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1 Derivatives and Coordinates

1.1 Differentiation Using Vector Notation
1.1.1 Vector function of a scalar

A vector function F(u) is ‘differentiable’ at w if
OF = F(u+ du) — F(u) = F'(u)ou + o(du) as ou — 0,

and the derivative is the vector

ar . 1
F(u) = ﬁ = llméu_)OE [F(u+du) — F(u)].
Limits of vectors are defined using the norm(length) so v — ¢ iff |[v — ¢| — 0 and
a(h) = b(h) + no(h) iff |a(h) — b(h)| = o(h), for n some unit vector.
Leibniz identities hold for appropriate products of scalar functions f(u) and vec-

tors F(u), G(u):

)=

(fE) =f'F+fF, (F-GY=F -G+F- -G,
(FAG) =F ANG+FANG.

Vectors can be differentiated component by component:
F(u) = Fi(u)e; = F'(u) = Fi(u)e;

provided the basis {¢;} is independent of u (note the implicit summation convention
over repeated indices).

The definition of the derivative can be abbreviated using differential notation
dF = F'(u) du in which o—terms are suppressed, compared to the relation above
with small but finite changes.

Ezample: A point particle of mass m has position r(t) (a function of time t), velocity®
7(t), acceleration 7(¢) and momentum p = myz(t). If F(r) is the force on a particle,
then p = mi’ = F(r) is Newton’s Second Law. We define the angular momentum
about the origin L =1 Ap=mrAr = L = meEAT + mr AT, using Leibniz. Hence
L =r A F, or the torque of F about the origin.

“Note that derivatives with respect to t are conventionally denoted by dots instead of dashes.
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1.1.2 Scalar function of position; gradient and directional derivatives

A scalar function f(r) is differentiable at r if
0f(r+dr) — f(r) = (Vf) - or + o(|or|) as |ér] — 0.

Vf is a vector, the gradient of f at r. The definition says that § f depends linearly
on 0r, up to smaller o—terms.
Taking 0r = hn with n a unit vector,

0f = f(r+hn) = f(r) = (Xf) - (hn) + o(h)
= n-Vf =l [f(z + hm) — f(2)],

the directional derivative of f along n. Thus, the gradient contains information about

how f changes as we move away from r to first order in the displacement.
Let r = x;e; with {e;} orthonormal. Setting n = e, for fixed i gives

. 1 0
o S =l 1z + he) — £(0)) = T
Hence the gradient in Cartesian coordinates is
af
— e 1.1
Vf=g.¢ (1.1)

With this choice of basis and coordinates, the definition of differentiability becomes

af

dz; + o(dx)

as 0x = \/ox;0x; — 0. In differential notation, we suppress o—terms:

_ _9f
df—Zf'dz—axi

dﬂfi.

Ezxample: f(x,y,z) =z +e%¥sinz at (z,y,2) = (0,1,0).

af of o0
Vf = (8_;;’ G_ch’ 8_];) = (14 ye™sinz, ze™sinz, €™ cosz),
thus Vf = (1, 0, 1) at (x,y,2) = (0,1,0). The rate of change of f along direction
n is given by the directional derivative n- Vf. So f increases most rapidly for n =
+\/L§(1, 0,1) and decreases most rapidly for n = —\%(1, 0,1) at arate n-Vf = £v/2.
To first order, there is no change in f if n L (1,0,1).
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1.1.3 The chain rule: a particular case

Consider a composition of differentiable functions f(r(u)). A change du produces a
change 0r = r'du + o(du) and

of =N f-or+o(lor]) = Vf-r'(u)du+ o(du).

This shows that f is differentiable as a function of u and

d dr
_f - Zf : __a
du du
. . . . . df _ Of du;
a chain rule. In Cartesian coordinates (setting r = x;¢;), Rl el

1.2 Differentiation Using Coordinate Notation
1.2.1 Differentiable functions R" — R™

The functions F(u) and f(r) discussed in sections 1.1.1,1.1.2 are maps R — R* and
3 — R while a vector field F(r) is a function R* — R3.

In general, f : §R7{‘$Z_} — %?7:7-} is equivalent to a set of functions y, = F.(z1,...,x,) =
F.(x;) where r = 1,...,m and ¢ = 1,...,n. The function f is differentiable if

0y, = M(f)ridz; + 0(dx) as dx = /ox;0x; — 0, with derivative M(f),; = gz: = gi;',
a m X n matrix of partial derivatives. For example, for #° — R, we get a 1 x 3

matrix, or vector, gradient i.e. (%, g—i, %).

A convenient abbreviation of the definition: replace small changes by differentials

and drop the o—terms, which are understood.

Y

dr:M m'di:
y (f )ridz oz,

dxi.

A function is smooth if it can be differentiated any number of times, i.e. if all partial

. . . BQFT 63Fr .

derivatives exist, for exampIQe Ouide Fr.0e, 00 etc, and these are totally symmetric

in i, 7, k, ... For example, 22£— = “E_ The functions that we will consider here
700 > 0x;0x; O0x;0x;

will be smooth except for where things obviously go wrong, eg f(z) = 1/z is smooth
except at x = 0.

1.2.2 The chain rule - general version

Counsider the functions

g f
R — R = R
coordinates {u,}  {z;}  {vy.}

with the ranges of the labels a,i,r understood. If f and ¢ are smooth, then so is
f o g, with derivative

M(f o g)ra = M(f)mM(g)ma
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or matrix multiplication

Oyr Oyr Oy
Oug — ox; Oug

mXp mXnnXpmatrix type

Thus, if we compare the functions, we also compose the derivatives (matrices) as
linear maps.

dy, = M(f)ridxi

da; = M(g)iadu } combine and compare with dy, = M(f o g),adu,.

0 _ 0w 0
Y Oueq  Oua Bx’

depends on u, through z;.
For example, y = f(z;(u)) - N

dy __ 0Oy dx;

du ox; du )
1x1 1x33x1

In operator form which holds when acting on any function which

Compare with section 1.1.3.

1.2.3 Inverse functions

With the notation of the last section, take m = n = p and let f, g be inverse functions,

both smooth, with y, = u,.:
g
N
R R
—
f
{ua}  {zi}
Both f o g and g o f are identity functions on R". M(f o g);, and M(g o f) are

n X n identity matrices. M (f), and M(g);, are inverse matrices of each other.
8ub Ouy Oxy Y Oz _ 0%j Qug __ (5
~ Ox; Oug abs Bz 8ua ox;

Forn =1, we get the familiar result = dz}du

For n > 1, we must invert matrices to relate 8“ and 6“”

Equivalently, 3

For example: for n = 2, we write u; = p, u2 © and let T1 = PCOS P, Ty = psin .

68—9;1 %—Z} cos p —psin @
M(g) = gy drg | T . .

e D sinp pcosp

The relations can be inverted i.e. p = \/2? + 22 and ¢ = tan™!(x9/x;) (except that
¢ is not defined at p = 0 and it is defined up to a multiple of 27 for p # 0). Then,
we can compute directly

Op Op. cos sin
M(f)z(%%)=M(g)‘1=< A S”) (p #0).

P e —singp ~cosp
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Y

Figure 1. Plane polar coordinates. p > 0 and 0 < ¢ < 27 for uniqueness.

In general, for invertible smooth maps, as above, detM(g) = det (gﬁa ), detM(f) =

det (%) are called the Jacobians. They are non-zero, with

det Or: det Oty =1, (no summation convention).
Ou, ox;

1.3 Coordinate Systems

Now, we apply the results of the last section to changes of coordinates on Euclidean
space. We can always choose to use Cartesian coordinates, but other choices are
often more useful. In general, the coordinates {u,} on Euclidean space (or some
subset of it) can be invertible functions of some Cartesian coordinates {z;} such that
uq({x;}) and z;({u,}) are smooth.

In 2 dimensions, we define plane polar coordinates p, ¢ by

T1 = pPCOS P, To = psin g,

as in Section 1.2.3, see Fig. 1. p and ¢ are coordinates (or parameters) labelling
points in the plane, but they are not components of a position vector (whereas r =
r1e, + Taey is). Nevertheless, we can associate basis vectors with these coordinates:

e, =p=cospe, +singpe,, e, == —sinpe, + cospe,

are unit vectors in the directions of increasing p and ¢, respectively, with the other
held fixed. These vectors vary with position and are ill-defined at the origin.
In 3 dimensions, we define the coordinates as in Table 1.
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cylindrical polars spherical polars

Py s = T, 97 ¥

T1 = pcosp x1 = rsinfcos ¢

To = psinp o =rsinfsing, r = |r|
T3 =2 T3 = 1 cos b

Basis vectors
€, = Cos pe; + sin e, e, = cosfe, +sinfe,
e, = —sinpe; + cospe, | e, = —sinpe; + Cos e,

e, = €3 €y = —sinfe, + cosfbe,.

Table 1. 3-dimensional cylindrical and polar coordinates.

X3

Jo

Figure 2. Cylindrical polar coordinates and spherical polar coordinates. r = |r|, 0 < ¢ <
2r and 0 < 6 < .

2 Curves and Line Integrals

2.1 Parameterised Curves, Tangents and Arc Length

A parameterised curve C' is given by a smooth function r(u) with u belong to some
interval u C R.
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Examples:

L. r(u) = ui + uﬁ + w3k for —00 < u < oo, a curve without end-points.
y Z

The derivative 1/(u) is a vector tangent to the curve at each point, provided it is
not zero. The parameterisation is called regular if r'(u) # 0. We will assume this
holds except perhaps at isolated points, so that the curve can always be divided into
segments on which the parameterisation is regular.
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The arc length s measured along C', from some fixed point satisfies

85 = 10r] + o(1dx]) = I/ (u)du| + (o) (21)
ke ) (22)

The sign fixes the direction of measuring s, for increasing or decreasing u.

Ezample: A helix r(u) = (3cosu, 3sinu, 4u) = r'(u) = (=3sinu, 3cosu, 4).

9s = |9/(u)| = V32 +4% = 5. Thus the arc length, measured from r(0) = 3i to
r(u) (u>0) is s(u) = 5u. Hence, the distance from r(0) = 31 to r(2m) = 31 + 87k is

s(2m) = 10m.

The parameterisation of a curve can be changed: take u <> u invertible and

smooth (each is a smooth function of the other). The chain rule implies that

dr  dr du

di.  du' du
so the tangent vector changes size, but not direction. Choosing o = s, the arc length,
dr

ds
ds = %|r'(u)|du is a scalar line element on C'.

gives a tangent vector t = == of unit length along the direction of increasing s.

2.2 Line Integrals of Vector Fields
2.2.1 Definitions and Examples

Let C be a smooth curve r(u) with end points r(«) = a and r(f) = b, so that u runs
over an interval with ends a and 5. A choice of orientation is a direction a — b along
C'. The line integral of a smooth vector field F(r) along C' with this orientation is
defined by

[ 2w = [ Eew) K (23)
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This can be regarded as the limit of a sum over small displacements corresponding
to dividing the interval for v into small segments.

b
F F

. -

a a

Each term is

F(r) - 6r = F(e(u) - & + o{ou).

The left hand side does not depend upon the parameterisation, and so neither does
Eq. 2.3. This can also be checked by the chain rule:

dr dr
F(r) - —du= F(r) - —=du.
E(r) - o du=FE(r) - --du
Using components, with r = z;e; and F' = Fje;, the line integral is fc Fidx;, =
S g du.
dr = r'(u)du is the line element on C.

Ezamples: F(r) = (ze¥, 2%, zy), so [, F-dr = [ ze¥ dv+ 2* dy + xy dz.

b=(1,1,1) u=1

C
a=(0,0,0) u=0

We define Cy : r(u) = (u,v*u®) = r'(v) = (1,2u,3u?). On C, F(r) =

(ue®, uS, u?*). Hence

1 1
/E-dzz/E-z’(u)du:/ue“2+2u7+3u5du:e/2+1/4.
Cq 0 0

For Cy : r(t) = (t,t,t) = 1'(t) = (1,1,1) (we are now using t as the independent
variable). On Cy, F(r(t)) = (te',t?,1*). Hence

1 1
/E-d_:/ (te' + 2t%) dt:[tet]g—/ e dt +2/3=5/3.
C! 0 0
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A closed curve has b = a. The line integral is sometimes then written 550 F -dr
and is called the circulation of F' around C'.

2.2.2 Comments

1. f(; F - dr depends on C' in general and not just upon the end points a and b.

2. [ F-dr = ffﬂ -1'(u) du for orientation @ — b. This holds whether o < /3 or
a > 3.

b=r(g)

T

a=rQ)

3. If C' is the curve with orientation a — b, we write —C' for a curve with orien-
tation b — a, and f_CE-dZZ fﬂaﬂf’(u) du = —fCE-df.

4. The orientation of a curve is also equivalent to a choice of unit tangent vector.
Measuring the arc length s along the direction given by the orientation dr =t ds
defines a unit tangent vector t and fc F-dr = fc F -t ds. The integral can
be regarded as the limit of a sum of terms F - 0r = F - tds. By convention,
fc f(s) ds is always evaluated in the sense of increasing s, so that [, cldsis
the length of C' and is greater than 0.

2.3 Sums of Curves and Integrals

A piecewise smooth curve C' consists of a number of segments; we write C' = C +

Cs 4+ -+ + C),, where each C; is a smooth curve with a regular parameterisation.
The end-points of successfive segments coincide, and there is a compatible choice of
orientations:

C:

C C, Cs G-

The line integral over a piecewise smooth curve C' is

/E-de/E'df+/E'df+...+/ F -dr.
C o Cs Cn

— 10 —
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The parameterisations on each C; can be chosen independently.

Ezample: (see Section 2.2.1)
b=(1,1,1

Cs
C
a=(0,0,0)

Jo F -dr = [,xe¥ do + 2% dy + xy dz, where C' = C} 4 Cj is a piecewise smooth
closed curve as shown with C3; = —C5. From our previous results,

]fz-dzz/ E-d£+/ E-dzz/ E-dz—/ Fedr
C Cq Cs C1 C

= (e/2+1/4) - 5/3=¢/2 —17/12.

