Examples Sheet 3

1. Schur's Lemma is "Let D be an irreducible representation of a (Lie) group G acting on a complex vector space V. Let A be an operator acting on V which commutes with the action of G, that is, AD(g) = D(g)A for all $g \in G$. Then $A = \lambda I_V$, where λ is a constant and I_V is the unit operator."

Prove this by showing that any eigenspace of A is an invariant subspace of V, and that there is therefore precisely one eigenspace of A which is the whole of V, and that this gives the desired result.

2. The following multiplication rule will be useful in this question (cf. Sheet 1, 3c):

$$(aI + \mathbf{b} \cdot \boldsymbol{\sigma})(a'I + \mathbf{b}' \cdot \boldsymbol{\sigma}) = (aa' + \mathbf{b} \cdot \mathbf{b}')I + (a\mathbf{b}' + a'\mathbf{b} + i\mathbf{b} \times \mathbf{b}') \cdot \boldsymbol{\sigma}$$

(a) Show how $B(\psi, \mathbf{n}) \in SL(2, \mathbb{C})$, where

$$B(\psi, \mathbf{n}) = I \cosh \frac{\psi}{2} + \boldsymbol{\sigma} \cdot \mathbf{n} \, \sinh \frac{\psi}{2} \,, \qquad \mathbf{n} \cdot \mathbf{n} = 1 \,,$$

corresponds to a Lorentz boost with velocity $\mathbf{v} = \tanh \psi \mathbf{n}$.

(b) Show that

Symmetries, Particles, and Fields

Prof M B Wingate

$$(I + \frac{1}{2}\boldsymbol{\sigma} \cdot \delta \mathbf{v})B(\psi, \mathbf{n}) = B(\psi', \mathbf{n}')R,$$

where, to first order in $\delta \mathbf{v}$,

$$\psi' = \psi + \delta \mathbf{v} \cdot \mathbf{n}, \quad \mathbf{n}' = \mathbf{n} + \coth \psi [\delta \mathbf{v} - \mathbf{n} (\mathbf{n} \cdot \delta \mathbf{v})],$$

and R is an infinitesimal rotation given by

$$R = I + \frac{i}{2} \tanh \frac{\psi}{2} (\delta \mathbf{v} \times \mathbf{n}) \cdot \boldsymbol{\sigma} = I + \frac{i}{2} \frac{\gamma}{\gamma + 1} (\delta \mathbf{v} \times \mathbf{v}) \cdot \boldsymbol{\sigma}, \qquad \gamma = (1 - \mathbf{v}^2)^{-\frac{1}{2}}.$$

- (c) Show that we must have $\mathbf{v}' = \mathbf{v} + \delta \mathbf{v} \mathbf{v} (\mathbf{v} \cdot \delta \mathbf{v})$.
- (d) By considering boosts by velocities \mathbf{v}, \mathbf{w} followed by boosts by $-\mathbf{v}, -\mathbf{w}$, find a physical interpetation of this question.
- 3. A field $\phi(x)$ transforms under the action of a Poincaré transformation (Λ, a) such that $U[\Lambda, a]\phi(x)U[\Lambda, a]^{-1} = \phi(\Lambda x + a)$. For an infinitesimal transformation, $\Lambda^{\mu}{}_{\nu} = \delta^{\mu}{}_{\nu} + \omega^{\mu}{}_{\nu}$ and correspondingly (in physics conventions) $U[\Lambda, a] = 1 i\frac{1}{2}\omega^{\mu\nu}M_{\mu\nu} ia^{\mu}P_{\mu}$.
 - (a) Show that

$$[M_{\mu\nu},\phi(x)] = -i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})\phi(x), \qquad [P_{\mu},\phi(x)] = i\partial_{\mu}\phi(x)$$

