Symmetries, Fields and Particles. Examples 4

- 1. Starting from the corresponding Cartan matrix construct the root and weight lattices of the Lie algebra $B_2 = L_{\mathbb{C}}(SO(5))$. Using the algorithm introduced in the lectures, find the weights of the fundamental representation and those of the adjoint. Determine the degeneracy of the weight zero in the adjoint.
- 2. Show that the isospin I and hypercharge Y of the lightest mesons are correctly determined by the relations $I = H^1/2$ and $Y = (H^1 + 2H^2)/3$ where H^1 and H^2 are the standard basis for the Cartan subalgebra of A_2 and these generators act on states in the adjoint representation.
- 3. Show that the ten-dimensional representation $R_{3,0}$ of A_2 corresponds to a reducible representation of the $L_{\mathbb{C}}(SU(2))$ subalgebra corresponding to any root. Find the irreducible components of this representation. Does your answer depend on the particular root chosen?
- 4. Decompose the following tensor products of $A_2 = L_{\mathbb{C}}(SU(3))$ representations into irreducible components; i) $\mathbf{3} \otimes \bar{\mathbf{3}}$ and ii) $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}$.
- 5. Find the non-trivial B_2 representation of smallest dimension and decompose the tensor product of two copies into irreducibles, giving the dimension of each component.
- 6. Consider a gauge theory whose gauge group, G is a matrix Lie group. The corresponding gauge field,

$$A_{\mu}: \mathbb{R}^{3,1} \to \mathrm{L}(G)$$

transforms as

$$A_{\mu} \to A'_{\mu} = gA_{\mu}g^{-1} - (\partial_{\mu}g)g^{-1}$$

under a gauge transformation,

$$g: \mathbb{R}^{3,1} \to G \quad (*)$$

For the case G = SU(N), check that $A'_{\mu}(x)$ takes values in the Lie algebra L(G). Explain why this is true for any matrix Lie group G. Writing $g = \exp(\epsilon X)$ with $\epsilon << 1$, show that the corresponding infinitessimal gauge transformation coincides with the one defined in the lectures.

7. Let $G \subset Mat_N(\mathbb{C})$ be a compact matrix Lie group. A scalar field in the fundamental representation of G, corresponds to an N-component vector $\phi_{\mathbf{F}}(x) \in \mathbb{C}^N$ defined at each spacetime point $x \in \mathbb{R}^{3,1}$ which transforms as,

$$\phi_{\rm F} \to \phi_{\rm F}' = g\phi_{\rm F}$$

under the gauge transformation (*) defined above.

A scalar field in the adjoint representation of G, corresponds to an $N \times N$ matrix $\phi_A(x) \in \operatorname{Mat}_N(\mathbb{C})$ defined at each spacetime point $x \in \mathbb{R}^{3,1}$ which transforms as,

$$\phi_{\rm A} \rightarrow \phi'_{\rm A} = q\phi_{\rm A}q^{-1}$$

Find explicit formulae for covariant derivatives $D_{\mu}^{(\mathrm{F})}$, $D_{\mu}^{(\mathrm{A})}$, such that $D_{\mu}^{(\mathrm{F})}\phi_{\mathrm{F}}$ and $D_{\mu}^{(\mathrm{A})}\phi_{\mathrm{A}}$ transform in the fundamental and adjoint of G respectively. Hence write down gauge-invariant Lagrangians describing the coupling of these scalar fields to the gauge field A_{μ} . You may assume that the finite-dimensional representations of a compact Lie group are unitary.

8. Show that the field-strength tensor $F_{\mu\nu}$ for a matrix Lie group G can be written as,

$$F_{\mu\nu} = [D_{\mu}^{(A)}, D_{\nu}^{(A)}]$$

Hence show that $F_{\mu\nu}$ transforms in the adjoint representation of G ie,

$$F_{\mu\nu} \to F'_{\mu\nu} = gF_{\mu\nu}g^{-1}$$

under the gauge transformation (*). Thus show that the Lagrangian,

$$\mathcal{L} = \frac{1}{4g^2} \text{Tr}_N \left[F_{\mu\nu} F^{\mu\nu} \right]$$

is gauge invariant.

9. Using the fact that the Killing form,

$$\kappa(X, Y) = \text{Tr} \left[\operatorname{ad}_X \circ \operatorname{ad}_Y \right] \quad \forall X, Y \in \mathcal{L}(G)$$

is the unique invariant inner product any simple Lie algebra L(G) up to scalar multiplication, deduce that, when L(G) is simple, the gauge-field Lagrangian defined in the previous question is proportional to the one given in the lectures. Determine the constant of proportionality in the case G = SU(N).