It is convenient to extend sums to any sets of piecewise smooth curves, even if
they are not connected. This allows for some useful constructions, for example (these
rely on segments with the opposite orientations cancelling):

G

or

— 11 —
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2.4 Gradients and Exact Differentials
2.4.1 Line Integrals and Gradients
If I = Vf for some scalar field f(r) then

/C F-dr=f(b) - f(a), (2.4)

for any curve C' from a to b.

'

Proof.:

«

for any parameterisation of C' with a = r(«) and b = r(f3).

b d
- [ 4 (@) du

by the chain rule, see section 1.1.3,

as required.
Note that

e When F is a gradient, the line integral depends only on the end points, not on
the curve joining them.

e When C' is a closed curve, 550 F -dr =0if F is a gradient.

o If ' = Vf, F is called a conservative vector field. There are a number of
alternative definitions which are equivalent (with suitable assumptions) - see
later.

— 12 —
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2.4.2 Differentials

It is often convenient to work with differentials F' - dr = F; dx; as objects that can
be integrated along curves. Such a differential is called exact if it has the form
df:Zf-d[:g—idxi. SOE:Zf@Fi:%@Edwi:dfisexact. To test

. OF; ..
gF L = 5. (since both are equal to

if this holds, we can use the necessary condition

2f
8171-6%
an exact differential, Eq. 2.4 is

Azm:@#ﬂ@—f@

Differentials can be manipulated using

A\ f + pg) = Adf + pdg

for constants p and A. There is also a Leibniz rule

d(fg) = (df)g + f(dg).

for ‘nice’ functions). We will see later that, locally, this is also sufficient. For

Using these, it may be possible to find f by inspection.

Ezxample:

2 Io

/(3x2y sinz dx + 2°sin z dy + 23y cos z dz) = / d(xysin z) = [:133y sin z} =1
C

c

if a = (0,0,0) and b = (1,1, 7/2), for instance.

2.5 Work and Potential Energy
If F(r) is a force then fc F - dr is the work the force does along the curve C. This

is the limit of a sum of terms F - dr, i.e. (the component of F(r) along dr)x|dr|.

F

or

Consider the position of a point particle moving under F(r) according to Newton’s
second law: mi = F(r). The kinetic energy of the particle is

1 d
K(t) = gmi® = ZK(t) =mp-i=F i

If the path of a particle is a curve C' from a = r(«) to b = r(3), then

B B
K(8) - K(a) = %K(t) dt:/

|
=
&

Il
T
|
&

3

— 13 —
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i.e. the change in the kinetic energy is equal to the work done by the force.

For a conservative force, ' = —VV, where V (r) is the potential energy (setting
f=-VinEq. 24), [,F-dr="V(a)—V(b), or the work done is equal to the loss
in potential energy. So, in this case,

K(8)+V(z(B) = K(a) + V(z(e),

i.e. the total energy K + V is conserved (in other words, it is constant during the
motion).

3 Integration in #? and R?

3.1 Integrals over subsets of R?
3.1.1 Definition as the limit of a sum

Let D be a subset of R2. We use the position vector r = (x,y) with Cartesian
coordinates. Consider approximating D by N small, disjoint subsets of simple shape,
e.g. triangles or parallelograms, labelled by I with area dA;: each small enough to
be contained within a disc of diameter /.

y

SA,

We assume that as [ — 0 and N — oo the union of all of the small sets — D. For a
function or scalar field f(r), we define fD f(r)dA = limy_o Y, f(r7)0A; where 7 is
some point within each small set. We assume that the limit exists for well-behaved
functions f (i.e. smooth) and D (for example the interior of a non-intersecting closed
curve) independent of all of the choices we have made before taking the limit [ — 0
and N — oo.

Taking f = 1 yields [, dA =area of D. Integrals with f # 1 are also known as
area integrals, referring to the region, or ‘domain’ of integration, D.

— 14 —
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3.1.2 Evaluation as multiple integrals

Area integrals can be expressed as successive integrals over the coordinates x and
y as follows: choose the small sets in the definition to be rectangles, each of size
0A; = dxdy. Summing over subsets in a narrow horizontal strip with y and dy
fixed and taking dx — 0 gives a contribution dy fxy f(z,y) do with range z, =
{z : (x,y) € D}. Then, summing over all such strips and taking dy — 0 gives

Ip fla,y) dA = [, (fxy f(x,y) dm) dy where Y is the range of all y in D:

A
y

Xy

Alternatively, we can first sum over subsets in a narrow vertical strip with = and
ox fixed and take dy — 0 to get oz me f(z,y) dy with range Y, = {y : (z,y) €
D}. Then, we sum over all such strips and take dz — 0 to get [, f(z,y) dA =

I (sz f(z, y)dy) dx, where X is the range of all z in D:

A
y

We can summarise all of this by the statement that the area element is dA = dx dy
in Cartesian coordinates.
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Example: f(x,y) = x°y.

0 2 X
1 2—2y 1 3722y ] 1
/f(xy)dAz/ (/ :Bdeas) dy:/y{—} dy:—/ y(1—y)* dy
D 0 0 0 3 0 3 0
_ 2
15

Alternatively,

2 1—z/2 2 y2 1-z/2
/ flz,y) dA = / / 2y dy | de = / z? [—] dx
D 0 0 0 2 |y

3.1.3 Comments

1. We have adopted a notation with the range of a one dimensional integral given
by a set, which may consist of disconnected intervals. For example, X =
[a1, b1] U Jag, bo] = [ f(a)de = f:ll f(x)dx + ff; f(x)dz, and similarly for any
number of intervals. The simple pictures we drew to illustrate the arguments
in Section 3.1.2 involve ranges which are single intervals, but the arguments
hold more generally, for example:

Y,

these intervals

[/YX, the union of

0 ~X

2. The result that we can integrate over x and y in either order is called Fubini’s theorem.

It holds if f is a continuous function and D is a compact subset of 2, and
under some more general conditions too. In some cases, f can diverge, or D
can become infinite, and | pJ dA still exists, but these must be handled on a
case-by-case basis.

Less well behaved examples do exist where a different answer is obtained on
integrating in one order or the other, just like in conditionally convergent series.

— 16 —
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3. In the special case f(x,y) = g(x )h(y) andD:{(:my): a<z<b c<y<d},
I f xyd:cdy—fg xfhy

4. By plotting the graph of z = f(z,y) in three dimensions, we get a surface and
i p f(z,y) dA can be interpreted as the volume beneath it:

VA
A
/
4,\ /
"y
/ o

3.2 Change of Variables for an Integral in R?

Consider a smooth invertible transformation (z,y) <> (u,v) with regions D and D’
in one-to-one correspondence:

V
Y A

D

Then for a function (or scalar field) f, [, f(z,y) dz dy = [, f(x(u,v),y(u,v))|J| du dv,
where

_ O(z,y) :‘%%‘
O(u,v) g—z gg
is the Jacobian. In the formula, |J| is the modulus of the Jacobian.
Proof in outline: write [ v as the limit of the sum of rectangles of area 0 A" = dudv
in the (u,v) plane. Each rectangle is mapped approximately to a parallelogram of
area A = |J|0udv in the (x,y) plane, since up to o—terms,

ox B %% ou
Sy ) %% ov )’
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and |J| is the factor by which the areas are related. Summing over parallelograms in
the (x,y) plane gives the integral over D as claimed, with the Jacobian factor giving
the correct area for each parallelogram. The result can be summarised as

Iz, y)

2w, v) du dv.

dA:’

Ezample: Cartesian coordinates (x,y) <> plane polar coordinates (p, ¢).

©
pé(p A
o

s

> X 5 P
T=peosy d]:a(x’y): c93<p—psin90 =p=dA=pdpdp.
y = psingp A(p: ) Sl pCeosy

In this simple case, we see that small changes dp and dp produce a small area in the
xy plane of approximate size A = p dp dp, confirming the Jacobian factor. Now we
apply this to regions D and D’ for f = e~ @ +v)/2 = ¢=r*/2.

D:a®>+y* < R* 2,y >0 D':0<p<R 0<p<m7/2

g
/2

X R'P

R /2 2 2 R z s 2
/fdA = | fpdpdyp =/ / e " Ppdpdp = [—6‘” /2} [plg = 5(1—e"7%)
D’ p=0 -0 0 2

For this function (a Gaussian), we can take R — oo and the integral still exists. In
this limit, 0 < x,y < oo so

/ fdA = /00 /00 e~ @ H)/2 gy dy = </<>0 e~ v/ dx) (/OO e V2 dy) .
D 2=0 Jy=0 0 0 2

Hence, we derive the well known result for the Gaussian integral fooo e 2 dy =
/2.
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3.3 Generalisation to i3
3.3.1 Definitions

Let a volume V € R and a position vector r = (x,y,z). We approximate V by
N small disjoint subsets of simple shape (for example, cuboids) labelled by I with
volume 0V, each contained within a solid sphere of diameter [. We assume that as
[ — 0 and N — oo, the union of the small subsets tends to V. Then, the integral of
a function (or scalar field) f(r) over V' is defined

[ 1w av =time S sepovi
v I

where 77 is any chosen point in each small subset.
The definition can be reduced to successive integration over x,y,z by taking
cuboids of volume 6V; = dx dy 6z and taking dx — 0, 0y — 0, 6z — 0 in some order,

for example
/f ) dV = /(/ fmy,)dz)dxdy,

where we have taken 0z — 0 first, then dx — 0 and dy — 0 to get an area integral
over D:

range of z for fixed x,y:
{z:(x,y,2)e V for fixed x,y}
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Alternatively, [, f(r) dV = [([, f(z,y,2) dx dy)dz, i.e. take dx and dy to zero
first to get an area integral over slice D,, then sum over slices and take 6z — 0:

Z
1 range of all zin V
I:)z’ ,the range of all (x,y) such that
X (x,y,2) €V for fixed z.

Taking f = 1 gives fv dV =volume of V. f # 1 are also known as volume
integrals. Such integrals arise with f(r) being the density for some quantity, for

example mass, charge or probability, often denoted p. Then, p(r) is the amount of
the quantity in a small volume 0V at r. fv p(r) dV is the total amount of the quantity
in V. To summarise: the volume element in Cartesian coordinates dV = dx dy dz.

3.3.2 Change of Variables in i*

Consider an invertible transformation (z,y,2) <> (u,v,w), which is smooth both
ways, with regions V and V' in 1 : 1 correspondence. Then, for a function f,
[ [ dx dy dz= [, f|J] du dv dw where

oz O Oz

ou Ov O

SOy |G o
o T | Ou v 0O
O(u, v, w) 92 0z 9s

ou Ov Ow

is the Jacobian.

The justification (an informal proof) is similar to the 2-dimensional case: given
a small cuboid with sides du, dv, dw respectively, we get an approximate small paral-
lelapiped of volume |J|dudvdéw in (x,y, z) space, and we can use these as small sets
in the definition of the integral, hence the result.

Important special cases are cylindrical polar or spherical polar coordinates, as
in Section 1.3. For cylindrical polar coordinates

T =pcosp, y=psinp, z, (3.1)
which means p
M:p:d‘/:pdpdgodz.
A(p, ¢, z)
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On the other hand, in spherical polar coordinates,
x =rsinfcosy, y=rsinfsinp, z =rcosb. (3.2)

i.e.
d(z,y, 2)
a(r,0,¢)

In summary, for a general coordinate system, the volume element is:

d(z,y, 2)
O(u,v,w)

= 7r2sinf = dV = r?sindr df de.

dV = ‘ du dv dw.

3.3.3 Examples

Ezxample:  f(r) is spherically symmetric and V' is a sphere of radius a.

a T 2 a ™ 2
/ fdv = / / f(r)yr*sin dr do dp = / dT/ d9/ dg r* f(r)sin 6
1% r=0J6=0 J p=0 0 0 0

= [ ar 210 cos Bl =4 [ 007 ar
0 0
a useful general result. We can understand it as the sum of spherical shells of
thickness 6r and volume 47r2dr, taking ér — 0. Note that taking f = 1 gives the
volume of a sphere, 47a3/3.

FExample: Consider the volume within a sphere of radius a with a cylinder of radius
b removed (where b < a). Thus V : 2% + y? + 2?2 < a? and 22 +¢y* > b2

A |

‘ Ty }[}z(az_pz /2
| P

In cylindrical polar coordinates p,p,2, dV = p dp dp dz and V : b < p < a,

0<p<2mand —\/a® — p? < z < \/a? — p%

b 27 z=+/a%—p2 a 4
/de/ / / pdpdcpdz=27r/ dp 2p\/a® — 2:_7r(a2_b2>3/2
% p=a J =0 Jz=—+/a?—p? b 3
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Ezxample: Consider the density of electric charge p(r) = ppz/a in a hemisphere H
of radius a, with z > 0 and pg a constant. What is the total charge of H?

y4
A

X

In spherical polar coordinates, r < a, 0 < ¢ < 27 and 0 < 0 < 7/2. Also,
dV = 1r?sin6 dr df de.
The total charge in H is

Q:/pdV / / / —rcos@r sinf dr df dy
r=0 J =0 =

2m /2
Po Po L. x 1
= / r d?"/ sin 6 cos 6 d9/ dp = " [ZL {5 sin? 9]0 [gp]g = Zwa?’po.

Checking the dimensions of our answer, we have a volume times a charge density

(which is correct).

