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Michaelmas Term 2016, Mathematical Tripos Part III Prof. N. Dorey

Symmetries, Fields and Particles. Examples 4

1. Starting from the corresponding Cartan matrix construct the root and weight lattices of the Lie
algebra B2 = LC(SO(5)). Using the algorithm introduced in the lectures, find the weights of the
fundamental representation and those of the adjoint. Determine the degeneracy of the weight zero
in the adjoint.

2. Show that the isospin I and hypercharge Y of the lightest mesons are correctly determined by
the relations I = H1/2 and Y = (H1 + 2H2)/3 where H1 and H2 are the standard basis for the
Cartan subalgebra of A2 and these generators act on states in the adjoint representation.

3. Show that the ten-dimensional representation R3,0 of A2 corresponds to a reducible representa-
tion of the LC(SU(2)) subalgebra corresponding to any root. Find the irreducible components of
this representation. Does your answer depend on the particular root chosen?

4. Decompose the following tensor products of A2 = LC(SU(3)) representations into irreducible
components; i) 3⊗ 3̄ and ii) 3⊗ 3⊗ 3.

5. Find the non-trivial B2 representation of smallest dimension and decompose the tensor product
of two copies into irreducibles, giving the dimension of each component.

6. Consider a gauge theory whose gauge group, G is a matrix Lie group. The corresponding gauge
field,

Aµ : R
3,1

→ L(G)

transforms as
Aµ → A′

µ = gAµg
−1

− (∂µg)g
−1

under a gauge transformation,
g : R

3,1
→ G (∗)

For the case G = SU(N), check that A′

µ(x) takes values in the Lie algebra L(G). Explain why this
is true for any matrix Lie group G. Writing g = exp(ǫX) with ǫ << 1, show that the corresponding
infinitessimal gauge transformation coincides with the one defined in the lectures.

7. Let G ⊂ MatN (C) be a compact matrix Lie group. A scalar field in the fundamental represen-
tation of G, corresponds to an N -component vector φF(x) ∈ C

N defined at each spacetime point
x ∈ R

3,1 which transforms as,
φF → φ′

F = gφF

under the gauge transformation (*) defined above.
A scalar field in the adjoint representation of G, corresponds to an N×N matrix φA(x) ∈ MatN (C)
defined at each spacetime point x ∈ R

3,1 which transforms as,

φA → φ′

A = gφAg
−1

Find explicit formulae for covariant derivativesD
(F)
µ , D

(A)
µ , such thatD

(F)
µ φF andD

(A)
µ φA transform

in the fundamental and adjoint of G respectively. Hence write down gauge-invariant Lagrangians
describing the coupling of these scalar fields to the the gauge field Aµ. You may assume that the
finite-dimensional representations of a compact Lie group are unitary.

8. Show that the field-strength tensor Fµν for a matrix Lie group G can be written as,

Fµν = [D(A)
µ , D(A)

ν ]
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Hence show that Fµν transforms in the adjoint representation of G ie,

Fµν → F ′

µν = gFµνg
−1

under the gauge transformation (*). Thus show that the Lagrangian,

L =
1

4g2
TrN [FµνF

µν ]

is gauge invariant.

9. Using the fact that the Killing form,

κ (X,Y ) = Tr [ adX ◦ adY ] ∀X,Y ∈ L(G)

is the unique invariant inner product any simple Lie algebra L(G) up to scalar multiplication,
deduce that, when L(G) is simple, the gauge-field Lagrangian defined in the previous question is
proportional to the one given in the lectures. Determine the constant of proportionality in the case
G = SU(N).


