1
...dνan−1

dX1...dXn ,
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5.2 Propagation in an extended random medium

where

Qj = (νa(X − Xn) + νan−1
(Xn − Xn) + ... + νaj

(Xj+1 − Xj)) . (5.86)

It is useful to interpret the subscripts n as the number of times that the
field is scattered, contributing to a given term in the series, Mn. The ”single
scatter” approximation then corresponds to taking just the first term in the
series, which is

M1(νa, νb, X) = 2Γ

∫ X

0

G((νa, nub)e
i(νaνb(X−X1)dX1 (5.87)

and we recover the Born approximation.

In order to obtain higher order terms in the sum, further approximations are
necessary, which of course involve further errors, beyond those incurred in
truncating the series.
Because of this, and because of the quite complicated analytical form of
the higher order corrections, which do not readily yield physical insight,
calculations are most usefully carried out using numerical approximations.
We can write the equation for the fourth moment (equation (5.77)) in terms
of operators as:

∂m4

∂X
= (A(X) + B(Γ, X)) m4 , (5.88)

where

A = ı
∂2

∂ζa∂ζb

; B = −2Γ(1 − g(ζa, ζb))m . (5.89)

We can write C = A + B. Difficulties can arise in the numerical solution for
C, particularly for large values of Γ, when semi-discretization leads to a stiff
system of differential equations. Furthermore, since there are two transverse
variables, the matrices which operate on this system are of order N4, where
N is the number of points in the discretization along each axis.
The formal solution of equation (5.88) over the range (X,X + ∆X) is

m4(ζa, ζb, X + ∆X) = e
R X+∆X

X
C(Γ,X′)dX′

m4(ζa, ζb, X) . (5.90)

In the case of a plane wave, C does not vary with X, so
∫

CdX = ∆XC

and the exact formal solution is

m4(ζa, ζb, X + ∆X) = e∆X(A+B)m4(ζa, ζb, X) (5.91)

=

(

1 + ∆X(A + B) +
(∆X)2

2
(A + B)2 + ...

)

m4(ζa, ζb, X).
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5.2 Propagation in an extended random medium

We first approximate this with the ’operator splitting’ solution given by

m4(ζa, ζb, X + ∆X) = e∆XAe∆XB)m4(ζa, ζb, X) (5.92)

=

(

1 + ∆XA +
(∆X)2

2
A2 + ...

) (

1 + ∆XB +
(∆X)2

2
B2 + ...

)

m4(ζa, ζb, X).

This is exact only if the operators A and B commute. We can see, by
expanding the terms in (5.91) and comparing with (5.92),that the step-wise
error in (5.92) is O[(∆X)3]. However, the overall accuracy depends on the
degree of commutativity between A and B in the strong operator topology
or, in other words, on the quantity ‖ (AB − BA)m4 ‖. This quantity is
indeed very small, so the method is very accurate.

This operator splitting can be applied when the irregularities in the medium
have any given autocorrelation function with an outer scale, even if it is
range-dependent.

The method is unconditionally stable and convergent, and can be applied
even when there is strong scattering.

The method allows comparison of analytical and numerical intensity fluctu-
ation spectra over a wide range of Γ and X.

The scintillation index

The scintillation index S2
I is the normalised variance (sometimes referred to

as ’mean square’) of the intensity fluctuations:

S2
I =

< I2 > − < I >2

< I >2
, (5.93)

where the intensity I is given by

I = EE∗ .

S2
I is a measure of the fluctuations of the received signal by most devices,

and is of course a fourth moment of the field.
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6 Electromagnetic scattering in layered me-

dia

We derived in chapter 1 the time-dependent wave equation for electromag-
netic waves in free space, equation (1.39), and the corresponding Helmholtz
equation for time-harmonic electromagnetic waves, equation (1.42). We shall
now extend these results to a general medium, and apply them to typical
scattering problems.
If the medium is anisotropic, then the permittivity ǫ and the permeabil-
ity µ are 2nd rank tensors, because the medium has different propagation
characteristics along different axes. If the medium is inhomogeneous, the
permittivity and permeability are space-dependent. Therefore, for a gen-
eral anisotropic, inhomogeneous medium, with a source induced by a current
density J, the second and third Maxwell equations are

∇× E = − ∂

∂t
µ̄(x, y, z) · H (6.1)

∇× H =
∂

∂t
ǭ(x, y, z) · E + J (6.2)

and in this case ǭ(x, y, z) and µ̄(x, y, z) do not commute with the ∇ operator.
For time-harmonic waves, where the time dependence is given by eiωt, then
we shall have reduced (Helmholtz) wave equations given by:

∇× µ̄−1 · ∇ × E − ω2ǭ · E = iωJ (6.3)

∇× ǭ−1 · ∇ × H − ω2µ̄ · H = ∇× ǭ−1 · J . (6.4)

Where, to obtain the Helmholtz wave equation for E, we have taken ∇× µ̄−1

of (6.1) and used (6.2); and similarly to obtain the Helmholtz wave equation
for H, we have taken ∇× ǭ−1 of (6.2) and used (6.1).
For an inhomogeneous, isotropic medium, these reduce to

∇× µ−1 · ∇ × E − ω2ǫE = iωJ (6.5)

∇× ǫ−1 · ∇ × H − ω2µH = ∇ǫ−1J . (6.6)

If we have plane polarised waves, i.e. TE or TM waves, we can see that the
wave propagation problem will always be described by a system of coupled

vector equations in the case of an inhomogebeous anisotropic medium, whilst
it will be possible in general for an isotropic medium to choose a coordinate
system in which wave propagation is described by a system of six uncoupled

scalar equations.
If the medium is anisotropic, but homogeneous, TE and TM waves are, in
general, also decoupled. However, in the presence of a planar interface they
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will be coupled to each other at the interface; an incident TE wave may
generate both TE and TM waves, and propagation has to be treated by
vector equations. This is also the case when a polarised wave travelling in a
homogeneous isotropic medium is scattered by a non-planar surface.
In particular, for a homogeneous, isotropic medium we have:

∇×∇× E − ω2ǫµE = iωµJ , (6.7)

which we can write as

∇2E + k2E = −iωµJ − iωµ
1

k2
∇∇ · J , (6.8)

by using the vector identity

∇×∇× E = −∇2E + ∇∇ · E (6.9)

and the fact that (from Maxwell equations and the continuity equation)

∇ · E =
ρ

ǫ
=

∇ · J
iωǫ

.