3.4 Further Generalisations and Comments
3.4.1 Integration in R”

The definitions of integrals in R? and R? extend easily to " with n—dimensional
Euclidean length and ‘volume’. The integrals are evaluated by successive integration
over the Cartesian coordinates x1, s, ..., x, : dV = dx; dxs---dx,. For a change of
variables {x;} <> {u,} with the regions D <+ D’ in 1:1 correspondence,

/ flzy,xe,. .., 2,) dry dog ... dx, =
D

[ St D ..,

with J = 6(27—?% = det <8x‘> the Jacobian. As before, |.J| enters as a scale factor
which gives the correct n—dimensional Euclidean volume for small changes in the

coordinates u, relative to the product duy ... du,.
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3.4.2 Change of variables for the case n =1

For a single variable n = 1, the Jacobian is just J = dx/du and the general formula
reads

/D flads = [ fa(w) ) du.

The modulus of dz/du is correct because of our natural convention about integrating

over subsets D and D’.

For example, suppose D is the interval « < 2 < bso [, f(z) do = f; f(x) dux.
Let v = a, 3 correspond to x = a,b, respectively. Since x <> u is invertible and
smooth in both directions, g—z # 0. FEither o < g and Z—i > 0, in which case
S F1%] du = fffj—i du or a > fand 2 < 0, s0 [p, fI52] du = [§ f(—5) du.
Either way, the formula yields fab flz) de= | f f(x(u)% du, a familiar result.

3.4.3 Vector valued integrals

Because limits apply to vectors as well as scalars, we can define for instance fv F(r)dv
in a similar way to [;, f(r)dV as the limit of a sum over contributions from small vol-

umes. With Cartesian components F(r) = F;(r)e;, we have [,, F(r)dV = ([, F;(r)dV) e;,

i.e. we can integrate component by component.
Take the case of p(r) being a mass density for a body occupying volume V.
Then,

M = / p(f)di
V
is the total mass and

1
R=+ /V rp(r)dV

is the centre of mass. This generalises definitions for a set of point particles at
positions r, (« labels the particle, not the component here):

M:me E:%Zmaza.
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Example: Consider a solid hemisphere H with » < a and z > 0, with uniform density
p. The total mass M = [, p dV = 2na’p/3. If we put R = (X,Y, Z):

1 p a w/2 27 )
X:—/xpdV:—/ / / xresinf dr df de
M Jy M Jo—o Jo=0 Jp=0

p a /2 2m
= — 7"3(17“/ sin29d0/ wdp =0.
A

Y =0 in a similar way.

a w/2 2 41 3
Z:%/O r3 dr/o SiHHCOSHdQ/O dgpz%%ﬁ%r:g,

i.e. the centre of mass is at R = (0,0, 3a/8).

4 Surfaces and Surface Integrals

4.1 Surfaces and Normals

For an appropriate smooth function f on % and a suitable constant ¢, the equation
f(r) = ¢ defines a smooth surface S. Consider any curve r(u) in S.

vf

au

By the chain rule, % (r(u)) =¥V f- j—;. This is zero, since the curve is in S and

f does not change along it. At any r on S with Vf # 0, there exist two linearly
independent tangent directions | to Vf. Hence

1. In the neighbourhood of this point, the equation indeed describes a surface (it
has two independent tangent directions).

2. Vf is normal to the surface at this point.
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Ezamples: f(r) = 2? + y* + 2% = ¢. For ¢ > 0, this describes a sphere of radius /c.
Vf=2y,z) ="2r

For ¢ = 0, the surface degenerates to a single point 0 in the first case, and to a double
cone in the second (it is singular at the apex 0, where V f = 0.

z

c=0

X

A surface S can be defined to have a boundary 0S consisting of a piecewise
smooth closed curve. Defining S as above but with z > 0, 95 is the circle 2% +y? = ¢
and z = 0 in the first two cases. A surface is bounded if it can be contained within
some solid sphere, and unbounded otherwise. A bounded surface with no boundary
is called closed.

At each point on a surface, there is a unit normal n (a normal of unit length) that
is unique up to a sign. The surface is called orientable if there is a consistent choice
of unit normal n which varies smoothly. We shall deal exclusively with orientable
surfaces, which rules out examples like the M6bius band:
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For an orientable surface, the unit normal is then determined everywhere by
a choice of sign. The choce of normal is called the orientation of the surface. For
simple examples, we can specify the orientation by referring to the outward or inward

normal:

OO Cacs

4.2 Parameterised Surfaces and Area

A surface S can also be defined by a position vector r(u,v) depending smoothly on
the parameters v and v. S is swept out as u and v vary in some region D.

or or
or = %&L + %51) + o-terms.

n

or

5. and % are tangent vectors to curves on S with v and u constant, respectively.

To define a surface, we need two linearly independent directions at each point, so we
require a regular parameterisation:

37“
3u 7& 0

and this defines a unit normal n on S. The small changes du, v produce a small
parallelogram on S, up to o—terms with vector area

ar 87’
where the 65 = | %=
n
A
51}%
S
5ug—§ ————————————— ’
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Note that with these conventions, the choice of the unit normal is determined
by the order of the parameters u and v. By summing and taking limits, the area of
S is

dS du dv,

where dS = g—i A g_z

Ezample: S being part of a sphere of radius a, parametrised by polar angles 0, ¢ (see
section 1.3).

r(0,¢) =a (coscpsin 0i + sin 0 sin ] + cos 8&) = ae,.

gg = aey, £y = COS Q(COS ©i+sin gpj) —sin Ok and i = asinfe,, where ¢, = —sin i+
coS ] Thus = a*sinfe,, where ¢, = n, the outward normal The scalar area

element is dS =aq sm@ do de. Suppose that S is the region 0 < 6 < a, 0 < ¢ < 27.

Then the area is . N
/ dgp/ dfa’sin § = 2mwa®(1 — cos ).
0 0

Checking this result, o = /2 results in a hemisphere of area 2ra? and o = 7 results

in a sphere of area 4mwa® (both of which are known results).

4.3 Surface Integrals of Vector Fields

Let S be a smooth surface defined by r(u,v) with S being the appropriate region in
(u,v) parameter space. Again, the order of the parameters specifies an orientation
for S equivalent to a choice of unit normal n. The surface integral of a vector field

F(r) over S with this orientation is defined by

L()w A()nw

:/DE(Z(U,U)) (%A%) du d
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0S

ou ov

By writing the integral over D as the limit of a sum over small rectangles dudv, the
integral over S becomes the limit of a sum of contributions

n

F(r)-6S = F(r) -n 8S

= F(r(u,v)) - <% A %) du dv + o-terms.

From the geometrical nature of the left hand side, the integral |, ¢ I'-dS is independent
of the parameterisation, for a given orientation. It is called the flux of F' through S.

is the vector area element.

Note that changing the orientation of S is equivalent to changing the sign of the
unit normal n, which is equivalent to changing the order of u and v in the definition
of S, which is also equivalent to changing the sign of any flux integral.

Ezample: For a sphere of radius a we found from r(6, ¢) in section 4.2 that g—g = aey,

I _ gsin ng. The vector area element is then dS = ndS = % A do dy =

Oy

or
dp
a’sinfe, df dp, where n = e, = r/a, the outward normal.

The fluid flux through a surface provides a physical example. The velocity field

u(r) of a fluid gives the motion of any small volume of fluid at r.

u(n)
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We assume that it depends smoothly upon r (note that it will also depend upon ¢ in
general). For any small area dS on the surface S, the volume of fluid crossing it in
time 0t, in the sense given by normal n, is the volume of the cylinder shown:

n uot

udt - ndS = dtu - 45, so the volume crossing the whole surface S in time dt is
ot ng-ﬁ = the flux of u, fsyd_S, is the rate of volume crossing S (i.e. the amount
per unit time).

Ezxample: uw = (—x,0, z) in Cartesian coordinates, and S is the section of a sphere
of radius a with 0 < ¢ <27 and 0 < 6 < «, as in the example in section 4.2.

n

dS = a*sinfn d dp, where n is the outward normal, n = r/a = (z,y,2)/a in
Cartesian coordinates. We have n-u =1 -u/a = (—2% + 2%)a = a(—sin® 0 cos® p +
cos®f), so

«a 27
/Q dS = / d@/ dpa®sin 6 [(cos® 0 — 1) cos® p + cos® 4]
0 0
«a 27
= / df a’sin§ [m(cos® @ — 1) + 27 cos® 6] , since / cos’p dp=m
0 0
= / df a*m(3cos* @ — 1)sinf = wa®[cos § — cos® 0] = ma® cos asin® o
0

is the flux of u through S, for a velocity field w.

Any change in parameterisation is done explicitly. Let r(u,v) and r(@, ) be two
regular parameterisations for the surface S. By the chain rule

or Orou  Or 0v

ou " oaou ovow ™
dr Orou Orodv

These imply that
or Or 0(u,v)dr Or
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The scalar area element is therefore

or Or or Or
dS =|— AN —|dudv=|—=AN—|du dv
au " au| " aa oo
since ‘% du dv = dii do.
The vector area element is
or Or dr  Or
d — A —du dv =—= A —=du dv
2T 0w Y T 5 N e
provided that (u,v) and (@,?) correspond to the same orientation on S, since then
a(,)
> 0.
O(u,v)

4.4 Comparing Line, Surface and Volume Integrals
4.4.1 Line and surface integrals and orientations

We have analogous definitions for integrals of scalar functions f or vector functions
F' along a curve C' or over a surface S:

Jo fds JoE-dr= | F-tds
[ f ds [ E-dS = [, FndD

independent of orientation | depend on orientation

f =1 gives length or area | from definition of integral or the choice

of unit tangent ¢ or normal n.

The integrals can be regarded directly as limits of sums. To evaluate them using

other parameterisations, use ds = % du, dr = dr Tedu, dS = |50 A gz du dv and
ds = = /\ 2L du dv. By convention, the limits on u and v 1ntegrals are in the

natural order f f with a < 8 except for the dr integral: we also allow o > 3 there if
necessary. Other kinds of integrals can be considered, for example [, F ds, [, f dS.
They can be reduced to previous cases, for instance a - ch ds = fc(g - F) ds.

4.4.2 Change of variables in ®? and R* revisited

Consider the special case of a surface S which is a subset of the plane: r(u,v) =
(x(u,v), y(u,v), 0) = % A 8— (O 0,J) with J = 8&”3. From the definition
in section 4.2, [¢ f(r)dS = f p f(r(u,v))|J| du dv and we recover the formula for
changing variables in §R2 found in sectlon 3.2 (with S — D, D — D" and dS — dA).

The results for 2 can be derived by starting from a smooth parameterisation

r(u,v,w) so that

or or or
%(M + %50 + a—wéw + 0 — terms.

The small changes du, dv, dw correspond to a cuboid in parameter space, producing

or

a parallelepiped:
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of volume 0V = %5’& : g—%év A g—iéw‘ = |J|du v dw. We deduce that the volume

element is dV' = |J|du dv dw where J = % : g—f A g—i = %. This is an alternative

derivation of the result in section 3.3.

5 Geometry of Curves and Surfaces

5.1 Curves, Curvature and Normals

Let r(s) be a curve parameterised by the arc length s. Since t(s) = % is a unit

tangent vector, t> = 1 = t - ' = 0 specifies a direction normal to the curve if ¢ # 0.
Let t' = kn where the unit vector n(s) is called the principal normal and k(s) is

called the curvature (we can make x positive by choosing an appropriate direction
for n). These quantities can vary from point to point on the curve.
Suppose that the curve can be Taylor expanded around s = 0:
r(s) = r(0) + s'(0) + 5s°r"(0) + O(s?)

= 7(0) + st|s—0 + =5*K|s—on + O(s?). (5.1)

N =N~

Compare this with the vector equation for a circle passing through r(0) with radius
a, in the plane defined by t and n, as shown:

By comparison with Eq. 5.1, we see that we can match a general curve to a
circle, to second order in arc length, by taking a = 1/k, the radius of curvature at

the point s = 0.
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In practice, for a curve r(u) given in terms of some parameter u, we can calculate
t,s,n,r by taking derivatives d/du and then using the Chain Rule to convert the
expression to the derivatives d/ds afterwards.

Given t(s) and n(s) we can extend to an orthonormal basis by defining b(s), the
binormal to be b=t A n

IS

The geometry of the curve is encoded in how this basis changes along it. This can
be specified by two scalar functions of arc length: the curvature x(s) and the torsion
7(s) ==V -n.

[Non-ezaminable and not lectured:] The torsion determines what the curve looks
like to third order in its Taylor expansion, and how the curve lifts out of the ¢t,n
plane. Analogously to curvature, one defines a radius of torsion o = 1/7. If a curve

is in a plane (and the curvature is non-zero), the torsion is zero. A helix has constant
torsion (and it is positive for a right-handed helix, and negative for a left-handed
one).

5.2 Surfaces and Intrinsic Geometry (non-examinable)

We can study the geometry of surfaces through the curves which lie on them. At
a given point P on a surface S, with normal n, consider the curve defined by the
intersection of S with a plane containing n:

If we move the plane, we also move the curve C produced by the intersection. Let x
be the curvature of C' at P, defined above. As the plane is rotated about n, we find
a Tange Kmin < K < Kmazr Where Ky, and kp., are the principal curvatures. Then

K = Kpinkmae 18 called the Gaussian curvature.

The Theorema FEgregium is that K is intrinsic to the surface S, i.e. it can be
expressed in terms of lengths, angles etc. which are measured entirely on the surface.
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This is the start of intrinsic geometry - embedding a surface in Euclidean space
determines length and angles on it, but then we study only geometric aspects of
this intrinsic structure. Eventually, we do away with this embedding altogether, in
Riemannian geometry and general relativity.

For an example using intrinsic geometry: consider a geodesic triangle D on a surface
S. This means that 9D consists of geodesics: the shortest curves between two points.
Let 01, 05, 05 be the interior angles (defined using scalar products of tangent vectors).
Then 01+ 6, +03 =+ [ p K dS is the Gauss-Bonnet theorem, generalising the angle
sum of a triangle to curved space.