- (b) Verify that $M_{\mu\nu} \to i(x_{\mu}\partial_{\nu} x_{\nu}\partial_{\mu})$ and $P_{\mu} \to -i\partial_{\mu}$ satisfy the algebra for $[M_{\mu\nu}, M_{\sigma\rho}]$ and $[M_{\mu\nu}, P_{\sigma}]$ expected for the Poincaré group.
- 4. Consider the little group with standard momentum $k^{\mu} = (\ell, 0, 0, \ell)$, for some fixed $\ell > 0$, that is, the subgroup of proper, orthochronous Lorentz transformations which leaves k^{μ} invariant.
 - (a) Show how the generators of the little group are related to the generators of $SO(1,3)^{\uparrow}$. [Hint: It will be convenient to define $E_1 := K_1 J_2$ and $E_2 := K_2 + J_1$.] Find the structure constants of the corresponding Lie algebra and determine whether it is semisimple. [Note: this group is ISO(2), the isometry group of the plane, or the 2-dimensional Euclidean group.]
 - (b) Prove that, for appropriately normalized generators,

$$e^{\theta J_3}(a_1 E_1 + a_2 E_2)e^{-\theta J_3} = \alpha_1(\theta)E_1 + \alpha_2(\theta)E_2,$$

where $\theta, a_1, a_2 \in \mathbb{R}$ and

$$\begin{pmatrix} \alpha_1(\theta) \\ \alpha_2(\theta) \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

(c) Defining a unitary operator $O[\theta, a_1, a_2] = e^{a_1 E_1 + a_2 E_2} e^{\theta J_3}$, show that

$$O[\theta', a_1', a_2'] O[\theta, a_1, a_2] = O[\theta' + \theta, \alpha_1(\theta') + a_1', \alpha_2(\theta') + a_2'].$$

Deduce from this that ISO(2) is isomorphic to $SO(2) \ltimes T^2$, where T^2 is the 2-dimensional translation group.

- (d) Take $|k, e_1, e_2\rangle$ to be an eigenvector of E_1 and E_2 with eigenvalues e_1 and e_2 , respectively. Show that there are a continuum of eigenvalues for E_1 and E_2 . Given that massless states like neutrinos do not have a continuous internal degree-of-freedom, what does that imply about physically allowed values e_1 and e_2 ?
- 5. Show that there is a choice of basis for L(SO(4)) consisting of 4×4 antisymmetric matrices that contain precisely two non-zero entries: 1 and -1. Evaluate the commutation relations of these generators. By choosing a new basis consisting of sums and differences of pairs of L(SO(3)) generators, show that $L(SO(4)) \cong L(SO(3)) \oplus L(SO(3))$.
- 6. Let $\{T_{j}^{i}\}$ be $n \times n$ matrices such that T_{j}^{i} has a 1 in the *i*'th row and *j*'th column and is zero otherwise.
 - (a) Show that they satisfy the Lie algebra

$$[T^i{}_j, T^k{}_l] = \delta^k{}_j T^i{}_l - \delta^i{}_l T^k{}_j.$$

(b) Define $X = T^i_{\ j} X^j_{\ i}$ with arbitrary components $X^j_{\ i}$. Determine the adjoint matrix $(X^{\mathrm{ad}})^n_{\ m}, {}^k_{\ l}$ by

$$[X, T^{k}{}_{l}] = T^{m}{}_{n}(X^{\mathrm{ad}})^{n}{}_{m}{}^{k}{}_{l},$$

and show that

$$\kappa(X,Y) = \operatorname{Tr}(X^{\operatorname{ad}}Y^{\operatorname{ad}}) = 2(n\sum_{i,j}X^{j}{}_{i}Y^{i}{}_{j} - \sum_{i}X^{i}{}_{i}\sum_{j}Y^{j}{}_{j}).$$

- (c) Show that $1 + \epsilon X \in U(n)$ for infinitesimal ϵ if $(X^{j}_{i})^{*} = -X^{i}_{j}$.
- (d) Hence show that in this case

$$\kappa(X,X) = -2n\sum_{i,j} |\hat{X}^{j}{}_{i}|^{2}, \qquad \hat{X}^{j}{}_{i} = X^{j}{}_{i} - \frac{1}{n}\delta^{j}{}_{i}\sum_{k}X^{k}{}_{k},$$

and therefore $\kappa(X, X) = 0 \iff X^{\mathrm{ad}} = 0$.