We can use the identity operator Ī to write (6.8) as

∇2E + k2E = −iωµ

[

Ī +
∇∇
k2

]

· J . (6.10)

This is a system of three scalar equations, each of which can be solved using
the free space Green’s function G0(r

′−r), once we interpret −iωµ
[

Ī + ∇∇
k2

]

·J
as a source term. This gives the vector solution

E(r) = iωµ

∫

G0(r
′ − r)

[

Ī +
∇′∇′

k2

]

· Jdr′ . (6.11)

It can be proven (using vector identities) that equation (6.11) can also be
written as

E(r) = iωµ

∫

J ·
[

Ī +
∇′∇′

k2

]

G0(r
′ − r)dr′ , (6.12)

or, more compactly,

E(r) = iωµ

∫

J · Ḡ(r′, r) dr′ , (6.13)

where

Ḡ(r′, r) =

[

Ī +
∇′∇′

k2

]

G0(r
′ − r) (6.14)
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is a dyad known as the dyadic Green’s function for the electric field in an
unbounded, homogeneous medium.
Note that (6.14) has a singularity of order 1

|r′−r|3
when r → r′, so due care

must be taken in evaluating the integral. It is useful, in this respect, to define
the free space Green’s function, in terms of its Fourier transform G0(|bfk)

Ĝ0(r
′, r) =

1

(2π)3

∫

eiK·r′−rG0(k)dk , (6.15)

and work in the k domain.

A different approach is usually more suited to polarised waves in a layered
medium.
Let’s first consider linearly polarised TE waves (so, e.g., E = ŷEy ≡ Ey in an
isotropic, inhomogeneous medium where the permittivity and permeability
vary in one direction only, e.g. ǫ = ǫ(z) and µ = µ(z).
The Helmholtz equation then becomes

µ∇× µ−1∇× Ey − ω2ǫµEy = iωµJ , (6.16)

Using the vector identity (6.9) as before, and noting that from Maxwell
equations we have in this case

∇ · D = ∇ · ǫE =
∂

∂y
ǫ(z)Ey = 0 ,

so ∂Ey

∂y
= 0, the Helmholtz equation reduces further to

[

∂2

∂x2
+ µ(z)

∂

∂z
µ−1(z)

∂

∂z
+ ω2µǫ

]

Ey = 0 (6.17)

TE waves can be characterised in an analogous manner by the Hz component
of the magnetic field, Hz, which obeys the equation

[

∂2

∂x2
+ µ(z)

∂

∂z
µ−1(z)

∂

∂z
+ ω2µǫ

]

µHz = 0 , (6.18)

where we have used the fact that, for TE waves and a medium with spatial

dependency in the z-direction only, and ∂2Ey

∂y2 = 0

Similarly, for TM waves we have:

[

∂2

∂x2
+ µ(z)

∂

∂z
µ−1(z)

∂

∂z
+ ω2µǫ

]

Ey = 0 , (6.19)
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and we recover the result that TE and TM waves are decoupled in a planar,
1-dimensional inhomogeneity.

The solutions to each scalar equation (6.17) and (6.18) must have a depen-
dency in the x-direction of the form e±kxx for all z. Considering them together
as a system of equations, we can write the solution in the form

[

Ey

Hy

]

=

[

ey(z)e±ikxx

hy(z)e±ikxx

]

(6.20)

for all z. Since the medium is translationally invariant (i.e. the properties
of the medium only vary in the z-direction), the solution for all z must have
the same phase variation in the x-direction, and (6.17) and (6.18) become
ordinary differential equations:

[

µ(z)
d

dz
µ−1(z)

d

dz
+ ω2µǫ − k2

x

]

ey = 0 , (6.21)

[

ǫ(z)
d

dz
ǫ−1(z)

d

dz
+ ω2µǫ − k2

x

]

hy = 0 , (6.22)

which corresponds to a one-dimensional problem, to be solved with appropri-
ate boundary conditions across any interfaces present in the medium. When
ǫ and µ are function of z, the solution to (6.21) can be found numerically,
e.g. with a finite difference method.
If ǫ and µ are constant, the solution will be a linear superposition of ey(z)e±ikzz,
where kz = (ω2µǫ − k2

x)
1/2.

In this case, the second order ODE derived above can be converted into a
first order differential equation.

To illustrate this, let’s take the ODE that governs the propagation of TM
waves:

[

ǫ(z)
d

dz
ǫ−1(z)

d

dz
+ k2

z

]

φ = 0 , (6.23)

and define a new function

ψ =
1

iωǫ

d

dz
φ . (6.24)

Then equation (6.23)becomes

d

dz
ψ = − k2

z

iωǫ
φ . (6.25)

Then, equations (6.24) and (6.25) can be written in matrix form as

d

dz
V = Ā · V , (6.26)
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where Vt = [φ, ψ] is the vector describing the state of the system, and the
matrix Ā is given by:

Ā =

[

0 iωǫ
ik2

z

ωǫ
0

]

(6.27)

When ǫ and kz are constant, (6.26) has a closed form solution. In this case,
let

V = eλzV0 . (6.28)

Equation (6.26) then becomes:

(Ā − λĪ) · V0 = 0 . (6.29)

For non trivial V0, the determinant Ā− λĪ has to be zero, giving λ = ±ikz.
Hence

V(z) = C+e±ikzzc+ + C−e±−ikzzc− , (6.30)

where c± are eigenvectors corresponding to the eigenvalues ±ikz.
Since Ā is not symmetric, nor Hermitian, these eigenvectors need not be
orthogonal, but the eigenvectors c± can be normalised if necessary. The
solution (6.30) can also be expressed in matrix form as

V(z) = c̄ · e±iK̄zz · C , (6.31)

where
Ct = [C+ C+] , (6.32)

e±iK̄z =

[

eikzz 0
0 e−ikzz

]

(6.33)

Now, using the fact that c̄−1 · c̄ = Ī, we can rewrite (6.31) as

V(z) = c̄e±iK̄(z−z′) · c̄−1 · V(z′) (6.34)

If we define
S̄(z, z′) = c̄e±iK̄(z−z′) · c̄−1 , (6.35)

we can write the solution as

V(z) = S̄(z, z′) · V(z′) . (6.36)

The matrix S̄(z, z′) is variously known as the scattering matrix,propagator
matrix, transition matrix, ...
It relates the state vectors that relate the field at two different locations z
and z′.
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6.1 Reflection from a layered medium

6.1 Reflection from a layered medium

The scattering matrix can be used to solve a three-layer problem, where two
planar interfaces at z = 0 and z = −d separate three layer stacked vertically
in the z-direction, with region 1 defined by z > 0, region 2 by 0 < z,−d and
region 3 defined by −d < z.