S

We can check this theorem when S is a sphere of radius a, for which geodesics are
great circles. It’s easy to see that Kuin = Kmar = 1/a so K = 1/&2, a constant.
We have a family of geodesic triangles D, as shown, with 6, = «, 6, = 03 = 7/2.
Since K is constant over S, [, K dA = K x arecaof D = = (a’a) = a. Then
0, + 05 + 03 = ™ + «, agreeing with the prediction of the theorem. By contrast, the
extrinsic geometry is to do with how surfaces are embedded in the space.

6 Grad, Div and Curl

6.1 Definitions and Notation
B

o

We regard the gradient V f as obtained from a scalar field f(r) by applying V = ¢;
for any Cartesian coordinates z; and orthonormal basis ¢; (see section 1.1), or

.0 .0 0 o o0 0
Z_Z_x—i_‘l_y—i_ké_(%’a_y’&)'
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Let us use basis vectors that are orthonormal and right-handed: e, = 0;; and
€; N\ ej = €ijkCy-

V (nabla, or del) is both an operator and a vector. We can therefore apply it to a
vector field F(r) = Fi(r)e,; using either the scalar or vector product. The divergence,
or div of F is:

0 OF;
V-F= (giﬁ_xi) - (Fle;) = oz,
and is a scalar field.
The curl of F is defined to be
0 OF;
VAE=(¢g 89@) (Fje;) = Eijka_xjgk

and is a vector field. It can also be written as

€1 €9 €3
0 9 0
Ox1 Oxo Oxz
Fi Fy F3

Example: F = xze®1 + y?sin a:i + xyzé.

V-F= 5 ( )+ aa(y smx)+%(xyz):ez+2ysinx+xy.
VAF = (82 (xyz) — —(y smx)) i+ (E)az( )—%(xyz))i—i—
( (y*sin ) ;y (xez)) k
=221+ (ve” — yz)i + 42 cos zk.
Since V is an operator, ordering is important, so F -V = Fiai is a scalar

differential operator and FAYV = ekekaZ 88 is a vector differential operator. In the
example just above, F -V = xe® + y? Slna: s Hayzg; 82
Grad, div and curl are linear dlfferentlal operators

VA +nug) = AV f +uVg
V-(AE+pG) = V- F+u¥V -G
VAAE+pG) = AVAE+pVAG

for any constants A and p. Grad and div can be analogously defined in any dimension
n, but curl is specific to n = 3 because it uses the vector product.
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Examples: Consider r = z;¢;, * = x;70; = 27’% = 2x;, or g—; = x;/r.

1. Vre = elaa (r*) = e;ar® 12 = e.ar®lay fr = ar® % = ar®" ¢
0 : r r

2. Z‘Ezgi? = 0y = 3.

6.2 Leibniz Properties

Let us take scalar fields f and g and vector fields F', G. Their Leibniz properties can
be proved using index notation. The properties

V(fg) = (Nf)g+ f(Vg),
V- (fEF) = (Nf) - F+ f(V-F) and
VAE)=(Nf)NE+ fF(YANE)

are frequently useful. There are also some less commonly used properties too:

VE-G)=FANNANG+GANNNANF)+(F-V)G+(G-V)F (6.1)
VAENG) =FEN-G) -GNV -F)+(G-V)FE-(F-V)G
V- (FANG)=(VYAF)-G—F-(VYAG).

Ezxamples:

1. z (E/\Q) (F A G) (Eka Gk) Ekijg_isz - Eeﬂk%—%

2. [EN(NANG) = eiijj(z/\ G)i = €kij€kpg L) e = (5 djq 5@!15317) F %% =

J 8 J 8:1:
an (9Gi
F}a—xz — F}% Hence

7% _(r. v,

£ ox; -

ENNAG): = (6.2)

Taking Eq. 6.2 (along with the F' <> G counterpart and substituting into the
right hand side of Eq. 6.1 yields its left hand side, i.e. the formula for
OF; 0G,

V(E- Q) = 526, + F 52,

Using the Leibniz properties, we can extend our results to some previous examples:

Ezxamples:

LV-(ror) =Y r+r*Y -r=(ar*?)-r+r*3) = (a+3)r"
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6.3 Second Order Derivatives

If F =V, the field is called conservative. If VA F = 0, a field is called or irrotational.
Two different combinations of grad, div and curl vanish identically: for any scalar
field f, VA (Vf) = 0 and for any vector field A, V- (V A A) = 0. Both of these

results follow from the symmetry of mixed partial derivatives:

o2 f 82A,

Em‘jm =Y sz‘jm =
The converse of each result also holds for fields defined on all of R?:

VANF=0&F=Vf

for some f, a scalar potential. Also, again for H defined on' 33,

V- H=0H=VAA,

for some vector potential A. In this case, H is called solenoidal.

If F or H are defined only on subsets of 12, then f or A may be defined only on
smaller subsets (see later).
The Laplacian operator is defined by

o o* 9

2 v
V= 0x,;07; o (8x2 i Oy? + 822)'

1<

-V =

On a scalar field, V2f = V - (Vf) whereas on a vector field,
V2A = V(V-A4)~ VA (VA A).

Again, this may be checked by using components.

7 Integral Theorems

The following closely-related results generalise the Fundamental Theorem of calculus:
that integration is the inverse of differentiation. To generalise to higher dimensions,
we need the right kind of derivative to match the right kind of integral.

7.1 Statements and Examples
7.1.1 Green’s theorem (in the plane)
For smooth functions P(z,y) and Q(z,y):

9Q 0P

A(a—a—y) dA:/C(de—I—Q dy),

'We shall see in section 8.2 how this can change for a field which is not defined on all of R3.
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where A is a bounded region in the (x,y) plane with boundary 0A = C, a piecewise
smooth, non-intersecting closed curve, traversed anti-clockwise.

Ezxamples:

L. P=2a%yand Q = xy® = [,(y* —2?) dA = [, 2%y dov + xy® dy. If C is the

parabola 3> = 4ax and the line # = a, both with 2a > y > —2a, then each

integral above gives %a‘l (see Examples Sheet I).

y C

2=Aax

2. If Ais a rectangle with 0 < x < a,0 < y < b, then Green’s theorem reduces
immediately to the Fundamental Theorem of Calculus for integrals in one di-
mension:

a b a .
fA—%—g dA = [ dx [, dy(—%—lyj) = [, dz[=P(x,b) + P(x,0)] = [, P dz, since
only the horizontal segments contribute.

y

A

b

a'X

b a b .
Also, [, g—g dA = [ dy [, dx(aa—g) = [, [Q(a,z) - Q(0,y)] = [, Qdy, since only
the vertical segments contribute. Adding these two integrals gives the result in
the theorem.

Green’s theorem also holds for a bounded region A with the boundary A con-
sisting of a number of disconnected components (each being a piecewise smooth, non-
intersecting closed curve) with anti-clockwise orientations on the exterior boundary
and clockwise orientations on the interior boundary. For example,

G
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These can be related to the case of a single boundary component using the construc-
tion from section 2.3:

©-©

since the horizontal parts cancel in the opposite directions (in the limit that they are
brought close together).

7.1.2 Stokes’ theorem

For a smooth vector field £(r):

/Z/\E-dﬁz/ﬂdz,
S C

where S is a bounded smooth surface with boundary 95 = C, a piecewise smooth
curve, and where S and C' have compatible orientations. In detail: n is normal to S
(dS =n dS), t is tangent to C' (dr =t ds). t and n have compatible orientations if
t An points out of S. Alternatively, moving around C' in direction t with n ‘up’ =
that S is on the left.

C

1=

tn

The theorem also holds if 0S5 consists of a number of disconnected piecewise
smooth closed curves, with the same rule determining the orientation on each com-
ponent.
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FExample: Take S to be the section of a sphere of radius a: 0 <86 < a:

n=6&

dS = a’sinfe, df dp, F = (0,22,0) = VA F = (—x,0,2), as in section 4.3 with
u=VAF. Thus [(VAF-dS = ma’cosasina. The boundary is 95 = C:
(p) = (asinacosg, asinasing, acosa), 0 < ¢ < 27.

1=

27
F-dr = @ Sin a cos ¢ @ cos qya sin v cos p dg

~~

x ? dy

27
= a®sin? a cos a / cos® ¢ dp = ma® sin? o cos a.
0

-39 —




Copyright © 2016 University of Cambridge. Not to be quoted or reproduced without permission.

Example: Take S to be the section of the cone z? = 22 + 9% a < z < b (where
b > a > 0). In cylindrical polar coordinates r(p, ) = (pcosp, psing, p), a < p <
b, 0 < p < 2m.

or Or . . .
5, "\ gg = (cosg,sing, 1) A (=psing, peosp,0) = (=pcos g, —psing, p)
p Oy

= dS = (—pcosp, —psingp, p) dp dyp,

which gives the normal n as shown on the diagram. Taking F' = (0,22,0) = VAF =
(—x,0,2).

VAF-dS = (p*cos’ p + p?) dp dg

ﬁ»/SZ/\E ds = /dp/%dwp (3/2 + cos2p/2) = n(b° — a*).

The boundary 0S = C, — C,, where the circles have the orientations as shown.

For a circle of radius R, Cr : 7 = (Rcosy, Rsing,R) 0 < ¢ < 21 = 1'(p) =
. 2m

(—Rsin ¢, Rcos ,0). Then fcRE'df = ;" R*cos® ¢ dp = TR?, hence [, F -dr =

beE ~dr — fCa F-dr = n(b® — a®). For the orientations, we look down the z—axis

and n points upwards.

7.1.3 Divergence, or Gauss’ theorem

For a smooth vector field F(r),

/Z-Edvz/ﬂ-dﬁ
C S
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where V' is a bounded volume with boundary 0V = S, a piecewise smooth closed
surface with normal n pointing outwards.

Example: Take V to be the solid hemisphere 22 +y? + 22 < a?, 2 > 0. OV =S =
S1(hemisphere) + Sy (disc).

S

n

F =1(0,0,z4a) = V-F =1. Then, [,V -F dV = 2/3ma’, the volume of the
hemisphere.

On Si: dS =ndS = (x,y,2)/a dS.

F-dS = z(z+a)/a dS = acosf(cosd + 1)a*sin 0 df de.

2w /2
= [ F-dS = / dpa® / df sin 0(cos? 6 + cos )
S1 0 0

/2
1 1 5
= 2ra® [—§ cos® 6 — > cos? 0] ) = §7T0J3.

On Sy : dS =ndS = —(0,0,1) dS. F-dS = —a dS and so fSQE-dﬁ = —ma’.
Hence fSl F-dS+ fSQ F-dS =5/3na® — wa® = 2/3wa®, agreeing with the prediction
of the theorem.

7.2 Relating and Proving the Integral Theorems

7.2.1 Proving Green’s theorem from Stokes’ theorem or the 2d diver-
gence theorem

Let A be a region in the (z,y) plane with boundary C' = A parameterised by arc
length, with the sense shown: (z(s),y(s),0):

n

t = (dx/ds,dy/ds,0) is the unit tangent to C' and n = (dy/ds, —dxz/ds,0) is the unit
normal to C' out of A. n =1t Ak, where k£ = (0,0, 1).

— 41 —



Copyright © 2016 University of Cambridge. Not to be quoted or reproduced without permission.

(0,0,%2 — 8C). Then,

/CE-zds:/Cde+Qdy (7.1)

and

_ [oQ _or
/A(Z-QdA_/A(ax 5,) 1A (7.2)

Thus an application of Stokes’ theorem for F' equates the two left-hand sides of
Eqgs. 7.1, 7.2 whereas Greens theorem equates the two right-hand sides. Therefore,

’ Stokes’ theorem=-Green’s theorem\

Now consider G = (Q,—P,0) =V -G = % - ‘3—5 We have

/Q-@ds:/de+Qdy (7.3)
C C
nd 0Q 0P

Again, Green’s theorem equates the right hand sides of Eqs. 7.3,7.4 whereas the
two-dimensional version of the divergence theorem for a vector field G in the (x,y)

/Z'QdA:/ G - nds (7.5)
A C=8A

relates the left-hand sides:

plane

Green’s theorem<<2d divergence theorem‘

7.2.2 Proving Green’s theorem by Proving the 2d Divergence Theorem

We seek to prove the 2d divergence theorem [,V -G dA = [._,, G - nds, where
n is the outward normal. It suffices to consider G = G(z,y)j, because a field H in
the direction ¢ can be treated similarly, exchanging  and y, and then we obtain a
general vector field from a linear combination of the two. Then,

/z-gdA:/( 8—Gdy> i,
A X Yzay

We have chosen this order of integration because V - G = %. Depending on x, the
range Y, may be a single interval or a union of intervals:
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X

Consider x in some interval I such that Y, is a single interval y,(z) > y > y_(x),

corresponding to the boundary segments C'y as we have drawn above.

v, Oy — dy = G(z,y4(x)) — G(z,y_(x))

oG /y+ @) o3
y—(x) dy

for any x in I.

n 4
e
0s
OnCy:n-j>0anddr=n-jds
)
X
. C_
. cm i< = _—n-q
- x OnC_:n-j<0anddx n-jds
o
Hence

For a region A of ‘simple shape’
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as shown, we take I = X and 0A = C, + C_ and the integrals over C'. combine to
give | oG - n ds, proving the result.
For regions A of more general shape, either:

1. Divide A into simpler subsets which do have the property above. The result
holds on each subset A; = it holds on A

2. Proceed directly, even if Y, is a sum of intervals and get a sum over all boundary
segments corresponding to z in the range [
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7.2.3 Green’s theorem = Stokes’ theorem

Consider a parameterised surface given by r(u,v), corresponding to a region A in the
u, v plane. Suppose the boundaries are given by 0A : u(t),v(t) and 9S : r(u(t),v(t))
for parameter t.