- (e) What restrictions must be made for SU(n) and verify that in this case the generators satisfy $\kappa(X, X) < 0$ so the group is semi-simple?
- 7. For a simple Lie algebra \mathfrak{g} , with elements X_a such that $[X_a, X_b] = f_{abc}X_c$ where f_{abc} is totally antisymmetric, let \tilde{T}_a be matrices forming a basis for representation R of \mathfrak{g} , and assume $\tilde{T}_a \tilde{T}_a = C_R I$. Define

$$\langle X_a, X_b \rangle = \operatorname{Tr}(\tilde{T}_a \tilde{T}_b) \frac{\dim \mathfrak{g}}{C_R \dim R}$$

- (a) Let $\mathfrak{g} = \mathfrak{su}(2)$. Evaluate $\langle J_3, J_3 \rangle$ in the *j*-th irreducible representation of $\mathfrak{su}(2)$ and show that the result is independent of *j*.
- (b) For $\mathfrak{su}(3)$ show that the Gell-Mann representation, $\tilde{T}_a = \frac{i}{2}\lambda_a$, where the Gell-Mann matrices λ_a are given below, gives the same value for $\langle X_a, X_b \rangle$ as does the adjoint representation $(T_a^{\mathrm{ad}})_{bc} = f_{abc}$. [The Gell-Mann matrices are

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad A_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad A_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0$$

- (c) It can be shown that the Killing form on a simple Lie algebra is the unique ad-invariant, symmetric bilinear form, up to an overall scalar multiple. How do you interpret your calculations above in relation to this fact?
- 8. The Lie algebra of U(n) may be represented by a basis consisting first of the $n^2 n$ off-diagonal matrices $(E_{ij})_{kl} = \delta_{ik}\delta_{jl}$ for $i \neq j$ and also the *n* diagonal matrices $(h_i)_{kl} = \delta_{ik}\delta_{kl}$, (no sum on *k*), where i, j, k, l = 1, ..., n. For SU(n) it is necessary to restrict to traceless matrices given by $h_i h_j$ for some i, j. The n 1 independent $h_i h_j$ correspond to the Cartan subalgebra.
 - (a) Show that

$$[h_i, E_{jk}] = (\delta_{ij} - \delta_{ik})E_{jk}, \qquad [E_{ij}, E_{ji}] = h_i - h_j \quad \text{(no summation convention)}.$$

- (b) Let \mathbf{e}_i be orthogonal *n*-dimensional unit vectors, $(\mathbf{e}_i)_j = \delta_{ij}$. Show that E_{ij} is associated with the root vector $\mathbf{e}_i \mathbf{e}_j$.
- (c) Hence show that there are n(n-1) root vectors belonging to the n-1 dimensional hyperplane orthogonal to $\sum_{i} \mathbf{e}_{i}$.

(d) Verify that we may take as simple roots

 $\alpha_1 = \mathbf{e}_1 - \mathbf{e}_2, \quad \alpha_2 = \mathbf{e}_2 - \mathbf{e}_3, \ \dots, \ \alpha_i = \mathbf{e}_i - \mathbf{e}_{i+1}, \ \dots, \ \alpha_{n-1} = \mathbf{e}_{n-1} - \mathbf{e}_n,$

by showing that all roots may be expressed in terms of the α_i with either positive or negative integer coefficients.

(e) Determine the Cartan matrix and write down the corresponding Dynkin diagram. [You may assume the Killing form is diagonal.]

Please e-mail me at $\tt M.Wingate@damtp.cam.ac.uk$ with any comments, especially any errors.