First, the state vector in region 1 is given by:

V1(z) = C1−e−ik1zzc1− + RC1−eik1zzc1+ = c̄e±iK̄1z ·
[

R
1

]

C1− . (6.37)

Because of the definitions of φ and ψ, they are continuous quantities across
the interfaces. Therefore,

V1(0) = V2(0) ; V3(−d) = V2(−d) .

The S̄ matrix can be used to find V2(−d) in terms of V2(0). Consequently:

V3(−d) = S̄2(−d, 0) · V1(0) = S̄2(−d, 0) · c̄1 ·
[

R
1

]

C1− . (6.38)

Since region 3 should only have a transmitted wave, V3(z) must be of the
form

V3(z) = TC1−e−ik3z(z+d)c3− = c̄3 · eiK̄3(z+d) ·
[

T
0

]

C1− . (6.39)

Consequently, from (6.38) and (6.39), we conclude that

c̄−1
3 · S̄2(−d, 0) · c̄1 ·

[

R
1

]

=

[

0
T

]

. (6.40)

There are two scalar equations with two scalar unknown R and T in (6.40),
and the solution can be readily found.
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6.1 Reflection from a layered medium

This approach is easily extended to the solution of wave propagation in
anisotropic, layered media. In this more general case, instead of a state
vector with two components, a state vector with at least four components is
required.

We shall start with Maxwell’s equations for a source-free, anisotropic medium:

∇× E = iωµ̄ · H (6.41)

∇× H = −iωǭ · E (6.42)

Given the layered medium geometry used in this section, it is convenient to
work with the components of the electric and magnetic field transverse to
z. We shall denote them by Es and Hs, and decompose all quantities into a
transverse and a longitudinal part as follows:

E = Es + Ez

H = Hs + Hz

∇ = ∇s + ẑ
∂

∂z

and the tensors µ̄ and ǭ can be partitioned as

µ̄ =

[

µ̄s µ̄sz

µ̄zs µ̄zz

]

, ǭ =

[

ǭs ǭsz

ǭzs ǭzz

]

(6.43)

Here, µ̄s is 2 × 2, µ̄sz is 2 × 1, µ̄zs is 1 × 2 and µ̄zz is 1 × 1. Similarly for ǭ.
After substituting this decomposition into (6.41), and equating transverse
and longitudinal components, we have:

∂

∂z
ẑ × Es = iωµ̄s · Hs + iωµ̄sz · Hz −∇s × Ez , (6.44)

∇s × Es = iωµ̄zs · Hs + iωµzzHz . (6.45)

We also have, either by duality, or from using the decomposition into (6.42):

∂

∂z
ẑ × Hs = −iωǭs · Es + −iωǭsz · Ez −∇s × Hz , (6.46)

∇s × Hs = −iωǭzs · Es − iωǫzzEz . (6.47)

We can then use (6.47) and (6.45) to express Ez and Hz in terms of Es and
Hs:

Ez = − 1

iω
κzz∇s × Hs − κzz ǭzs · Es (6.48)

Hz =
1

iω
νzz∇s × Es − νzzµ̄zs · Hs , (6.49)
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6.1 Reflection from a layered medium

where κzz = ǫ−1
zz and νzz = µ−1

zz . These two equations can then be used in
(6.44) to give:

∂

∂z
ẑ × Es = iωµ̄s · Hs + µ̄sz · νzz∇s × Es − iωµ̄sz · µ̄zs · νzzHs

+
1

iω
∇sκzz ×∇s × Hs + ∇s × κzz ǭzs · Es . (6.50)

By duality, we have:

∂

∂z
ẑ × Hs = iωǭs · Es + ǭsz · κzz∇s × Hs − iωǭsz · ǭzs · κzzEs

− 1

iω
∇s × νzz∇s × Es + ∇s × νzzµ̄zs · Hs . (6.51)

If we assume that the fields Es and Hs have ei{ks·rs in the transverse direction
for all z’s, and if we also assume that ǭ and µ̄ are a function of z only, then
taking −ẑ× of equations (6.50) and (6.51), and carrying out the transverse
derivative ∇s gives:

d

dz
Es =

[

(−iωẑ × µ̄s·) + iωẑ × µ̄sz · µ̄zs · νzz −
(

iẑ

ω
× ks × κzzks×

)]

Hs

+ [(−iẑ × µ̄sz · νzzks×) − iẑ × ks × κzz ǭzs·]Es (6.52)

d

dz
Hs =

[

(iωẑ × ǭs·) − iωẑ × ǭsz · ǭzs · κzz +

(

iẑ

ω
× ks × νzzks×

)]

Es

+ [(−iẑ × ǭsz · κzzks×) − iẑ × ks × νzzµ̄zs·]Hs (6.53)

Now these two equations can be written in matrix form as a state equation:

d

dz

[

Es

Hs

]

=

[

H̄11 H̄12

H̄21 H̄22

]

·
[

Es

Hs

]

, (6.54)

where H̄ij are 2 × 2 matrices. The state equation can also be written as

d

dz
V = H̄ · V , (6.55)

where Vt = (Es,Hs) is a four-component vector, and H̄ is a 4 × 4 matrix.