\
A
a5 0A
U
For a smooth vector field F(r), we define
or or
Fu—E'%, Fv—E'%‘
Then,
orF, O0F, or Or
_ — F (= — —=). .
ou v (VAE) <8u 81)) (7.6)

To show this, we note that

OF, _ 0 (pon) _ORdnon it
ou  Ou \" a Jdzx; Ju v "Oudv”

ov
Thus, we obtain that

OF, OF, 0x;0x (8E aFj) -

ou  Ov  Ou Ov axj_ ox;
The right-hand side of Eq. 7.6 is

@_@>_ O0F;  Oxy0xy _ Ox; 0wy (OF;  OF; (7.8)
ou ou 0x; Sy By ou ov dx;  0Ox; )’ )

(VAE)-(

by using an ee identity. We see that the right-hand sides of Eq. 7.8 and 7.7 are equal,
therefore we have shown Eq. 7.6.
We now integrate each side of Eq. 7.6 with respect to du dv:

oF, OF,
Y- % )dA= | VAF-dS. 7.9
/A ( Ju ov ) /S_ - (7.9)
By the Chain Rule,
du dv dr
Fu_ v T, — F.—
a v T
on the boundary. Integrating with respect to ¢, we obtain:
/ Fydu+ F,dv = / F-dr. (7.10)
A a8

— 45 —



Copyright © 2016 University of Cambridge. Not to be quoted or reproduced without permission.

1%
~ /o«%
0))

Green’s theorem equates the left-hand sides of Eqs. 7.9,7.10 whereas Stokes” equates
their right-hand sides.

The conclusion is that the left hand sides being equal (i.e. Green’s theorem for
F;, F, on A & Stokes’ theorem for F on S).

7.2.4 Proving the divergence (or Gauss’) theorem in 3d: outline

We extend the approach in section 7.2.2 from two dimensions to three. Since the
divergence theorem is linear in the vector field, we consider F' = F(x,y, 2)k (again,
we provide vector fields in other directions and treat them similarly, taking linear
combinations to get the general case). With V - F' = %—f, we consider the integral

/Z~EdV:/ / 8_F dA,
14 D \JZy, 0z

where Z,, is the range of the z integration for fixed z,y (in general this will be the
union of disjoint intervals).

/e

The boundary surface S = 9V can be divided into surfaces S on which +k-n > 0.
Sy is given by z = z4 (z,y) at the ends of some interval in Z,,.

k n

From the diagram, A = +k - n 45 on Sy (the signs are given
by the fact that n is always the outward normal). The integral
of %—5 then gives

F(ZL‘,y,Z_;,_(l’,y)) - F(I,y, Z_(I,y))

and the integral of this over D can be written fs+ Fk-ndS+
Jg Fk-ndS, orin total [, FdS, as required.

n
i oA\
5

.
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8 Some Applications of Integral Theorems

8.1 Integral Expressions of Div and Curl

The divergence theorem for a vector field F applied to a small volume V' containing
a point r, gives

/avE'dﬁ: /VZ'EW“ (V- E)(ro)V.

This becomes exact on taking the limit at r:
V- F =limy_ob [, F - dS.

Similarly, Stokes” theorem applied to a small part of a plane with area A and normal

n gives
/ Fedr— /(w@ ‘n dA~ (n-V A F)(rg)A.
0A A
n
=
CA oty O
At 1o,

n-VAFE= hmA—>0%faAE df

These are manifestly coordinate independent definitions of div and curl.
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FExamples: The expressions above allow interpretations of V- u and V A u when wu is

a velocity field, describing fluid flow.

1. Divergence: we know from section 4.3 that |, g u-dS is the rate of fluid crossing

0S (i.e. per unit time). Taking V' to be the volume occupied by a fixed material
quantity of fluid, we therefore have V = /. 55 - dS (for a boundary 9V at some
fixed time interval, 0tV is the approximate volume that crosses in time ot,
as the volume occupied by the fixed material quantity changes). Then, from
above, at vy, V-u = limv_mV/V, the local (i.e. at ;) relative rate of change
of volume occupied by a fixed material quantity of fluid.

For example, u(r) = ar, fluid flows out of the origin. V -u = 3a, i.e. the
volume increases at the same constant relative rate everywhere.

2. Curl: Take the plane area A to be a disc of radius a.

n

= |

faA@ ~dr = faAQ -t ds = (2ma)x the average of u - ¢, the component tangential
to the boundary = 2wa*w, where we define w = 1/a x (the average of u - t), as
the local angular velocity around n. Then

1
n-VAu= lima_>0—2(27ra2w) = 2w
Ta

at 1, i.e. twice the local rate of rotation. For example, u = w A r, rigid motion
with constant angular velocity w about 0, and VA (w Ar) = 2w, twice the rate
of rotation.

8.2

Conservative and Irrotational Fields, and Scalar Potentials

Consider three ways to define a vector field £, (A) and (B) are equivalent definitions

of a conservative vector field, and (C) defines an irrotational field:

(A) F = V[ for some scalar field f(r).
(B) J. o L'+ dr is independent of C, for some given end points and orienta-
tion.

(C)VAF=0.

(A), (B) and (C) are all equivalent for F(r) on ®*. (A)=(B) with [, F-dr = f(b) —

f(a) was shown in section 2.4. (A)=(C) was shown in section 6.3 (via VAV f =0

)
We shall now show that (C)=-(B) and (B)=-(A) in R*. Given F(r) obeying (C)

on R3, let C' and C be any two curves from a — b:
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O

a  C a 08

If S is any surface with boundary 95 = C' — C, JoF-dr— [ F-dr= [, F-dr=
J¢ VY A F -dS by Stokes’ theorem. Hence, (C)=(B).

To show (B)=(A), we must define f(r). Let us fix a and define f(r) = [, F(r')-
dr' for any curve C from a to r (r’ is a dummy variable). The integral is independent
of C'if (B) holds, so that f(r) is well defined.

oC r+o&
M

For a small change from r to r + dr, there is a small extension of C' by 6C' as shown,
and

f(£+5£):/c+wﬂdt z/CE-dz +/50E-dt
= f(r) + E(r) - o1 + o(|dr]).

= 0f = F(r) - or + o(|r]). (8.1)

But we have 6 f = Vf - dr + o(|dr|) from the definition of grad. Since this holds for
any or, we have that £ = V f and hence (B)=(A), as claimed.

If F(r) is defined ans satisfies (C) only on a subset D of %?, then (B) and (A) will
still hold on D if it is simply connected. By definition, this means that any curves C

and C with fixed end-points can be smoothly deformed into one another in D. Such
a deformation generates a smooth surface S with S = C' — C, so the argument for
(C)=-(B) holds as above and (B)=-(A) still follows.

If D is not simply connected, then the construction above produces a multi-
valued scalar field f(r) on D in general. However, we can always choose to restrict
to a simply connected subset Dy € D such that f(r) will be single-valued on Dy.
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Ezample: F = (—y/(2* +y?),z/(z* + y?*),0) is well-defined and obeys VA F = 0 on
D = R? — {z-axis}, which is not simply connected.

C

4 (p,usual polar
angle

F = V[ where f = tan"'(y/x) = ¢ is multi-valued on D, but single-valued on

Dy = 13 — {half plane z > 0, y = 0}, in other words simply connected on Dj.

8.3 Comnservation Laws

Consider time-dependent scalar and vector fields p(r, ) and j(r, ) obeying the conservation equation

dp .
E‘FZ'LZ—O.

Let V be a fixed t—independent volume with boundary S = 0V. Then Q(t) =
[y p(r,t) dV satisfies

dQ [ Op B : B 4
o Vath— /VzldV— /Sldﬁ

by the divergence theorem at fixed t.

IS

Q(t)

Q(t) is the total amount of some quantity in V'; p(r, t) is the density for this quantity,
with p(r,t)éV the amount in a small volume 0V’; the flux of j out of S gives the rate
of quantity leaving V', according to the equation above.
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Examples:

1. Conservation of electric charge. p(r,t) is the charge density, p(r,t)dV is the
charge in a small volume 6V. Q(?) is the total charge in V.. j(r,) is the electric
current density, and j - 0.5 is the charge flowing through 0.5 per unit time.

n

-

2. Conservation of mass for a fluid. p(r,t) is the mass density and j = pu with
u(r, t) being a fluid velocity field. By extension of the discussion of fluid volume
in section 4.3, pudt - no.S is the mass of fluid that crosses 0.5 in time ¢, so

% =—/ ¢J +dS does indeed imply conservation of mass.

udt

(=}

The conservation equation in this case is

dp
E*‘Z‘(PH)—O'

For the case in which p is constant and uniform (i.e. independent or r and ),

this becomes V - u = 0: the fluid is then called incompressible.

Returning to the general case, take V' to be a solid sphere of radius R, S = 0V
is a sphere and |r| = R. If |j| — 0 sufficiently rapidly as |[r| = R — oo, then
Q= fw p(r,t) dV is constant = Q) = 0 and so, for example, the total mass or total
charge is conserved.

9 Othorgonal Curvilinear Coordinates

9.1 Line, Area and Volume Elements

For coordinates u, v, w on i3, we have a smooth function r(u, v, w) with dr = g—i du+

or or faat e Or Or or :
5. dv+ 5= dw. For a good parameterisation, we require 5=, 5= and 5= to be linearly
independent

or (or Or
‘i’%(%A%)*O
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(see the Jacobian condition in section 4.4.2). These vectors are tangent to the curves
parameterised by u, v and w when the other two are held fixed.

We say that u, v, w are orthogonal curvilinear coodinates if the tangent vectors

9 — hee,, L = hye,, with

=u’ Qv =V Qw =w?

forming an orthonormal and right-handed

above are orthogonal. Then, we can set % = hy,e
hy >0, hy >0, hyy > 0 and ¢, e,, €,
basis (right-handed meaning e, /\ €, which may be achieved by ordering the

coordinates appropriately). In these coordinates, the line element is

'LU?

dr = hye, du+ hye, dv+ hye, dw

and the positive scale factors hy, h,, h,, determine the changes in length along each
orthogonal direction resulting from changes in u, v and w:

6% = hZ2(6u)* + h2(0v)? + h2 (6w)? + o-terms

Ezxamples:

1. Cartesian coordinates 7(z,y, 2) = xi + yi—l— zk. hy = hy ="h, =1 ¢, = i,
e, =J,e. =k

2. Cylindrical polar coordinates r(p,p, z) = p(cos @i + sin (pi) + 2k, hy, = h, =
L,hy = p. e,, €, and ¢, are as in section 1.3.

3. Spherical polar coordinates r(r,0,p) = r(cos psinfi + sin @sin Gi + cos Ok),

hy. =1,hg =1 ,h, =rsind. e, ey, e, are as in section 1.3.

Consider a surface with w constant (say), parameterised by u and v. The vector
% A % du dv (a general formula) = hye, A hye, du dv =

hyhye,, du dv, for orthogonal coordinates.

vk €y

area element is dS =

€y

e, 18 normal to the surface and we can see that 4.5 is a small rectangle with sides

w

h,6u and h,dv, approximately. The volume element dV = o, <% A g—i) du dv dw =

ou

hyhyhy du dv dw, which corresponds to a small cuboid with sides h,du, h,0v and
hy,0w, approximately.

9.2 Grad, Div and Curl

Consider f(r(u,v,w)) and compare
of

f fcl + ——dw

df = T ow
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with
= (Yf) - dr.

(this is the coordinate independent definition of grad, see section 1.1). From the
expression for dr above, and since the basis vectors are orthonormal,

1 aof 1 9Of 1 9Of
Vf=—e, —+—e —— +—e, ——
Vi huguﬁu + hvg” ov * hwgwﬁw
is the gradient in general orthogonal curvilinear coordinates. To apply this, we need
to know the various h factors.

Example: f = rsinf cos g in spherical polar coordinates. Then,

(=rsinfsinp)e,

1 1
Vf = sinfcos e, + —(rcosf cos p)ey + —
r rsin 6

= cos p(sinfe, + cosfe,) — sinpe,,.

Now consider the differential operator

G 1 0 1 0
—e

V=g, Y P %a,

applied to some vector field F' = Fe, + Fie, + F,e,, using scalar or vector products
to obtain div or curl. The results are similar to standard Cartesian formulae but
with extra h factors appearing here and there.

1
VAE = e L%(thw) — %(thv)} e, + (two similar terms)
hugu hv§y hwgw
- ! 9 o o (9.1)

ou v ow )
fuhola | 4 b Fy b F

and

1 0 -
V-F= e {%(hthFu) + (two similar terms)| . (9.2)

There are a number of ways these can be derived?:

1. Apply V- or VA and differentiate the basis vectors explicitly. This is most
useful when we have explicit formulae for the basis vectors (see example sheet
I1I).

2. Use an algebraic approach: first, apply V- or VA but calculate the result by
first writing F' in terms of Vu, Vv, Vw, in a suitable way and using VAV f =
V-(¥Af)=0

2All of which are non-examinable.
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3. Use integral expressions for div and curl as in section 8.1. This approach gives
good geometric insight.

To follow (3) for curl, consider the area defined by changes du and Jv with w fixed.
C' is the small circuit shown,

the boundary of an area of approximate size h,h,dudv, with a normal e,. We use
the standard approximate expressions for integrals along each segment C, and the
fact that h,0u and h,0, are the lengths of the segments, and work to order judv (in
order to divide by the area and take the limit) and so we need to keep track of the
arguments of h,, h, and F,, F,: the segments of C' in turn are:

/ F-dr = F,h,(u,v)0u+ F,hy(u+ du,v)ov — F,hy(u, v + dv)ou — F,hy(u, v)dv
C

2 [%(hvﬂ,) — %(huFu)} dudv. (9.3)

Dividing by area and taking the limit, we get, from section 8.1

1 0 0
o TAE = o [ S = S (F)
as claimed in Eq. 9.1.
We take a similar approach for div: consider an approximate cuboid volume
defined by the changes du, ov, dw with boundary S.

