1. Let Σ be a spacelike hypersurface with future directed timelike unit normal n^a , induced metric $h_{ab} = g_{ab} + n_a n_b$ and extrinsic curvature $K_{ab} = h_a^c h_b^d \nabla_c n_d$. Let S be a compact orientable 2d surface within Σ with unit normal m_a . On S, let $U_{\pm}^a = (n^a \pm m^a)/\sqrt{2}$. (a) Show that U_{\pm}^a are future-directed null vectors orthogonal to S and $U_+ \cdot U_- = -1$. (b) Consider a null geodesic congruence containing the geodesics orthogonal to S with tangent U_{\pm}^a there. On S we can choose (in the notation of lectures) $U^a = U_{\pm}^a$ and $N^a = U_{\mp}^a$. Show that the projection operator P_b^a can be written as $P_b^a = h_b^a - m^a m_b$. (c) On S, the expansion of the geodesics orthogonal to S is $\theta_{\pm} = P^{ab} \nabla_a U_b$. Since P^{ab} is a projection onto directions tangential to S, this expression involves only derivatives tangential to S so we can replace U_b by its value on S, i.e., $U_{\pm b}$. Show that this gives

 $\theta_{\pm} = (h^{ab} - m^a m^b) K_{ab} \pm k$

where k is the trace of the extrinsic curvature of S viewed as a surface in Σ . (d) Let Σ be a time-symmetric hypersurface, i.e., $K_{ab}=0$. Can S be trapped? Show that S is marginally trapped if, and only if, k=0. (This is the condition for S to be a minimal surface in Σ .) (e) Let $K_{ab}=J_{(a}M_{b)}$ where J^a and M^a are tangential to Σ and orthogonal to each other. Assume that M_a is tangent to S. Show that the results in (d) extend to this case. (A surface of constant t in the Kerr geometry has K_{ab} of this form.)

- 2. Consider the Reissner-Nordstrom solution with M > e using advanced Eddington-Finkelstein coordinates. (a) Determine the Finkelstein diagram (i.e. show ingoing and outgoing radial null geodesics in a plot of $t_* = v r$ against r). (b) Show that r decreases along any causal curve in the region $r_- < r < r_+$.
- 3. (a) Prove that, if a vector field ξ preserves the Maxwell field (i.e. $\mathcal{L}_{\xi}F = 0$) then locally there exists a scalar potential Φ such that $i_{\xi}F = d\Phi$. (*Hint:* Q2 of examples sheet 1.)
 - (b) The equation of motion of a particle of charge q and 4-velocity U^a is $U^b \nabla_b U^a = (q/m) F^a{}_b U^b$. Let ξ be a Killing vector field that preserves the Maxwell field. Show that $\xi \cdot U - (q/m) \Phi$ is conserved along the particle's worldline.
 - (c) Deduce that, for a particle of mass m moving in the equatorial plane $(\theta = \pi/2)$ of a Reissner-Nordstrom black hole (with Q > 0, P = 0), the quantities $\mathcal{E} = (\Delta/r^2)dt/d\tau + qQ/(mr)$, and $h = r^2 d\phi/d\tau$ are constant (τ is proper time). Hence show that the radial motion is determined by the equation

$$\left(\frac{dr}{d\tau}\right)^2 + \frac{\Delta(r)}{r^2}\left(1 + \frac{h^2}{r^2}\right) = \left(\mathcal{E} - \frac{qQ}{mr}\right)^2.$$

- (d) What is the physical interpretation of the case q/m = Q/M = 1, $\mathcal{E} = 1$, h = 0?
- (e) The Penrose process. A particle P_1 falls from $r=\infty$ towards the black hole. Just before it crosses the event horizon, it decays into two other particles P_2 and P_3 where P_2 has charge q<0. The decay happens such that P_2 initially has $dr/d\tau\approx 0$. P_2 subsequently falls into the black hole and P_3 escapes to $r=\infty$. Let $E_i\equiv m_i\mathcal{E}_i$ denote the energy of P_i (which has mass m_i). Show that $E_1>0$ and $E_2<0$. Hence, by energy conservation, $E_3>E_1$, i.e., the particle returning to infinity has more energy than the initial particle! This is consistent because P_2 has carried negative energy into the black hole. Hence energy (and charge) are extracted from the black hole in this process.