The solution to (6.55) can now be sought, in a similar way as the solution to
(6.26) in the one-dimensional case.
Let

V = eλzV0 . (6.56)
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6.1 Reflection from a layered medium

Using this in (6.55) then gives:

(H̄ − λĪ) · V0 = 0 . (6.57)

Since H̄ is a 4 × 4 matrix, there will be four eigenvalues and eigenvectors,
because det(Ā − λĪ) = 0 gives a quartic for λ. Hence, the general solution
of (6.55) has the form:

V(z) = A1a1e
iβ1z + A2a2e

iβ2zA1a3e
iβ3z + A4a4e

−iβ4z , (6.58)

where aj are eigenvectors corresponding to the eigenvalues iλj.
Again, since H̄ is not symmetric, nor Hermitian, these eigenvectors need not
be orthogonal. The solution (6.58) can also be expressed in matrix form as

V(z) = ā · eiβ̄zz · A , (6.59)

where ā is a 4 × 4 matrix containing the eigenvectors aj:

ā = [ā1, ā2, ā3, ā4] (6.60)

and A is a column vector containing the Ai’s. β̄ is a diagonal matrix, where
the i-th diagonal elements eigenvalues correspond to the i-th eigenvalus. So
eiβ̄z is given by

eiβ̄z =









eiβ1z 0 0 0
0 eiβ2z 0 0
0 0 eiβ3z 0
0 0 0 eiβ4z









(6.61)

These eigenvalues and eigenvectors are ordered, in such a way that the first
two diagonal elements correspond to an up-going wave, and the last two to
downgoing waves.
As a result, equation (6.62) can be written as:

V(z) = ā · eiβ̄(z−z′) · ā−1āeiβ̄z′ · A
= S̄(z, z′) · V(z′) . (6.62)

where
S̄(z, z′) = ā · eiβ̄(z−z′) · ā−1 , (6.63)

is the scattering matrix.
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7 The inverse scattering problem

We have so far only considered the direct scattering problem, i.e., given a
wavefield ui incident upon an inhomogeneity (this could be an interface such
as an infinite surface or a finite, closed object, or an extended inhomogeneity
such as a medium with varying refractive index), we have considered ways of
finding the scattered field us, or equivalently the total field u = ui + us.

The inverse scattering problem starts from the knowledge of the scattered
field us, and asks questions about the inhomogeneities that produced it (for
example their shape, or their refractive index) and about the source field.

This area of research is fairly new, because the nature of the problem gives
rise to a mathematical problem which is ill-posed, and until about the ’60’s
was not considered worth studying from a mathematical point of view.

Let’s see what ’well-posed’ means. According to Hadamard, a problem is
well-posed if

1. There exists a solution to the problem (existence)
2. There is at most one solution (uniqueness)
3. The solution depends continuously on the data (stability)

For a problem expressed as
Ax = y , (7.1)

where A is an operator from a normed space X into a normed space Y , A :
X 7→ Y the requirements listed above translate into the following properties
of the operator A:

1. A is surjective. If it isn’t, then equation (7.1) is not solvable for all
y ∈ Y (non-existence).

2. A is injective. If it isn’t, then equation (7.1) may have more than
one solution (non-uniqueness)

3. The solution depends continuously on y, i.e. ∀ sequences xn ∈ X
with Axn → Kx as n → ∞, it follows that xn → x as n → ∞. If this
is not the case, then there may be cases when for ‖ y′ − y ‖≪ 1 we have
‖ x′ − x ‖≫ 1, small differences in y (e.g. small errors in the measurement
or in the numerical computation give rise to large errors in the solution
(instability).
Absence of even one of these properties is likely to pose considerable difficul-
ties in finding the solution to a problem.
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7.1 Tikhonov regularisation

If all the above properties apply, then the inverse operator A−1 : Y 7→ X
exists and is bounded, and

‖ x ‖≤ C ‖ y ‖ , (7.2)

where C =‖ A−1 ‖.

If an inverse does exist for some y, but is not bounded, then there does not
exist a constant C for which (7.2) holds for all y ∈ A(X).
It is possible, though, even when A−1 is not bounded, but has dense range,
to construct a family of bounded approximation to A−1. A strategy for
achieving this is the Tikhonov regularisation procedure, which provides
a mean to cope with ill-posedness.

7.1 Tikhonov regularisation

Definition A regularisation strategy for A : X 7→ Y is a family of bounded
linear operators Rα : Y → X for α > 0 such that

Rαy → A−1y as α → ∞ (7.3)

When it is not clear whether a solution to the inverse scattering problem for
(7.1) exists, it is natural, as a first attempt at computing an approximate
solution, to try to find an x to minimise ‖ Ax − y ‖.
It is possible to demonstrate that (Theorem): For every y ∈ Y , then

x′ ∈ X satisfies

‖ Ax′ − y ‖≤‖ Ax − y ‖ .

if and only if x′ solves the normal equation

A∗Ax′ = A∗y , (7.4)

where A∗ : Y 7→ X.

Equation (7.4) is still ill-posed, if the original scattering problem was ill-
posed, but this ill-posedness can be removed by introducing a small per-
turbation, so replacing the original problem with the slightly perturbed one
below:

αxα + A∗Axα = A∗y (7.5)

for some small α > 0.
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7.1 Tikhonov regularisation

It is possible to prove that (Theorem):
If α > 0, then the operator (αI + A∗A) : X 7→ X has an inverse, which is
bounded, with ‖ (αI + A∗A)−1 ‖≤ α−1.
Given a linear bounded operator A : X 7→ Y , and y ∈ Y , the Tikhonov

functional is defined by

Jα =‖ Ax − y ‖2 +α ‖ x ‖2 ∀x ∈ X (7.6)

For α > 0, the Tikhonov functional Jα, as defined above, has a unique
minimum xα given as the unique solution of the equation

αxα + A∗Axα = A∗y . (7.7)

The solution of this equation can be written as xα = Rαy, with

Rα = (αI + A∗A)−1A∗ : Y 7→ X. (7.8)

xα = Rαy is referred to as the Tikhonov regularisation solution of (7.1).
This strategy then approximates the actual solution x = A−1y by the reg-
ularised solution xα, given y. In general, a yδ will be known, which differs
from y by some error δ (for example because it is experimental data):

‖ yδ − y ‖≤ δ . (7.9)

It is useful to be able to approximate the error involved in the regularisation,
and to relate it to the error associated with incorrect initial data δ. Let’s
write

xα(δ) − x = Rαyδ − Rαy + RαAx − x . (7.10)

Then, by the triangle inequality we have the estimate

‖ xα(δ) − x ‖≤ δ ‖ Rα ‖ + ‖ RαAx − x ‖ (7.11)

This decomposition shows that the error consists of two parts: the first term
reflects the influence of the incorrect data, and the second term is due to the
approximation error between Rα and A−1.
The regularisation scheme requires a strategy for choosing the parameter α
on the basis of the error δ in the data, in order to achieve an acceptable total
error for the regularised solution.
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8 Methods for solving the inverse scattering

problem

Inverse problems have a variety of very important practical applications,
ranging from the detection of land mines, to medical imaging, analysis of sub-
surface strata for oil and gas recovery, reconstruction and detection of craft,
missiles and submarines, non-destructive testing of materials and structures,
and many more.
As mentioned previously, there are several types of inverse scattering prob-
lems. We shall concentrate first on the problem of reconstructing the geome-
try of the scatterer, then we shall consider the problem of reconstructing the
refractive index. We shall only present a few simple results. For a compre-
hensive review see Sleeman (1982) IMA J. Appl. Math.29 113-142.