AgN

y S
&
/E- dS =~ [hyhy Fy(u, v, w + dw) — hyhyFy(u, v, w)] dudv + two similar terms
s
0

~ a—(huhUFw)(Su(Sv(Sw + two similar terms.
w
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Then, dividing by 6V = h,h,h,0udévéw and taking the limit gives the formula for
V - F above.

In this course, we need to know how to apply these formulae in particular coor-
dinate systems.

Example: A = %tan g% (6 # 7) in spherical polars.

] e, Tep rsin@ggo ] 5 ]
VANA= % a% % = e.— (251112(9/2)) = —e¢

25in 6 25in 0" 0 2
TEREN 0 rsind(ttan(g/2)| T "

T

re

10 Gauss’ Law and Poisson’s Equation

10.1 Laws of Gravitation

Consider a distribution of mass producing a gravitational force F(r) on a point mass
m at r. The total force is a sum of contributions from each part of the distribu-
tion, and is proportional to m. Setting F(r) = mg(r) defines a vector field g(r),
the gravitational field, or force per unit mass, or acceleration due to gravity. The

/g-dfz()
o2

/g-d_: —ArGM
o2

is Gauss’ Law in integral form for any closed surface S, which is the boundary of

gravitational field is conservative:

for any closed curve C.

volume V' with M being the total mass contained in V. G is Newton’s gravitational
constant. These equations determine g(r) from the mass distribution. In particular,
Newton’s law of gravitation follows from Gauss’ Law for the flux of g as written
above, together with an assumption about symmetry.

Consider a total mass M distributed with spherical symmetry about 0, and all
of the mass contained within a radius » = a. Spherical symmetry implies that
g(r) = g(r)r, with 7 = r/|r| being a radial unit vector and g(r) being some scalar

function.

n=r

Sir=R
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Consider Gauss’ Law with S being a sphere of radius r = R > a. The outward
normal is 7.

Lgdﬁzémmf@wzlkmmszmﬁgm

by using spherical symmetry. Then, using Gauss’ Law,

GM
Mﬁﬂm:—M@W$ﬂm:—R2
for any R > a, or
GM .
g(r) = — o (r >a).
The gravitational force on a mass m at r is therefore F(r) = —GMmz/r%. In

the limit a — 0 we get a point mass M at the origin 0 and we recover Newton’s Law
of Gravitation for point masses.

For any a, the field and the force for r > a depends only on the total mass M,
assuming spherical symmetry (and no mass in 7 > a). This simple behaviour means
that we can identify the gravitational field that keeps the moon in orbit (where the
earth is approximately point-like) with the one that pulls an apple from a tree (where
the earth is certainly not point-like).

The condition [, g - dr = 0 for any closed C' can be re-written [V A gdS = 0
for any S with S = C by Stokes’ theorem. Since S is arbitrary, this < V A g = 0.
In our above example with spherical symmetry, V A g = 0 automatically.

If the mass distribution is not sufficiently symmetrical, it is difficult to solve for
g(r) from Gauss’ Law in integral form, but it can be re-cast in differential form.
Suppose that the mass M arises from a mass density p(r). Then

/g-dﬁz—47TGM:>/Z-ng:—47TG/p(£) av
S v v

with S = 9V by Gauss’ theorem = [ (V- g+ 47Gp) dV = 0 for any volume V,
hence
= Vg = —4rGp,

Gauss’ law in differential form. Furthermore, since V. A g = 0, we can introduce the

gravitational potential ¢(r) with g = —V and then Gauss’ law becomes

V2p = 47Gp,

Poisson’s equation. In the previous case with spherical symmetry, we can choose
o(r) = —=GM/r for r > a. It obeys the boundary condition ¢ — 0 as r — oc.
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10.2 Laws of Electrostatics

Consider a distribution of electric charges at rest. They produce a force on a charge
a at rest at r which is proportional to ¢: F' = qE(r), where E(r) is the electric field
(a vector field), or force per unit charge.

The electric field obeys fc E - dr =0 for any closed curve C, i.e. E(r) is conser-

/Qc@:Q
S €o

for any closed surface S which is the boundary of a volume V', with ) being the total

vative. Also, it obeys Gauss’ Law:

charge contained within V. ¢; is the permittivity of free space, a constant of nature.

Mathematically speaking, this is identical to the gravitational case in section 10.1,
and the laws above can be re-expressed in differential form in the same way: VAE = 0
and

v.e="
€o

(Gauss’ Law in differential form), where p(r) is the electric charge density. these
can be re-expressed as £ = —V, with ¢(r) being the electrostatic potential and

V29 = —p/ey, Poisson’s equation.

For example: take a total charge @) distributed with spherical symmetry about
0 and all of the charge being contained within a radius r = a. We solve this using
Gauss’ Law in integral form, just as in the gravitational case. Thus,

Q r
E(r) = =
Elr) dmeq 12
for r > a and
(r) 01
r) = -
L dmeg r

we obtain a point charge at 0 in the limit a — 0. from this result for £, we recover
Coulomb’s Law for the force on another point charge ¢ at r:

Fogp=19L
Adrreqy r?
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Example:

The electric field due to a line of charge. ¢ is the charge per unit
length along the z—axis. We have cylindrical symmetry, but here
we shall use r for the radial coordinate in cylindrical polar coor- n Zz
dinates. E(r) = E(r)f by symmetry. We apply Gauss’ law in
integral form to a cylinder of radius R and length [ as shown.

/E -dS = 2rRIE(R) = ol /€o,
s ~ . n=p
total charge inside cylinder - =
where there is no contribution from the end-caps. Thus, '
o 1

E(r) = -7 > 0).

E(r) 21eq rf (r )
10.3 Poisson’s Equation and Laplace’s Equation
Consider VZp = —p: we aim to solve for ¢(r) given p(r), with suitable boundary

conditions. We saw this above for p — —47Gp (gravitation) and p — p/eq (electro-
statics). For p = 0, we get Laplace’s equation VZ¢ = 0, which crops up many times

in physics and maths.

One example is irrotational and incompressible fluid flow. The velocity w(r)
satisfies VA u = 0 = u = Vo, where ¢ is the velocity potential and V- u = 0 =
Vip = 0.

It also occurs in two dimensions or greater than three dimensions as well® Ex-

pressions for V2 are available for non-Cartesian coordinates, but they can be rather
complicated.

We shall mainly be concerned with explicit solutions with spherical or cylindrical
symmetry in three dimensions, the latter being equivalent to solutions with circular
symmetry in two dimensions. Let us use r for the radial coordinate in either spherical
or cylindrical polar coordinates, then the solution ¢(r) has spherical or cylindrical
symmetry and YV = ¢'(r)f. Laplace’s equation V?¢ = 0 then becomes an ordinary
differential equation for o(r):

1. For spherical symmetry,

2 1 A
90,/+—S0/:—2(7"290,)/:O:>g0:—+3
r r r
is the general solution.
2. For cylindrical symmetry,
1 1
¢t =~ (1) =0= ¢ =Alogr+B

3Note that V2 = ~2_ for Cartesian coordinates in R".
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is the general solution.

Solutions to Poisson’s equation can be obtained in a similar way (i.e. by integrating
the differential equation directly) or by adding particular integrals to the discussions
above.

Example: Consider spherically symmetric solutions of V2o = —py, a constant. Note
that from section 6.2, V2(r®) = a(a + 1)r*"% so a = 2 gives the particular integral
—% por?. The general solution with spherical symmetry is then

A 1
p(r) = —+B - EPOT2
L,_/ ——

general solution of Laplace’s equation  particular integral

For a unique solution to Poisson’s (or Laplace’s) equation, we must specify the
boundary conditions. If ¢ is defined in all of %%, we often require ¢ — 0 as |r| — .
If ¢ is a solution on a bounded volume V', then there are two common kinds of
boundary condition on 9V:

1. Specify ¢: a Dirichlet condition

2. Specify? %ﬁ =n-V¢: a Neumann condition, where n is an outward normal on

ov.

The choice of boundary condition depends on the physical content, for example
specifying dyp/0n corresponds to specifying the normal component of g or E. We
can also specify different boundary conditions on different boundary components.

4Notice the new notation of a derivative with respect to a vector!
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Ezample: We seek a spherical symmetric ¢(r) with

—po r<a
Vi =
4 { 0 r>a’

where pg is a constant and ¢ is non-singular at r = 0, p(r — 00) — 0, and ¢ and ¢’
are continuous at r = a. From above, the general solution is

_[AFEB-bw?  r<a
T { Clr+ 0 r>a

The physical interpretation is that ¢ is the gravitational potential inside and outside
a planet of constant density pg, radius a and total mass M. We restore gravitational
conventions by replacing py — —4nGpg and write the results above in terms of
M = 4/3ma3py. A and D are fixed to be zero by the boundary conditions at r = 0, cc.

The matching at r = a implies
1 2
p: B+ 647er0a =C/a

1
o +§47TGp0a = —C/a?

[ GM/(2a) ((r/a)* —3) r<a
:>g0(r)_{ —~GM/r r>a

The gravitational field g = —V¢ = g(r)e, with

o) =) ={ "L T

o(r) -g[r]: inward acceleration
1.0t
_0.6_
0.8
_0.8_
0.6
_‘].0_
0.4¢
L2 0.2
—1.4f r i | | | E
0:5 10 1:5 2:0; 0.5 1.0 1.6 2.0 4

In the left-hand panel, we have fixed GM/a = 1 in the vertical axis.
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Ezample: An alternative solution is to apply Gauss’ Law for a flux of g = g(r)e, out
of S, a sphere of radius R. R > a has already been covered in section 10.1 (the result
is independent of how the mass is distributed, provided there is spherical symmetry).

For R < a, we get

/g -dS = 4t R*g(R) = —47nG M(R/a)* = g(R) = ~GMR/a?,
S_ N’

mass in R<a

as we found from Poisson’s equation.

In general, even if the problem has nothing to do with gravitation or electrostat-
ics, we can solve V?p = —p with p and ¢ exhibiting enough symmetry by considering
the flux of V¢ out of a suitable surface S = 0V

/Zso'dﬁz—/pd‘/-
S Vv

This is called the Gauss Flux Method.

11 General Results for Laplace’s and Poisson’s Equations

11.1 Uniqueness Theorems
11.1.1 Statement and proof

Consider ¢(r) satisfying Poisson’s equation VZp = —p for some p(r) on a bounded
volume V' with boundary S = 0V being a closed surface, with outward normal n.
Suppose that ¢ satisfies either

1. o(r) = f(r) on S (Dirichlet condition, D)

—

Op(r
2. ‘g

=n- Ve = g(r) (Neumann condition, N)

3

where f(r) or g(r) are given. Then either
1. ¢(r) is unique, or

2. ¢(r) is unique up to the replacement ¢ — ¢ + ¢, where ¢ is a constant.
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Proof: Let ¢1(r) and ps(r) satisfy Poisson’s equation, each obeying the boundary
conditions (1) or (2). Then ¥(r) = po(r) — 1 (r) satisfies V?¢) = 0 on V by linearity
and (D) ¢ =0on S or (N) 0¢/On =n-Vi =0 on S. By the divergence theorem,
J, T (0F0) AV = [(0¥0 - dS. But

V- (V) = Vo - Vo + V2 = Ve[
N——

OonV

/V|w|2dv:/5wg—jfdszo

by either (N) or (D). Since |[V4|*> > 0, the integral can only vanish if |Vi)| = 0 =
Vi =0 = 1 = ¢, a constant, on V. So:

(D) =00onS=c=0and ¢, =, onV, or

(N) @a(r) = p1(r) + ¢ as claimed.

11.1.2 Comments

e The result says nothing about existence. Indeed, for V¢ = —p on V with
92 — g on 9V (Neumann) there can only be a solution if

on
2 dp
Vip dV = —dS <& [ pdV + g dS =0, (11.1)
1% av on v %
but p and ¢ are fixed to begin with, so Eq. 11.1 may not necessarily be true.

e The uniqueness result has practical importance: if we can find a solution by any
means, then we know it is the only solution. For example: find a solution with

symmetry ¢(r), or more generally, linear combinations of separable solutions®
¢ =X (x)Y(y) or R(r)Y(0).

e The theorem can be stated and proved similarly for regions in R?3: it just
uses definitions of grad and div, and the divergence theorem.

e The results extend to unbounded domains, for example a sphere of radius R,
with [¢:(r)] = O(1/R) and |34(r| = O(1/R?) for |r| = R = | [qu5% dS| =
O(1/R) — 0 as R — oo. This last result follows because

11 1
/Swg—:/; as < maxh_R]wg—? x 41T R* < constant x (}—%ﬁ)llﬂRQ = (’)(}—%)
These conditions on 1 are ensured by taking for example [(r)] = O(1/R)
and V(r)] = O(1/R?). Therefore, the proof extends to V = R with these
boundary conditions as R = |[r| — oo (S is the “sphere at infinity”).

5See Part IB Methods.
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e Similar results apply to related equations and various kinds of boundary con-
ditions, perhaps with D or N being different parts of the boundary:

N
—— )

e The proof uses a special case of the result

/(qu)-dﬁz/Zu-ZU dV+/ uV3v dV,
S v 1%
sometimes called Green’s First Identity. Antisymmetrising in u and v gives
/(UZU —ovVu) dﬁz/ (UVQU — UVQU) dv,
S 1%
sometimes called Green’s Second Identity.

11.2 Laplace’s Equation and Harmonic Functions

Solutions of Laplace’s equation VZp = 0 are also called harmonic functions. They
arise in many areas of physics and mathematics and have some very special proper-
ties.

11.2.1 The Mean Value Property

Suppose ¢(r) is harmonic in a region V' containing a solid sphere Vg : |r —a| < R
with boundary Sg : |r —a| = R. Then ¢(a) = p(R) where

1

PR = o [ ele) dS,

the average of ¢ over Sg.