- 4. Obtain the Kerr-Newman solution in Kerr coordinates. When is there a regular event horizon? Show that the area of the event horizon of a Kerr-Newman black hole is $A = 8\pi (M^2 e^2/2 + \sqrt{M^4 e^2M^2 J^2})$.
- 5. Let E denote the maximum energy that can be extracted from a Kerr black hole in the Penrose process. The *efficiency* of this process is $\eta \equiv E/M$ where M is the initial mass of the black hole. What is the largest possible value of η ?
- 6. In the Kerr geometry, consider two spacelike surfaces Σ , Σ' which both extend from i^0 to \mathcal{H}^+ with Σ' lying entirely to the future of Σ . Let H and H' denote the intersections of Σ and Σ' with \mathcal{H}^+ . Let \mathcal{N} denote the portion of \mathcal{H}^+ from H to H'. Let $J_a = -T_{ab}k^b$ be the conserved energy-momentum 4-vector.
 - (a) Show that

$$E(\Sigma') - E(\Sigma) = \int_{\mathcal{N}} \star J,\tag{1}$$

where $E(\Sigma) \equiv -\int_{\Sigma} \star J$ is the total energy of matter fields on Σ , and similarly for $E(\Sigma')$. What is the physical interpretation of this formula?

- (b) Explain why the orientation of \mathcal{N} used in this formula is given by $dv \wedge d\theta \wedge d\chi$ in Kerr coordinates (the orientation of spacetime is given by $dv \wedge dr \wedge d\theta \wedge d\chi$).
- (c) Show that $(\star J)_{v\theta\chi} = (r_+^2 + a^2) \sin \theta \xi^a J_a$.
- (d) Assume that matter obeys the dominant energy condition. Explain why $E(\Sigma') \leq E(\Sigma)$ for a Schwarzschild black hole (i.e. a = 0) but why this is not necessarily true for a Kerr black hole.
- (e) Now take the matter to be a massless real scalar field, with energy-momentum tensor $T_{ab} = \partial_a \Phi \partial_b \Phi (1/2) g_{ab} (\partial \Phi)^2$. Consider a mode of this field with frequency ω and azimuthal quantum number ν , i.e., $\Phi = \text{Re}[\Phi_0(r,\theta) \exp(-i\omega v + i\nu\chi)]$. Show that the RHS of equation (1) is positive for $0 < \omega < \nu\Omega_H$. (Note that $\xi \cdot k = 0$ on \mathcal{H}^+ because \mathcal{H}^+ must be invariant under an isometry hence any Killing field must be tangent to \mathcal{H}^+ .)

This example shows that energy can be extracted from a black hole by scattering waves off it. This is called *superradiant scattering*.

- 7. (a) Calculate the ADM mass of the Reissner-Nordstrom solution.
 - (b) Calculate the electric and magnetic charges, the Komar mass, and the Komar angular momentum of the Kerr-Newman solution.
- 8. (a) Let (M,g) be a stationary vacuum spacetime containing an hypersurface Σ such that the initial data induced on Σ is geodesically complete and asymptotically flat with 1 end. Prove that the Komar mass must vanish and hence, by the positive energy theorem, that the spacetime must be flat. (This is a version of *Lichnerowicz's theorem* which excludes the existence of gravitational solitons, i.e., stationary configurations of the gravitational field that are not black holes.)
- 9. Four-dimensional anti-de Sitter space-time (AdS₄) with radius of curvature ℓ has metric

$$ds^2 = -U(r)dt^2 + \frac{dr^2}{U(r)} + r^2 d\Omega^2,$$

where $U(r) = 1 + r^2/\ell^2$.

(a) Show that, along a null geodesic with affine parameter λ , $r \to \infty$ and $t \to \text{constant}$ as $\lambda \to \pm \infty$.

- (b) Construct the conformal compactification of AdS_4 by defining a new radial coordinate χ by $r = \ell \tan \chi$.
- (c) Is AdS₄ globally hyperbolic?
- (d) The Schwarzschild-AdS metric, given by setting $U(r)=1-2M/r+r^2/\ell^2$ above, is the unique spherically symmetric solution of the vacuum Einstein equation with a negative cosmological constant. Let M(r) and $\bar{M}(r)$ denote the Komar mass associated with a sphere of constant r and t in the Schwarzschild-AdS and AdS metrics respectively. Show that M and \bar{M} both diverge as $r\to\infty$ but $M(r)-\bar{M}(r)$ has a finite limit. (Note that r is invariantly defined in a spherically symmetric spacetime, so this prescription for calculating the mass is coordinate-independent.)
- (e) Consider Schwarzschild-adS with M > 0. Show that there is a Killing horizon of $\partial/\partial t$ at $r = r_+ > 0$ where $U(r_+) = 0$. Plot the surface gravity κ as a function of M. How does this differ from the corresponding plot for a Schwarzschild black hole?
- 10. (**) Show that the Kerr-Newman geometry has a curvature singularity at $(r, \theta) = (0, \pi/2)$. Furthermore, show that this singularity has a ring like structure.