Inverse problems have been treated from many points of view.

• Some exact solutions, depending on the geometry of the scatterer, are
available. They are usually based on expressing the surface of the
scatterer parametrically in a coordinate system in which the Helmholtz
equation is separable.

• Some methods exploit the properties of the far field in order to con-
struct an analytical continuation of the far field into the near field of
the scatterer, and the circle of minimum radius enclosing the scatterer,
then determine enough points on the scatterer to approximate its shape
sufficiently. The method of Imbriale and Mittra comes in this category.

• A number of methods based on iterative procedures are also available.
These are particularly suited to lower frequencies, and for problems of
scattering by extended inhomogeneities.

8.1 The method of Imbriale and Mittra

(Ref: Imbriale & Mittra 1970, IEEE Trans. Antennas & Propag. 18, 633)
In order to describe this method, we shall first consider the properties re-
quired of a function f(n,k) to be admissible as a far field. Recall that, in
the direct scattering problem, given an incident (time-harmonic) field φi on
a (bounded) scatterer with boundary ∂V , we seek the total field

φ = φi + φs ,
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8.1 The method of Imbriale and Mittra

such that φs obeys the Helmholtz equation with suitable boundary conditions
on ∂V , and the radiation condition at infinity, which can be expressed as

r1/2

(

∂φs

∂r
− i|k|φs

)

→ 0 as r → ∞ (in 2D) (8.1)

r

(

∂φs

∂r
− i|k|φs

)

→ 0 as r → ∞ (in 3D) (8.2)

Then there exists a function f(n,k) such that

φs(x) =
e|k||x|

|x|1/2

(

f(n,k) + O

(

1

|x|1/2

))

(in 2D) (8.3)

φs(x) =
e|k||x|

|x|

(

f(n,k) + O

(

1

|x|

))

(in 3D) (8.4)

as |x| → ∞, where n = x/|x|. f is called the far field amplitude, or also
directivity pattern.

A theorem due to Müller (1955) characterises the functions admissible as far
field amplitudes.
Theorem: A necessary and sufficient condition for a function f(n,k) de-

fined on the unit sphere Sn−1 to be a far field amplitude is that there ex-

ists a harmonic function H(n,k), analytic for all x ∈ R
n and is such that

H(n,k) = f(n,k) on Sn−1, and further has the property:
∫

|x|=R

|H(n,k)|2ds = O
(

e2|k|CR
)

, (8.5)

where C is a non-negative constant.

When this condition is satisfied, there exists a unique function Φ(n,k) which

satisfies the Sommerfeld radiation condition and is a regular solution of the

Helmholtz equation for |x| > C, such that

Φ(n,k) =
e|k||x|

|x|1/2

(

f(n,k) + O

(

1

|x|1/2

))

(in 2D) (8.6)

Φs(x) =
e|k||x|

|x|

(

f(n,k) + O

(

1

|x|

))

(in 3D) (8.7)

as |x| → ∞.

The constant C in (8.5) gives the radius of the sphere outside which Φ(n,k) is
defined. In other words, the sources generating the given far field are located
within a sphere of radius C.
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8.1 The method of Imbriale and Mittra

From the uniqueness of Φ(n,k) and φs(n,k), it follows that

φs(n,k) = Φ(n,k) for |x| > C . (8.8)

Thus, an important problem to be considered is that of locating the region
containing the sources that generate Φ(n,k). We shall therefore seek to
construct an analytic continuation of Φ(n,k) into the region |x| ≤ C.

If we expand f(n,k) in terms of spherical harmonics:

f(n,k) =
∞

∑

n=0

n
∑

m=−n

AnmY m
n (n) (8.9)

then, from (8.6) and the fact that Φ(n,k) is a solution of the Helmholtz
equation in the exterior of V , we can write:

Φ(n,k) =
∞

∑

n=0

n
∑

m=−n

Amni
nh(1)

n (|k||x|)Y m
n (n) (8.10)

for |x| > C, where h
(1)
n (|k||x|) is either a Hankel function (in 2D) (usually

denoted by H
(1)
n ), or a spherical Hankel function (in 3D).

Now we need to find the analytic continuation of the series (8.10) for |x| ≤ C,
and the location of the sources generating Φ.

We shall illustrate this in the 2D case with soft (Dirichlet) boundary condi-
tions (see Crighton et al 1992, Ch. 19). Let us first note that, for r → ∞,
the asymptotic behaviour of the Hankel function is

H(1)
n (kr) ∼

(

2

πkr

)1/2

eikr−inπ/2−1π/4 , (8.11)

where kr = |k||x|.
In 2D, the far field f is a function of θ − θ0, where θ0 is the direction of the
incoming plane wave given by

φi = eikr cos(θ − θ0) .

Therefore, from (8.11) and (8.10), we get:

φs ∼
(

1

kr

)1/2

eikrf(θ) as kr → ∞ , (8.12)
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8.1 The method of Imbriale and Mittra

where

f(θ) =

(

2

π

)1/2

e−iπ/4

∞
∑

−∞

Ane
inθ . (8.13)

If we know f(θ) at a given wavenumber k, then the Fourier coefficients An

are known in principle and can be computed. Then the scattered field is
given by (8.10) for |x| > C (where C is as yet unknown). For |x| ≤ C the
series (8.10) will in general diverge, and it has to be continued analytically.

Suppose that ∂V is convex. Then, from the assumption of a soft boundary,
we have that φ = φi + φs = 0 on some convex boundary to be found.
The far field amplitude f(θ) is given, with respect to some origin O.
Without loss of generality, we may take the coordinate system such that the
incident wave propagates parallel to the x-axis, so

φi = eikx

Given f(θ), we can compute in practice only a finite number of Fourier
coefficients An, hence we shall have

f(θ) =

(

2

π

)1/2

e−iπ/4

N
∑

−N

Ane
inθ , (8.14)

where N is large enough to ensure a good approximation.
From (8.10) and φ = φi + φs, the total field for |x| > C can be written as

φ = eikr cos θ +
N

∑

−N

inAnH
(1)
n (kr)einθ , (8.15)

where the coefficients An are now known.
If this expression is computed for a succession of decreasing values of r, there
will be eventually be a point on a circle of radius C0 at which φ = 0, this
being one point of the boundary of the scatterer ∂V .