Proof: Note that (R) — ¢(a) as R — 0. Take spherical polar coordinates
(u,0,x) centred on r = a. Then, the scalar area element on Sg is (u = R) dS =
R%sin6 df dx = dS/R? is independent of R. Hence

d 1 Oy
L B(R) = S B
aw? = /SR oul .
But g—‘szgu-ngzﬂ-Z@:g—i on Skg.
PR 1 1 :
= .dS = V2 dV = 0.
T MRl

So P(R) is independent of R, and the result follows.
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11.2.2 The Maximum (or Minimum) Principle

We say that (r) has a local maximum at a if, for some € > 0, p(r) < ¢(a) when
0 < |r —a| < e. The maximum principle states that if a function ¢ is harmonic on a
region V', then ¢ cannot have a local maximum at an interior point a of V.

Proof: If ¢ has a local maximum at a in the interior, we choose € so that [r—a| < e
lies within V' (this is possible, since a is an interior point) and then, for any R with
0<R<e o) <ga) for r —a| = R = @(R) < p(a). But this contradicts the
mean value property for a harmonic function.

The result is consistent with the usual analysis of stationary points by differenti-
ation. Suppose at r = a, Vyp =0 and H;; = %52]_ has eigenvalues \;. ¢ is harmonic
= Vip = 65;%0332'
to the trace of the Hessian matrix H). This implies that there exists at least one

= H; = >, A\ = 0. (Note that the sum of eigenvalues is equal

eigenvalue of each sign, and hence the stationary point can only be a saddle point
(i.e. there is no local maximum or local minimum) unless all \; = 0, in which case
this is inconclusive. This standard analysis is consistent with, but not as powerful
as, the maximum principle. Everything works analogously for minima instead of
maxima.

11.3 Integral Solution of Poisson’s Equation
11.3.1 Statement and informal derivation

Consider the potential for a point source of strength A at a:

1 A
Tk
A = —4nGM for a point mass, or A = /€y for a point charge, as in section 10. For

several sources A, at positions r,, the potential is a sum of terms

1 A
p(r) = ZEM——M

«

Now consider a general distribution of sources p(r) with p(r’)dV’ being the contri-
bution from any small volume at position 7.

To sum over all such contributions, we replace ) by fV, dV’ in the formula above,

which suggests that
1 /
o(r) = / pr) gy (11.2)

~dr Sy |r =1

— 064 —



Copyright © 2016 University of Cambridge. Not to be quoted or reproduced without permission.

is the solution to Poisson’s equation VZ¢ = —p and is the integral with respect to r’
taken over the region V"’ on which p(r’) is non-zero (p = 0 outside V’). This is indeed
the solution with boundary conditions |p(r)] = O(1/|r|) and |Vo(r)| = O(1/|r]?).
For p(r’) non-zero but suitably well-behaved as |r'| — oo we can also take V' = R?,
the integral over all space.

Ezample: Using Eq. 11.2, we can calculate ¢(r), the solution to:

—po r[<a
Vg =
; { 0 >
We fix r and introduce polar coordinates 1/, 6,y for r’ with respect to this fixed
direction (r). Then, o(r) = fv' |r r,‘ dV', where dV’ = r*sin@ dr' df dy, V' :
" =1r'| <aand |r— [’| = (r + 1'% — 271 cos 0)'/2 so the integrand is independent
of x.
r
X
Therefore,
1 [ T 2m por’ sin @
r)=— [ dr / do / d
#lr) dm 0 X\/r’2 + 72 — 271’ cos )
— p0/2/ dr'r ’2—I [\/7"’2 + 72 — 2rr' cos 0} .
rr =0
m 2r' fi > 7!
[\/r’2+r2—2rr’0089] =lr+r|—|r—1r]= " o r,,
0=0 2r forr <r
SO

(r) = 'Oofoaallﬁ —P3 % (r>a)
PO oo (Jy a4 ) = o (< 4at) (r <)

the solution we obtained previously in section 10.3.

11.3.2 Point sources and J—functions (non-examinable)

We return to ¢» = \/(4w|r — a|), a potential for a point source, and note that it
obeys V¢ = —\/(47) x (r — a)/|r — a|®> and V%) = 0 for r # a. The function
is singular when r = a but the singularity can be given a precise interpretation by

considering |, ¢V -dS = —\ for any sphere with centre a, by explicit calculation.
Now we compare with fv V21 dV for V a solid sphere with 9V = S. The divergence
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theorem holds if we take V1) = —\d(r—a) where® the three-dimension delta function
is a generalised function (or distribution) satisfying [,, f(r)d(r—a) dV = f(a) for any
volume V' containing a. Using this, we can verify the integral solutions of Poisson’s
equations immediately:

1

lr—r

Viilr) = 1= | Vv = = [ )= )av = —pie),

as required.

12 Maxwell’s Equations

12.1 Laws of Electromagnetism

Static electric charges interact in a way that is mathematically almost identical to
gravitational interactions. More generally, moving electric charges interact in a way
that can be described by electric and magnetic fields E(r,t) and B(r,t).

If p(r,t) is the charge density and j(r,) the current density, then the resulting

electric and magnetic fields are determined by Maxwell’s equations:

0B
V-E=£ Z/\E-i——?:o
OF
V-B =0 Z/\ﬁ—ﬂoﬁoa—7=ﬂoia

where €, is the permittivity of free space and g is the permeability of free space
(they are both physical constants). Then, the Lorentz Force on a point charge ¢ due
to these fields is

F=qE+7ANDB).

In principle, this gives a complete description of all classical electromagnetic phe-
nomena.
Conservation of electric charge comes from Maxwell’s equations:

Gauss’ Law for E is unmodified, and now we have a similar law for B too (in
electrostatics), but with zero ‘magnetic charge’. In integral form:

[E-ds=QJa [ B-as=o
S S

The remaining Maxwell’s equations also have integral forms, for example | oL -dr =
—% | ¢ B - dS for any surface S with a boundary of a closed curve C, from Stokes’
theorem.

5The expression for V24 above makes sense intuitively for a point source concentrated at a.
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12.2 Static Charges and Steady Currents

If p,j, E and B are all independent of time, then £ and B are no longer linked, since

Maxwell’s equations then imply:

= E = -V and V%o = —p/ep, the scalar
Poisson equation described in section 11.3.

€ sets the scale of electrostatic effects,
for example the Coulomb force.

Electrostatics Magnetostatics
V- E=p/e V-B=0
VANE=0 VAB = uj

= B =V A A, but the vector potential is
ambiguous: A — A + Vx produces the same
B field. The scalar field y can be chosen to
make V-A=0= V24 = —Jtoj, the vector
Poisson equation: it has a similar general
solution to the scalar case.

1o sets the scale of magnetic effects, for
example the force between current-carrying
wires.

12.3 Electromagnetic Waves

Consider Maxwell’s equations with p = 0 and j = 0 (i.e. empty space):

B
VE=V(V-E)~VA(VAE) :w% _

or

SIS

) OFE 0’E

(VAB) = E(MOEOE) = /’L060W7

19 1o
(V2 - —8—> E =0, and similarly we can obtain (V2 — _8_) B =0,

c? Ot?

c? Ot?

where ¢ = 1/(eop0). These are wave equations in three dimensions describing prop-

agation with speed c¢. We compare with the one dimensional wave equation for a

scalar

0? 1 02
(@‘@@)J‘:O’

f=fe(x Fct)

where f, describes a right moving wave and f_ a left moving wave.

So, Maxwell’s equations predict electromagnetic waves which move with speed

c=1/\/eofio ~ 2.998 x 10% ms™!, i.e. the experimentally measured values of pg and

€p combine to give the experimental value of the speed of light.

Maxwell famously said “We can scarcely avoid the inference that light consists of

the transverse modulation of the same medium which is the cause of electric and mag-
netic phenomena”. This was the unification of the theories of electricity, magnetism

and light.
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13 Tensors and Tensor Fields

13.1 Definitions and Examples
13.1.1 Tensor transformation rule

Consider orthonormal right-handed bases {e;} and {e/} in R* with corresponding
Cartesian coordinates {z;} and {z]}: z = x;e; = xfe;,’, Any such bases are related
by a rotation: e; = Riye,, 7; = Rix, where

1. RiyR;, = RyRy; = 0;; or RRT = RTR = I, in other words R is orthogonal.
2. detR =1, or R is special orthogonal.

The components of a vector v transform in a similar way under this change of basis
and coordinates: v = v;e; = vie, = v, = R;pv,.

Tensors are geometric objects which obey a generalised form of this transfor-
mation rule. By definition, a tensor 7" of rank n has components T;;  (n indices)
with respect to each basis {¢;} or coordinate system {z;} and under a change of
basis/coordinates

z/jk = RipRjq .. RiyTpg..r-

This is the tensor transformation rule.

T of rank 0, i.e. no indices T =T, a scalar
FExamples: T of rank 1, T! = R, T,, a vector

T of rank 2, T}, = RipR;j T, form a matrix.

13.1.2 Basic examples

1. If w,v,...,w are n vectors, then Tj; j = w;v; ... w; defines a tensor of rank n.
To show this, we check the transformation rule. For example n = 2, T}; = u,v;.

Tz,g = u; ; = (Ripup) (Rjqvq) = RipRjq(upvy) = RipRjgTpq,

i.e the correct rule. Any linear combination of such expressions are also tensors,
for example T;; = w;v; + a;b; for any u,v, a, b.

2. 4;; and €, are tensors of rank 2 and 3 respectively, with the special property
that their components are unchanged with respect to any basis/coordinate
system: 52’-]. = RipyRj0pq = RipRj, = 0;; which is the tensor transformation
rule with 0j; = d;; and Ry, RjqRirepgr = (detR)egjp = €5, which” is the tensor

. v
transformation rule with €, = €.

"Note that here, we used a general result from Vectors and Matrices IA, namely
MipquMkrepq’r‘ = (detM)qjk.
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13.1.3 Rank 2 tensors and matrices

A linear map between vectors u and v has the general form v; = M;;u; or v = M

with respect to different choices of basis/coordinate system. Using the transformation
rule for vectors: v; = Riyyv, = Ry, (Mpqu,) = Mju) = Mj;(Rjqu,). These expressions
are compatible for any w iff R, M,, = Mj;Rj, or M}, = Ri,Ry,M,,; this is the
tensor transformation rule for rank 2. In matrix notation M’ = RM R which is the

standard transformation for the matrix of a linear map under an orthogonal change
of basis (RT = R™).

FExample: In many substances, an applied electric field £ induces an electric current
density j according to the linear relation (Ohm’s Law) j; = oy FEy, where oy is
the conductivity tensor (it is automatically a tensor, by the argument given above).

Substances may conduct differently in different directions (for example if they have
a layered structure) and then j is not parallel to £ in general. For an isotropic
substance, 0;, = 00;, = j=o0ok.

13.2 Tensor Algebra
13.2.1 Addition and scalar multiplication

Tensors T and S of the same rank can be added; T + S is also a tensor of rank n
defined by (T + S);;..x = Tij.k + Sij.x in any coordinate system. To show that this
is a tensor, we check the transformation rule, for example for n = 2:

(T‘l’S);j = Tz,g +Sz{j = Ripququ+RipquSpq = Ripqu(qu+Spq) = Ripqu(T+S)pq'

A tensor T' of any rank can be multiplied by a scalar «; oT is a tensor of the
same rank, defined by aT;; , = oT};  in any coordinate system (it’s easy to check
the transformation rule).

13.2.2 Tensor products

If T"and S are tensors of rank n and m then the tensor product T'® S is a tensor of
rank n + m defined by

(Te® S)ij cokpg...r T ik Spg...r-
——

n indices m indices

This is a tensor (check the transformation rule yourself). The tensor product can be
defined similarly for any number of tensors, for example for n vectors w,v,...w we
define T'=u®uv---®@w by Tj; 1 = uv; - - - wy as in section 13.1.

13.2.3 Contractions

Given a rank n tensor 7' with components T};, ,, we define a new tensor S of rank
n—2by S, ¢ = 0ijTijp.q = Tiip.q This is called contracting on the indices ¢ and
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j. Contracting on a different pair of indices results in a different tensor, in general.
To check that contraction produces a tensor, we take the example of T;; of rank 2.
Contracting Tj; of rank 0 (i.e. a scalar), T/, = R, RigTpg = 0pgTpg = Tpp- Higher rank
tensors involve additional indices that are unaffected by the contraction. Note that
with T}; regarded as a 3 by 3 matrix, T}; is the trace. T); = Tr(T") = Tr(RTR") =
Tr(T) = T,,, in matrix language.

13.2.4 Symmetric and antisymmetric tensors

A tensor T of rank n obeying T}, 4 = £Tjip. 4 is said to be symmetric (4) or anti-
symmetric (-) in the indices ¢ and j. (There exists a similar definition for any other
index pair). This holds in all coordinate systems if it holds in any one, since

Tlil'r...s = RkileRrp s quTijp---q = iRkileRrp s quTjZ’p---q = :l:Tl,kr...s‘

A tensor is called totally symmetric/anti-symmetric if it is symmetric/anti-symmetric

in every pair of indices. For example 6;; = d;; is totally symmetric and ¢;j;, is totally
anti-symmetric. There are totally symmetric tensors of arbitrary rank n, but in R3:

1. Any totally antisymmetric tensor of rank 3 has the form Tj;;, = Ae;j;, for some
scalar .

2. There are no totally antisymmetric tensors of rank n > 3 except (trivially) the
tensors with all components zero.

13.3 Tensors, Multi-linear Maps and the Quotient Rule
13.3.1 Tensors as multi-linear maps

A tensor T of rank n is equivalent to a multi-linear map from n vectors a,b,...c to

R defined by
(1) (2)

AL A

T(Q, Z_), R ,Q) = kaalb] e C]; = T/ CL/ b/ C/\

g by - C
‘Multi-linear’ means that 7T is linear in each of the vectors a,b,...,c individually.
Note that
1. If the first expression (1) is specified for all vectors a,b, ..., c then the com-
ponents of the tensor are uniquely determined (by taking a,b, ..., c to be all

possible choices of basis vectors).

