The Standard Model: Example Sheet 3

David Tong, February 2025

1. Show that there is no consistent *chiral* U(1) gauge theory with N=4 Weyl fermions with integer charges that can be coupled to gravity.

Find an example of a consistent U(1) gauge theory with N=5 Weyl fermions with integer charges that can be coupled to gravity.

2*. An SU(N) gauge theory is coupled to a single left-handed Weyl fermion χ in the symmetric \square representation and p left-handed Weyl fermions ψ_i , $i = 1, \ldots, p$, in the anti-fundamental \square representation. For what value of p is the quantum theory consistent?

Classically, the theory has a $G_F = SU(p)$ global symmetry that acts on the ψ_i . In addition, there are two U(1) symmetries

$$U(1)_{\chi}: \qquad \chi \to e^{i\alpha}\chi \quad \text{and} \quad \psi_i \to \psi_i$$

 $U(1)_{\psi}: \qquad \chi \to \chi \quad \text{and} \quad \psi_i \to e^{i\beta}\psi_i$

Show that each of the U(1) symmetries suffers a chiral anomaly and so is not a symmetry of the quantum theory. Find a linear combination of these symmetries that does survive in the quantum theory.

Compute the $SU(p)^3$, $SU(p)^2U(1)$, $U(1)^3$ and U(1) (i.e. mixed gauge-gravity) 't Hooft anomalies for the symmetries of the quantum theory.

It is conjectured that this theory confines without spontaneously breaking any global symmetry. The massless fields are thought to be a collection of gauge singlet fermions

$$\lambda^{ij} = \psi^{[i}(\chi\psi^{j]})$$

transforming in the anti-symmetric \Box representation of the SU(p) global symmetry. What is the U(1) charge of this fermion? Show that the 't Hooft anomalies of the fermion λ match those of the original gauge theory.

Note: You may find the following data helpful. For SU(N), the fundamental \square , adjoint, symmetric \square and anti-symmetric \square have the dimension, Dynkin index $I(R) = I(\bar{R})$ and anomaly coefficient $A(R) = -A(\bar{R})$ given by

R		adj		
$\dim(R)$	N	$N^2 - 1$	$\frac{1}{2}N(N+1)$	$\frac{1}{2}N(N-1)$
I(R)	1	2N	N+2	N-2
A(R)	1	0	N+4	N-4

3a. Consider SU(N) Yang-Mills coupled to a single, massless left-handed Weyl fermion λ in the adjoint representation. Why does this make sense as a quantum theory? (As an aside: this theory happens to enjoy $\mathcal{N}=1$ supersymmetry, although this fact is not needed for this question.)

Classically this theory has a U(1) global symmetry which acts as $\lambda \to e^{i\alpha}\lambda$. By considering how this transformation affects the θ angle, show that a \mathbb{Z}_{2N} subgroup survives in the quantum theory.

The theory is expected to confine, develop a mass gap, and form a condensate

$$\langle \text{Tr } \lambda \lambda \rangle \sim \Lambda_{\text{OCD}}^3$$
 (1)

How does the \mathbb{Z}_{2N} global symmetry act on this condensate? How many ground states does the theory have?

b. Consider SU(N) Yang-Mills (with N > 2) coupled to a single Dirac fermion ψ in the symmetric \square representation. What are the classical global symmetries? What are the quantum global symmetries?

This theory is expected to confine, develop a mass gap, and form a condensate

$$\langle \bar{\psi}\psi \rangle \sim \Lambda_{\rm OCD}^3$$

How many ground states does the theory have? How do your answers change if the Dirac fermion is in the anti-symmetric \square representation of SU(N)?

[Note: You may need to refer to the table in Question 3.]

4*. Consider one generation of the Standard Model, with left- and right-handed Weyl fermions transforming in the following representations of $U(1) \times SU(2) \times SU(3)$:

$$Q_L: (\mathbf{2},\mathbf{3})_q, \quad L_L: (\mathbf{2},\mathbf{1})_l, \quad u_R: (\mathbf{1},\mathbf{3})_u, \quad d_R: (\mathbf{1},\mathbf{3})_d, \quad e_R: (\mathbf{1},\mathbf{1})_x.$$

This is the usual set of representations (ignoring the right-handed neutrino), but with the hypercharges q, l, u, d, and x left arbitrary. Assume that all hypercharges are real numbers, i.e. q, l, u, d, $x \in \mathbb{R}$

- i) Write down all the conditions for anomaly cancellation, including the mixed U(1)-gravitational anomaly.
- ii) Show that these equations have two solutions, one with u = -d and the other the hypercharges of the Standard Model (up to scaling).

- **5.** This is a repeat of question 4, but with the additional assumption that hypercharges are integers, i.e. $q, l, u, d, x \in \mathbb{Z}$.
- i) Write down all conditions for anomaly cancellation, this time omitting the requirement that the theory can be coupled to gravity.
- ii) Show that there is a unique solution to these equations that automatically satisfies the mixed gauge-gravitational anomaly. (You may invoke, without proof, any pure mathematics result that your grandmother has heard of.)

[Hint: First argue that you can write u - d = 2y for $y \in \mathbb{Z}$. Then use the change of variables

$$x = -\frac{6}{v+w}$$
 and $y = \frac{3(v-w)}{v+w}$.]

- **6.** What are the global symmetries of the classical Lagrangian of the Standard Model assuming:
 - i) there are no right-handed neutrinos
- ii) right-handed neutrinos exist, with all possible relevant and marginal interactions included?

How do these conclusions change if you include the effect of anomalies?