At this stage we know that V is inside the circle L0(r = C0), and we know
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8.1 The method of Imbriale and Mittra

one point where ∂V touches L0.
It is not possible to take smaller values of r to find other points of ∂V ,
since the sum (8.15) will generally diverge inside L0. Other points of ∂V
are now found by shifting the origin to a different position O1, given by
(r, θ) = (r1, θ1), say.

Let (r′, θ′) denote new coordinates with respect to the new origin. Since
r′ ∼ r − r1 and θ′ ∼ θ as r → ∞, the new far field, relative to the origin O1,
is

f ′(θ) = f(θ)eikr1 cos(θ−θ1)

=

(

2

π

)1/2

e−iπ/4

∞
∑

−∞

A
′

meimθ . (8.16)

The A
′

m are related to the An by the formula

∞
∑

−∞

A
′

meimθ =
∞

∑

−∞

Aneinθeikr1 cos(θ−θ1)

=
∞

∑

−∞

An

∞
∑

−∞

Jp(kr1)i
peip(θ−θ1) ,

where Jp(kr1) are Bessel functions of the first kind. Hence

A
′

m =
∞

∑

−∞

im−nAnJm−n(kr1)e
−i(m−n)θ1 , (8.17)

which can be computed from the 2N + 1 known values of An.
Thus a large finite number of the A

′

m are known, and we have a different
representation

φs =
M

∑

−M

imA
′

mH(1)
m (kr′)eimθ′ , r′ > C1 , (8.18)

which will converge outside a different circle L1(r
′ = C1), centred at O1,

where L1 contains V . Again, by computing φ = φi +φs for successive smaller
values of r′ until φ vanishes at some point with r′ = C1, we determine L1

and another point of contact with ∂V .
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8.1 The method of Imbriale and Mittra

The process can be continued successively to limit further the region occupied
by V , and to find further points on ∂V .

In practice, the far field amplitude f(θ) may not be known for all θ, but just
for a limited range θ1 < θ < θ2. To deal with this, Imbriale & Mittra (1970)
suggest that f(θ) may be approximated by a sum

PN(θ) =
N

∑

−N

Āneinθ ,

with coefficients Ān chosen to minimise the error indicator

∫ θ2

θ1

|f(θ) − PN(θ)|2dθ . (8.19)

Their results are good for the example of a circle if θ1 = −1350 and θ2 =
+1350, and are reasonable even for θ1 = −600 and θ2 = +600.

It is clear that the process described above will not determine ∂V if there
are several scatterers or if ∂V is not convex. For example, if ∂V consists of
two circles, this procedure would provide only the information that ∂V lies
within the region bounded by the two common tangents to the circles, and
the two ’outer’ arcs from the tangent points:

Imbriale & Mittra provide a straightforward extension to deal with such
cases. This is based on the fact that any solution of the Helmholtz equation
that is regular at and near some origin O1 can be expanded in the form:

φs =

∞
∑

−∞

BnJn(kr′)einθ′ , r′ > D1 , (8.20)

where D1 is the distance from O1 to the nearest singularity. Here this ensures
that (8.20) converges within a circle K1(r

′ = D1) that just touches ∂V .
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8.1 The method of Imbriale and Mittra

The difference between the exterior expansion (8.10) and the interior ex-

pansion (8.20) is that H
(1)
n (kr) satisfies the Sommerfeld radiation condition,

but is singular at r = r′; whilst Jn(kr′) is regular at r = r′, but does not
correspond to outward-travelling waves at infinity.

Thus (8.20) is valid within the circle K1. The coefficients Bn can be obtained
in terms of An, provided the inside of K1 and the outside of l0 overlap. This
can be ensured by choosing O1 outside l0.
Then comparing the two expansions (8.10) and (8.20), and using the following
addition theorem for Bessel functions:

H(1)
n (kr)ein(θ−θ1) =

∞
∑

m=−∞

H
(1)
n−m(kr1)Jm(kr′)eim(θ′−θ) ,

one finds:

Bm =
∞

∑

n=−∞

inAnH
(1)
n−m(kr1)e

i(n−m)θ1 , (8.21)

Thus the Bm are known in principle, or rather, in practice, a large finite
number of them are known, and the representation (8.20) can be considered
as being known.
Now we take increasing values of r′, until φ vanishes at some point r′ = D1

and θ′ = θ1. This ensure that ∂V lies outside the circle K1(r
′ = D1) and

gives a point of contact with K1.
In a similar way to that used previously for the circles Ln, we can extend this
process by choosing another origin O2, given by (r′, θ′) = (r2, θ2), choosing
O2 to lie inside K1. If (r′′, θ′′) denote polar coordinates with respect to O2,
then we seek to continue the limited representation (8.20) by re-expanding
about the new origin O2:

φs =
∞

∑

−∞

B
′′

nJn(kr′′)einθ′′ , r′′ > D2 , (8.22)

for some value D2 (as yet unknown).
A comparison of (8.22) and (8.20), both valid in some overlap region, and
the addition theorem for Bessel functions

Hn(kr′)ein(θ′−θ2) =

∞
∑

m=−∞

Jn−m(kr2)Jm(kr′′)eim(θ′′−θ2) ,

leads to the result

B
′′

m =
∞

∑

n=−∞

inBnJn−m(kr2)e
−i(n−m)θ2 , (8.23)
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8.1 The method of Imbriale and Mittra

and the representation (8.22) can be taken as known.
Taking successively bigger values of r′′ until φi + φs vanishes at some point
on a circle K2, we obtain another point of ∂V , and also the information that
∂V is outside K2. This process can be repeated indefinitely, in principle, to
get a series of circles K1,K2, ... outside which ∂V must lie.

This technique presents several considerable numerical problems, since it
involves many sums that have to be truncated. Also, for example, it turns
out that the coefficient Bn in (8.21) is sensitive to the values of Am at large
m. These problems are discussed by Imbriale and Mittra (1970), who give
results for a pair of circles of radii a and separation 2b between their centres,
with ka = 1 and kb = 2.5.

