Copyright © 2006 University of Cambridge. Not to be quoted or reproduced without permission.

Mathematical Tripos Part III Prof G W Gibbons
Lent Term 2006

Applications of Differential Geometry to Physics
Example Sheet 1

1. Check that the statement :
Wab...c = Wiab...q]

about the components of a p-form w is independent of the basis chosen for V.

If{w*} is a basis for V*, show that the set of all possible combinations of
W AW LW a <ag... < ap
gives a basis for A?(V'). Hence show that if w A @ = 0 for a one-form w and p-form « then
a=wApf

for some (p — 1)-form £.

2. Show that w A v(X,Y) = 0 for all vectors X and Y contained in the intersection of the
hyperplanes through origin of V' associated to the one-forms w and v.

Show how a two-form « provides a linear map from V to V* whose matrix elements
are the components g, of a.

A non-zero two-form « is said to be simple if &« = w A v for one forms w and v. Show
that « is simple if and only if the rank of the matrix is two. Identify the set of vectors in
V belonging to the kernel of a. Show that the Maxwell two form F' is simple if and only
if E.B = 0. Calculate F' A F and comment on your result.

3. Given a metric g on V we can look for eigen-vectors X and eigenvalues A of a two-form
«a with respect to g, i.e. vectors X € V such that

Show that if g is positive definite then necessarily the eigenvalues must vanish but if g has
indefinite signature then A\ need not vanish but in that case X must be a null vector.

4. Suppose that n = dimV = 2m is even. Introduce a positive definite metric g and use it
to identify V and V* in the usual way so that the components, g,p, of ¢ may be taken to be
dap. From now on we suspend the Einstein summation convention. Show, by diagonalizing
the matrix Y, cuetip with respect to gqp, that a basis {u’,v*} for V* can be found such
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a(v',) = =\
and thus that ,
=m
o= Z Aipt A V*
i=1

Use this result to relate the m-fold wedge product o A av... A @ to det(agp). Deduce that
the rank of the two form must be even. What happens if dimV is odd?

5. Suppose that F' is an odd form which is also self-dual. Show that
(F,F)=0.

Comment on the case when F' is a one-form.

6.Show, using differential forms, that

dt N d
F = Q=5 + Psinfdd A d

satisfies all of Maxwell’s equations in the spacetime metric

dr?

ds? = —A(r)dt* + NG

+ 72(d6?* + sin? 0dg?).

for any choice of the function A(r) and constants @@ and P. Find a suitable vector
potential, valid locally. Show that if P # 0 there can be no globally defined vector
potential. Calculate the action of the Maxwell field in a spacetime volume given by
r<r<rot; <t<ty,0<¢<2m,0<0O <.

7. Justify the expression dxd® = 0 for the massless wave equation. Write out this equation
in the metric used in the previous question.

8. Show, both directly, and starting from the action principle, that
1
vaFaﬁ..q — aa \/__gFaB...v 7
o )

for a p-form F'. Show further, that if F'is a middle-dimensional form, i.e. if n = 2p, then
the systen of equations dF' = 0 and dx F' = 0, is conformally invariant in the sense that if
F, g is a solution then so is F,Q2%g , where ¢ is the metric. Calculate, using the formula

__2 05
V—gdogm’

the energy momentum tensor of the system, where S is the action functional and 63:?” is the

functional derivative. Show in particular that for a middle dimensional form, the energy

T =

2
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momentum tensor is trace free How are these facts related to the conformal invariance of
the action S?

9. The Hodge-DeRham Laplacian A is defined by
A = dd + do.
Show that A commutes with d and §. Use the Ricci identity to show that on one-forms:
AA, = —V?A, + R, A,,

where R, is the Ricci tensor. Write down the equation satisfied by the vector potential
of a solution of Maxwell’s equations in Lorentz gauge, V# A4, = 0.

10 Let A be a p-form and F' a (p + 1)-form. Expand out the equation
(d—90)(F +mA) =m(F +mA).

Show that if p = 0 then these equations are equivalent to the massive wave equation for
A, ie.
-V, VFA + m?A =0

If p = 1 one obtains the Proca equations for a massive spin one particle. Write these down
in components and give in particular the corresponding wave equation for A,,.

11.0ne might think that the existence of a scalar-density constructed from the Maxwell
two-form F' given by /detF,,z would allow one to construct a Lagrangian on any manifold
independently of the existence of any metric. Explain the fallacy in this argument by
establishing that, locally at least,

FAF=dG

where G is a three-form constructed from F and A whose precise form should be given.

12. A certain field theory is based on maps ¢ : M — S from 4-dimensional spacetime M
to a unit 3-sphere equipped with its standard metric. The map ¢ is given by

x— ¢%x),a=1,2,3,4

subject to the constraint:
r?=¢%% =1
Given that the volume form on R* satisfies

dot A dg? A dd3 A de* = dr Arin

3
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where 7 is the volume form on the unit 3-sphere, show that

1
n= gszs“eabcddasb Adg° A dp?.

Let a = ¢*n be the pull-back of n to the spacetime manifold M and let x5, denote the
Hodge star operator with respect to the spacetime metric g,g. Show, using the behaviour
of d under pullback, that

J=*ma
defines a current one-form j on spacetime which is conserved, i.e. 05 = —=V#j, =0
independently of any field equations that ¢® may satisfy. Use Stokes’s theorem to show

that
1
N=— o
27T2 )

is independent of the spacelike hypersurface ¥ over which it is integrated, as long as
boundary terms at infinity may be neglected. Explain why (given that the volume of
S3 = 27?) that N will take integer values if suitable conditions on ¢® hold near infinity.
Show, in the case that X is a t = constant surface in Minkowski spacetime that

1 1
N=_—" / Br=¢*Ve® x Vo©.Volespea.
272 3!

13. (Optional Extra )
The Clifford algebra Cliff (s, ¢;R) is the associative algebra over R generated by the
relations
Ya ® Y5+ V6 ® Vo = 29ab

where 7, is a basis for an n -dimensional vector space with, not necessarily invertable
metric g.p, with s positive and ¢ negative eigen values. Evidently

CLiff(0,0; R) = A*(R™).

In what follows, assume that g,; is non-degenerate and denote a vector space carrying
such a metric by by E$! with s+t = n.

Show that Cliff(0, 1; R) = C and CIliff(0, 2; R) = H where H denotes the quarternions.
If 0; are Pauli matrices, show, by picking v; = o; that Cliff(0,1 : R) = M5(C), where
M,,(C) is the algebra of n x n matrices with complex coeficients.

A representation of a Clifford algebra may be given by a set of so-called ‘Dirac gamma
matrices 'acting on some vector space satisfying the Clifford relations.

Suppose that a; and azT are as defined in the lectures associated to A*(E™) .

By taking

’yi:ai—kaz, 1=1,2,...,m.

and
7m+i:ai—a;.r, 1=1,2,...,m.

show that there is a real representation of Cliff (m, m;R) on A*(E™). What is the dimension
of the matrices?