2. Using the standard relationship for vector components v, = Ryv; or v; = R0,
(1) and (2) agree iff T3;_p Rpia, Rysb;, - . Rexey, =T, a,bl, ... ¢, which holds for
any ayb,...c it T = RyRy... RTij , ie the transformation rule. Thus,
there is a one-to-one correspondence between tensors of rank n and multi-
linear maps. This gives a way of thinking about tensors’ independent of any
coordinate system or choice of basis, and the tensor transformation rule emerges

naturally.

— 70 —



Copyright © 2016 University of Cambridge. Not to be quoted or reproduced without permission.

13.3.2 The quotient rule

Itr; jp...q is a tensor of rank n +m and w,_, is any tensor of rank m, then
N~ ——

n m
Vi.j = iri...jp...qup...q

is a tensor of rank n (it is a tensor product of 7" and u, followed by contractions).

Conversely, suppose that T;_j, 4 is an array defined for each coordinate system,
and that for any tensor u, g4, v; ; as defined above is also a tensor, then T; ;, , is
also a tensor.

This is the quotient rule. We have seen and proved the special case n =m =1
in section 13.1.3. The general case can be proved in a similar way, checking the
transformation rule directly, but the proliferation of indices makes the argument
look more complicated than it really is.

To streamline things, we shall use the ideas in section 13.3.1. It is sufficient to
take the special form u, , = ¢,...d, for any vectors c, ..., d; by assumption v; ; =
T jp..qCp - - - dq 1s a tensor, but then v;_ja;...b; = T} jp. 4a;...0jc, ... dg is a scalar
for any vectors a,...,b,¢,...d. This is enough to ensure the tensor transformation
rule for the components 7;_j,. 4, as observed in section 13.3.1 above.

13.4 Tensor Calculus
13.4.1 Tensor fields and derivatives

Just as with scalars or vectors, a tensor field is a tensor at each point Tj;. x(x), which
we also write as® Ti;. k(z;). We assume that fields are smooth so that they can be

differentiated any number of times

0 0

g L.
dr, Oz, Y nk

m

except for where things obviously fail, for example where T is not defined. This is a
new tensor of rank n + m.

Oz
B =

Rip, and 2, = (R~ 1)z} = Rz, = gixg = R,,. Note that R;, and R;, are constant
matrices. Now, by the chain rule

o Oz, 0 )

“ox,

To verify the transformation rule, consider the derivatives: z = R;,x, =

ox,  0x Oz,

(2

This is expected for components of a vector, and as emphasised in section 9.2,
V = ¢,0/0x; = €,0/0x} is a vector operator. Using this, it is easy to check the

8Meaning that it can depend upon all of the coordinates
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transformation rule. The definition of tensor derivatives involves comparing tensors
at different points, but otherwise one just uses linear combinations and then limits.
For example: derivatives of a scalar field

o 0 0 0 0 0 0 0
s g~ (P ) (s ) (R ) o = Rt i

which is the required transformation rule (all for Cartesian coordinates related by a

constant R). For just one derivative, we have (V¢); = %%, a vector.

13.4.2 Integrals and the tensor divergence theorem

Because we can add tensors and take limits (by assumption) the definition of a tensor
valued integral is straight forward. For example, fv Ti;. k(z) dV and the result is a
tensor (it is easiest to think of the integral as the limit of a sum).

For a physical example, recall our discussion of the flux of quantities for a fluid
with velocity field u(z) through a small surface element (assuming a uniform density

p)

[

< Tss
The flux of volume is u-ndS = u;n;0.S5, the flux of mass is pu-ndS = pu;n;0S, whereas
the flux of the " component of momentum is pu;u;n;6S = T;;n;0S, involving T;; =
pu;uj. The flux through S'is [ T;;n;dS.
It is also easy to generalise the divergence theorem from vectors to tensors (and

then use it to discuss conservation laws for vector and tensor quantities). Let V' be
a volume bounded by a smooth surface S = 0V and T;; j be a smooth tensor field.

Then 5
T dS = | =— (Ty.w) dV,
/S g kITU /\/396[( ]...kl)

where n; is an outward pointing unit normal.
Proof: apply the usual Divergence Theorem to the vector field v defined by

v = a;b; - - - ¢ Ty, 1 where a,b, ..., c are fixed constant vectors;
V-u= % = aib;--- CkiTij..‘kh
8xl al’l
n-v=mu = ab; T i, (13.1)

and we obtain the tensor divergence theorem, but contracted with a;b; - - - ¢; on each
side. Since a,b,--- ,c are arbitrary, they can be cancelled off and the result follows.
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14 Tensors of Rank 2

14.1 Decomposition of a Second Rank Tensor

Any second rank tensor can be written as a sum of its symmetric and anti-symmetric
parts: Tj; = Sj; + A;; has 9 independent components (IC), where S;; = 3(T;; + T;)
has 6 IC and A;; = %(Tij —T};) has 3 IC. In fact, the symmetric part can be reduced
further: S;; = B;; + %61-3»@ where Pj; = 0, or Pj; is traceless, and ) = S;; is the trace
of S;;. P;; has 5 IC whereas () has 1. The antisymmetric part can be re-expressed:

1
Aij = €1 B & By = §€ijkAz’j

from the double-¢ identities, or

0 By —DBs
(Ayj)=1| —-Bs 0 By
By, —B; O
To summarise,
T P fen Br +105 Q
ij = ij €ij 3 Yij
J gk 2k 37
symmetric traceless vector scalar

where B, = %eijlej, and only the antisymmetric parts of 7' contribute. Qp = Tiy
where only symmetric parts of T" contribute.

Example: A vector field Fi(r) derivative T}; = 9F; o tensor field. The decomposition

ox;
: : : _ 1/0F; OF; 15 OF, :
given above has a symmetric traceless piece F;; = E(amj Bmi) — 55118_:Jck7 an anti-

S _ . _ 1, 9F _ 1 _
symmetric piece A;; = €, By with By = 2€ijk o, = —5(V A F);, and a trace Q =

OF,
Oxy,
involves a scalar V - I, a vector V A F' and a symmetric traceless tensor F;;.

= V - F. Hence, a complete description of the derivative of a vector field F'

14.2 The Inertia Tensor

Consider some masses m, with positions r_, all rotating with angular velocity w

)

about 0, so the velocities are v, = w A r,. The total angular momentum about 0 is
L= raAmav, =Y Marg ANwAry) =Y ma (Iryw—ry(r, - w)).
(0% (0% (0%
In components, L; = I;;w; where

I;; = Zma (|Za\25ij - (ta)i(to)j)

is the inertia tensor about 0. Note that in general L is not parallel to w.
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For a rigid body occupying volume V' with mass density p(r), we replace > m, —
[y p(r) dV above to obtain

I = / p(r) (zpxRdi; — zx5) dV.
v

For example, Is3 = [, p(r)(z} + 23) dV and I, = — [, p(r)zize dV. I is a
symmetric tensor (by inspection).
Example:
X3
The inertia tensor for a cylinder of radius a and height 2/, uni-
form density po and mass M = 2ma®lpy. We choose coordinates
X, x1 =1rcosl, xog =rsinf, dV = r dr df dxs, with x3 being the
X axis of symmetry.
Then

a 27 l
I3 = / po(2? +23) dV = pO/ dr/ d@/ dzsrr? = porla®,
1% 0 0 1

a 27 l
Ill — / po(l’g + x%) dv = po/ d’]”/ d9/ dx3<7’2 Sin2 6 + CL’%)’/’
v 0 0 -
2

1 1 2 2
= p0(1a42l7r + §a227rgl3) = poma’l <% + §l2) :

We get the same result for I, (which has sin®@ — cos? 8). Also,

a 27 l
Ls = —/ poriT3 AV = —po/ dr/ d@/ dxsr? cos Oz =0
1% 0 0 -1

from the 6 integration. I15 = [;3 = 0, similarly.

In summary: the non-zero components are Is3 = Ma®/2, Iy = Iy = M (30> + 51?).
Note that for the special case [ = \/3(1/2, Ii; = %Ma25ij =L = %MCLZQ for a rotation
about any axis.

14.3 Diagonalisation of a Symmetric Second Rank Tensor

Recall, using matrix notation, T = (Tj;), T" = (T};), R = Ry, that the tensor
transformation rule T}; = Ry, R;iTpq becomes T = RTRT, where R" = R™".

If T is symmetric, it can be diagonalised by such an orthogonal transformation.
Equivalently, there exists a basis of orthonormal eigenvectors e, e,, e for T" with
real eigenvalues A1, Ay, A3, respectively. The directions defined by e, e,,e3 are the
principal axes for 7T'; the tensor is diagonal in Cartesian coordinates along these axes.
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This applies to any symmetric tensor. For the special case of the inertia ten-
sor, the eigenvalues are called the principal moments of inertia. As exemplified in

section 14.2, we can often guess the correct principal axes for /;; based on the sym-
metries of the body: with the axes we chose, I;; was found to be diagonal, by direct
calculation.

15 Invariant and Isotropic Tensors

15.1 Definitions and Classification Results

A tensor T is invariant under a particular rotation R if
!
ij.k = RipRjq - Ry Tpg.r = Tijoks

i.e. each component is unchanged. A tensor 7" which is invariant under every rotation

is called isotropic (i.e. the same in all directions). As noted in section 13.1.2, §;; and
€51 are isotropic tensors. This ensures that the component definitions of the scalar
and vector products

a-b=d;ja;b;, (@A b); = eyra;by

are independent of the Cartesian coordinate system. Isotropic tensors in i** can be
classified:

1. There are no isotropic tensors of rank 1 (vector) except the zero vector.
2. The most general rank 2 isotropic tensor is 7j; = ad;; for some scalar .
3. The most general rank 3 isotropic tensor is Tj;, = Be;j, for some scalar f3.

4. All isotropic tensors of higher rank are obtained by combining d;; and ¢, using
tensor products, contractions and linear combinations.

FExample: The most general isotropic tensor of rank 4 is
Tijky = 040k + Boiwdji + 70ilji

for some scalar constants «, 3,~. There are no other independent combinations (for

example, you might think of €;;,€x,, but this is equal to §;,0; — 0;0,1).

15.2 Application to Invariant Integrals
Consider a tensor defined by

Tz’j...k = / f(&)xil’j e apdV
1%
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with f(z) being a scalar function and V' is some volume. Given a rotation R;;,
consider an active transformation z = x;e; mapped to 2’ = 2}e, with 2} = R;;z; (NB
there is no change of basis vectors here) and V' is mapped to V’. Suppose that under
this active transformation

1. f(z)= f(2) and
2.V =V.
Then Tj; 1 is invariant under R;;.
Proof:
1%

from the definition of T°

— [ f@)ia; - sav
14

from (1)
= / f(g/)x;x; ez dV!

from (2)

ij..k

(x; or 2 are dummy variables in the integral).

NB with the change of variables =, = R;,z,, % = R;, (a constant) and
det(g;&i) = det(R;,) = 1, i.e. the Jacobian=1 or dV’ = dV. The result is partic-

ularly useful if (1) and (2) hold for any rotation R, in which case Tj;. , is isotropic.

Example: T;; = fv z;x; dV with V' being a solid sphere with |r| < a. The result
above applies with f = 1 for any rotation R, so Tj; is isotropic = T;; = ad;;, and
we need only determine the scalar a. But taking the trace, 3a =T}; = fv zx; dV =
o r?4mr? dr = twa®. Hence Tj; = £ma’dy;.
There is a closely related result for the inertia tensor of a sphere of constant density
po or mass M:

2

4
[i' = / £o (l'k-%kéz] — I’il’j) dV = p0(3 — 1)—77'@5(51‘]' = —Ma2(5ij,
. 15 5

which is isotropic.

15.3 A Sketch of a Proof of Classification Results for Rank n <3

The results follow straight forwardly by analysing conditions for invariance under
specific rotations through 7 or /2 about coordinate axes, then confirming that the
most general form allowed is actually isotropic.
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1. Suppose that T; is rank 1 isotropic. Consider

-1 00
(Rij)={ 0 =10 ],
0 01

a rotation through 7 about the z3 axis. Then T) = Ry, T, = R/ Ty = =T} and
Ty = Ry, T, = RooTy = —T5. Then T} = T5 = 0. Then, requiring isotropy of a
rotation through 7 about the x; axis too yields T3 = 0, and therefore T; = 0.

2. Suppose that Tj; is rank 2 isotropic. Consider

010
(Rij) =1 -100 |,
001
a rotation through m/2 clockwise about the x5 axis: Ti3 = Ri,Rs3,1,, =

RisRs3Tog = (+1)(+1)Tos. Tog = RopRsTpy = RoiRssTis = (—1)(4+1)T1s.
Hence Ti3 = 133 = 0 and similarly 75 = T35 = 0. 11, = Rip,Ri/T,y =
RisR15Th = (+1)(+1)T%. By applying 7/2 rotations about the x; and
axes in a similar way, we deduce 111 = Ty = T33 = «, say and T;;Vi # j.
Hence T;; = ad;;.

3. Suppose that T}, is rank 3 isotropic. Using the rotation by 7 as in (1)
above, Ti33 = R1pR3,R3, Tpyr = (—1)(41)(+1)T133 and 1111 = RipRig R Lpgr =
(=1)(=1)(—1)T311, with similar results for 7 rotations about other axes and
with other index positions we write Tj;, = 0 unless 4, j, k are all distinct. Now
consider a rotation through 7/2 as in (2) above: Tio3 = RipyReRsrTpyr =
Ri9Ro1 R33To13 = (+1)(—1)(4+1)T213 = —Ts13. Along with similar results for
other index positions and other axes of rotation, T;;; is totally antisymmetric,
hence T}, = Bé;jk.
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