The methods of Imbriale and Mittra seem to give reasonable reconstructions
for modest values of kd (where d is the characteristic dimension of the scat-
terer). Nevertheless, such procedures based on analytical continuations are
inherently ill-posed and subject to numerical instability. Other methods are
more stable.
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8.2 Optimization method

8.2 Optimization method

This method was described by Colton & Monk (1987), for the scattering from
an acoustically soft surface S, recasting the problem as one in optimazation.
It overcomes the numerical difficulties associated with the analytical contin-
uation procedure.
Suppose that a time-harmonic plane wave with velocity potential given by

φi = Re
[

eikw·x
]

(8.24)

is incident upon a scattering surface S taht encloses the origin. The total
potential φ = φi + φs satisfies the Helmholtz equation and the boundary
condition

φx = 0 , for x on S . (8.25)

It is assumed that k2 is not one of the interior eigenvalues of the interior
Dirichlet problem. and that the scatterer is ”starlike”, i.e. its surface can be
represented in the form

x = rs(e)e ,

where e = x/(|x|), and rs is single-valued.
Given the far field amplitude f(w, e, k) (in 3D) defined by

φs ∼
(

1

kr

)

eikrf(w, e, k) as kr → ∞ , (8.26)

at fixed k, the problem is to determine the function rs(e) that specifies tha
scattering surface S.
Colton & Monk relate the far field f(w, e, k) to a function ψ(x, k) that cor-
respond to the scattered potential inside S induced by a point at the origin,
i.e the function ψ(x, k) which satisfies

(∇2 + k2)ψ(x, k) = 0 x insideS , (8.27)

with

ψ(x, k) =
eikrs

4πrs

, x onS , (8.28)

By using Green’s function formalism applied to the potential φ(x), with the
Green’s function

G(x,y) =
eikr

4πr
, with r = |y − x| ,

in the region outside s, we can write

φ(y) = φi(y) − 1

4π

∫

S

eikr

r

∂φ(x)

∂n
dx , (8.29)
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8.2 Optimization method

where n denotes the outward normal from s. It follows that the far field
amplitude f has the representation

f(w, e, k) = − k

4π

∫

S

e−ike·x∂φ(x)

∂n
dx . (8.30)

Now define S1 to be the sphere of unit radius and centre at the origin. The
above identity (8.29) can be multiplied by a suitable function g(e) and inte-
grated with respect to e over the unit sphere S1, to get

−4π

k

∫

S1

f(w, e, k)g(e)de =

∫

S

ψ(x)
∂φ(x)

∂n
dx . (8.31)

where

ψ(x) =

∫

S1

g(e)e−ike·xde (8.32)

satisfies the Helmholtz equation if the kernel function g(e) is sufficiently
smooth.
Functions of the form (8.32) are called Herglotz wave functions, with
Herglotz kernel g(e).
It is now assumed that the domain inside S is such that the interior potential
ψ(x) defined by (8.28) and (8.30) can be represented as an Herglotz function.
In this case, the integral (8.31) has value unity. This follows since, from (8.31)
and (8.28), and using the boundary condition, we have:

−4π

k

∫

S1
f(w, e, k)g(e)de =

1

4π

∫

S

eikr

r

∂φ(x)

∂n
dx

=
1

4π

∫

S

[

∂φ

∂n

eikr

r
− φ

∂

∂n

(

eikr

r

)]

dx

=
1

4π

∫

S

[

∂φi

∂n

eikr

r
− φi

∂

∂n

(

eikr

r

)]

dx (8.33)

The last step follows from the fact that the integral

I =

∫

S′

[

G
∂φs

∂n

]

dx , (8.34)

is invariant with respect to any surface S ′ on or outside S, by virtue of Green’s
formula applied to φs and G. Taking S ′ to be a sphere of large radius R0,
one finds, by using the radiation condition satisfied by φs, that I → 0 as
R0 → ∞, hence I ≡ 0. Finally, the integral (8.33) is seen to have the value
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8.2 Optimization method

φi(0) = 1, from Green’s formula applied to φi and G, with (∇2 + k2)G = δx.
Thus

−4π

k

∫

S1

f(w, e, k)g(e)de = 1 (8.35)

for all directions of incidence w.
The problem is now specified by the two identities (8.35) and (8.28), to
determine g(e), then rs.
Colton & Monk (1987) formulate the optimization problem to minimise

N
∑

n=1

∣

∣

∣

∣

∫

S1

4π

k
f(wn, e, k)g(e)de + 1|2 (8.36)

with respect to g(e) from a suitable function class. Given g, hence ψ from
equation (8.32), there is a second optimization problem to minimize

∫

S1

∣

∣

∣

∣

ψ(rs(e) − eikrs

4πrs

∣

∣

∣

∣

2

de (8.37)

with respect to rs(e) from a suitable function class.
The estimate for rs gives an approximation to the surface S.
Colton & Monk (1987) give results for several axially symmetric problems,
using trial functions in the form of Fourier series in the azimuthal angle.
Their results give excellent reconstructions for a variety of shapes, such as
the oblate spheroid, the ”peanut” shape, and the ”acorn” shape.
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8.3 Inverse scattering in the Born approximation

8.3 Inverse scattering in the Born approximation

When the scattering is sufficiently weak, the inverse scattering problem can
be linearised and solved using the first Born (or Rytov) approximation (see
Chapter 3, were these approximationas are introduced for the direct scatter-
ing problem). In this case, the (known) scattered field is written as the first
Born (or Rytov) solution of the direct scattering problem, then the Fourier
transform of the scattered field is related to the Fourier transform of the
’scattering potential’ of the object, or medium, thus formally solving the
inverse problem.
We shall consider first the Born approximation. We recall (see Chapter
3) that, given some inhomogeneity with refractive index n(r), and a non-
scattering background with refractive index 1, the the total field satisfies

∇2ψ + k2(r)ψ = 0 , (8.38)

where
k(r) = k0n(r) = k0(1 + nδ(r)) , (8.39)

We shall assume nδ(r) ≪ 1. Substituting k0n(r) into (??) we get:

∇2ψ + k2
0(r)ψ = −k2

0(n
2(r) − 1)ψ ≡ −V (r)ψ , (8.40)

and the scattered field is then given by

ψs(r) =

∫

G(r − r′)[V (r′)ψ(r′)]dr′ . (8.41)

The total field is then given by

ψ = ψi(r) +

∫

G(r − r′)[V (r′)ψ(r′)]dr′ , (8.42)

and the scattered field can be approximated first Born approximation by

ψs(r) =

∫

G(r − r′)[V (r′)ψi(r
′)]dr′ , (8.43)

Here G(r − r′) is the free space Green’s function in 3 dimension, i.e.

G(r − r′) =
eik0r

r
. (8.44)

We shall now use the following representation for

eik0r

r
:
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8.3 Inverse scattering in the Born approximation

Banos 1966, Wolf 1969):

G(r − r′) =
ik0

2π

∫ ∫ ∞

−∞

1

m
eik0[p(x−x′)+q(y−y′)+m(z−z′)]dpdq , (8.45)

where:

m = (1 − p2 − q2)1/2 when (p2 + q2) < 1 (8.46)

m = i(p2 + q2 − 1)1/2 when (p2 + q2) > 1 (8.47)

If we now substitute this expression for the Green’s function into equation
(8.43), we obtain:

ψs(r) =

∫ ∫ ∞

−∞

A(±)(p, q; p0, q0)e
ik0(px+qy±mz)dpdq , (8.48)

where

A(±)(p, q; p0, q0) = − ik0

8π2m

∫

V r′eik0[(p−p0)x′+(q−q0)±(m−m0)z′]dr′ . (8.49)

Here, the upper sign(+) applies in the region R+ where z − z′ > 0, and the
lower one (-) in the region R− where z − z′ < 0. Equation (8.48) represents
the scattered field as an angular spectrum of plane waves, and the spectral
amplitude function A(±)(p, q; p0, q0) is expressed in term of the scattering
potential by (8.49). For homogeneous waves, i.e. when m is real, we obtain
the relation:

A(±)(p, q; p0, q0) = − ik0

8π2m
F̂ [k0[(p − p0), k0(q − q0), k0 ± (m − m0)] , (8.50)

where F̂ is the Fourier inverse of F :

F̂ (u, v, w) =
1

(2π)3

∫

F (x, y, z, )eik0(ux+vy+wz)dxdydz . (8.51)

Consider now the scattered field ψs in two fixed planes z = z+ and z = z+,
situated respectively in R+ and R− .

Now, by taking the inverse Fourier transform of (8.48), with z at the fixed
values z+ and z+, we obtain

A(±)(p, q; p0, q0) = k2
0e

∓ik0mz±ψ̂s(k0p, k0q, z
±) , (8.52)

where

ψ̂s(u, v, z±) =
1

(2π)2

∫ ∫ ∞

−∞

e−i(ux+vy)dxdy (8.53)
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8.3 Inverse scattering in the Born approximation

is the inverse Fourier transform of ψs with respect to the variables x and y.
Now, comparing (8.52) and (8.52), and using m = (1− p2 − q2)1/2, we obtain

V̂ (u′, v′, w′±) =
iw

π
e∓iwz±ψ̂s(u, v, w±) , (8.54)

where

u′ = u − k0p0

v′ = v − k0q0 (8.55)

w′ = ±w − k0m0

and
w = (k2

0 − u2 − v2)1/2 . (8.56)

Equation (8.54) shows that some of the three-dimensional Fourier compo-
nents of the scattering potential v, and therefore the unknown refractive
index, can be immediately determined by the two-dimensional components
of the scattered field in the two planes z = z+ and z = z−.

Note that (8.54) is valid only for those two-dimensional Fourier components of
ψ̂s and ψs about which the information is carried by homogeneous waves, i.e.
those for which u2+v2 ≤ k2

0. In general, it is impossible to reconstruct inverse
data associated with the high spectral components for which the information
is carried by evanescent waves, because these waves decay very rapidly from
the scatterer and do not contribute to the far field. This limitation arises
because the problem is ill-posed.
We saw earlier that one way to obviate the limitations caused by ill-posedness
is to use the Tikhonov (or other) regularization. In this case then, if we
represent by A the integral operator in (8.43):

AV (r) =

∫

G(r − r′)V (r′)ψi(r
′)dr′ , (8.57)

then the problem we need to solve is

d = AV (r) (8.58)

where d is the vector of the scattered field measurements. This can be
regularised by minimising the Tikhonov functional

Jα =‖ AV (r) − d ‖2 +α ‖ x ‖2 (8.59)

with the penalty parameter α usually chosen based on knowledge of the noise
level.
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8.3 Inverse scattering in the Born approximation

Using the first Born approximation for the inverse scattering problem reduces
the non-linear inverse problem to a completely linear one.
We can retain some non-linearity either by adding higher order terms in
the Born approximation, or by using the distorted-wave Born approxi-

mation (DWBA). In the DWBA, instead of approximating the ’zero order’
solution with the incident field as in the first Born illustrated above, we start
with a perturbed field, in other words, instead of writing the refraction index
as

n(r) = 1 + nδ , (8.60)

we write
n2(r) = n2

0(r) + ǫn1 + ǫ2n2 + . . . (8.61)

The DWBA then is obtained by seeking a solution of the Helmholtz equation
(8.38) in the form:

ψ(r) = ψ0(r) + ǫψ1(r) + . . . (8.62)

The solution terms in this series can be computed by solving:

(∇2 + k2
0n

2
0r)ψ0 = 0

(∇2 + k2
0n

2
0r)ψ1 = −k2

0n1ψ0

(∇2 + k2
0n

2
0r)ψ2 = −k2

0n2ψ0 − k2
0n1ψ1

. . . (8.63)

So the integral equation corresponding to (8.43) is now:

ψs(r) =

∫

G(k)(r − r′)[V (r′)ψi(r
′)]dr′ , (8.64)

and G(k)(r−r′) is not the free space Green’s function any more. If n2
0(r) = 1,

then the DWBA coincides with the Born approximation. In the DWBA it is
also possible of course to go to higher terms and include more iterations.
It should be noted, though, that in general, if the measured data is contam-
inated with noise, so that the actual total field ψa is:

ψa(r) = ψ(r) + ∆(r) , (8.65)

where ∆(r) is the noise, then

ψs(r) = ψ(r) − ψi(r) + ∆(r) . (8.66)

Hence, as successive iterations improve on ψi(r) so that it is closer to ψ(r),
ψs(r) is swamped by noise. Other variants of the Born iterative method are
more robust and also less time-consuming, especially in higher dimensions.
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