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Mathematical Biology: Example Sheet 1

David Tong, January 2025

1. The population N(t) of a certain insect is modelled by the ODE

dN

dt
= rN

(

1−
N

K

)

− p(N)

where p(N) = BN/(A+N) with A,B > 0.

a) Give suggestions as to the meaning of the terms in this equation.

b) Show by rescaling that the dynamics depends only on the two parameters α =

A/K, β = B/rK [Hint: focus on simplifying the logistic terms first].

c) Investigate how many positive steady states there are, i.e. fixed points with N > 0.

Sketch the (α, β) plane, dividing it into regions where there are zero, one and two

positive steady states.

d) What is the number of stable solutions, including the fixed point at N = 0, in each

region? [Hint: investigating N = 0 stability will be enough to deduce the rest.]

2. A variant of the Hutchinson-Wright equation is

dx(t)

dt
= α

[

x(t− T )− x(t)2
]

,

where α, T > 0. Give a brief interpretation of what this might represent in terms of

population dynamics.

Show that the constant solution with x(t) = 1 is stable for all α, T > 0.

3. The population density n(a, t) of individuals of age a at time t satisfies

∂n(a, t)

∂t
+

∂n(a, t)

∂a
= −µ(a)n(a, t), with n(0, t) =

∫

∞

0

b(a)n(a, t)da,

where µ(a) is the age-dependent death rate and b(a) is the birth rate per individual of age

a.

Using the standard similarity solution n(a, t) = ñ(a)ert for each of the examples below,

give: (i) the mean number of offspring; (ii) the population growth rate r (solve where

possible otherwise give an implicit expression); (iii) the value of the birth rate parameter

B (defined below) for which there is neither growth nor decay and sketch the age-profile

of the population in this case.
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a) The birth rate b(a) is a constant B for a1 < a < a2 and zero otherwise. The death

rate µ(a) is a constant d for a > a2 and zero otherwise.

b) Individuals give birth only at age a∗: b(a) = B δ(a − a∗). The death rate µ(a) is a

constant d for all ages.

c) The birth rate b(a) is a constant B for all ages. All individuals die at age A. [Hint:

in this extreme case, rather than using µ(a), just reformulate the standard approach

slightly.]

4. A simple model of two competing populations eating the same food takes the form

Ṅ1 = r1N1

(

1−
N1

K1

− b1
N2

K2

)

,

Ṅ2 = r2N2

(

1−
N2

K2

− b2
N1

K1

)

.

Rescale the equations to simplify them, and show that the solutions depend only on

ρ = r2/r1, b1 and b2.

Now assume that ρ, b1, b2 > 0. Find all the physically relevant fixed points and determine

their stability. Give conditions on the coefficients such that there is a stable state of

coexistence, with N1, N2 > 0.

5. Consider the ‘harvesting’ model

u̇ = u(1− υ)− ǫu2
− f,

υ̇ = −αυ(1− u),

with constants α > 0, f > 0 and 0 < ǫ < 1/2.

Find all the biologically relevant fixed points of this system, and investigate their sta-

bility, distinguishing between different ranges of f :

a) 0 < f < ǫ,

b) ǫ < f < 1− ǫ,

c) 1− ǫ < f < 1/(4ǫ),

d) 1/(4ǫ) < f .
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In each case, sketch trajectories in the u− υ phase-plane, and discuss what would happen

to the predator and prey populations in practice.

Note that for this model something odd happens at u = 0. Comment on this, and discuss

how the model might be improved in this respect.

6. A fungal disease is introduced into an isolated population of frogs. Without disease,

the population size x would obey the (normalised) logistic equation ẋ = x(1 − x). The

disease causes death at rate d and there is no recovery. The disease transmission rate is β

and in addition, offspring of infected frogs are also infected from birth.

a) Briefly explain why the population sizes of the uninfected x and infected y frogs now

satisfy

ẋ = x [1− x− (1 + β)y] ,

ẏ = y [(1− d)− (1− β)x− y] .

b) The population starts at the disease-free population size (x = 1) and a small number

of infected frogs are introduced. Show that the disease will successfully invade iff β > d.

c) By finding all the equilibria in x, y ≥ 0 and considering their stability, find the long

term outcome for the frog population. Specify d as a function of β at any boundaries.

d) Plot the long-term steady total population size as a function of d for fixed β, and

note that an intermediate mortality rate is actually the most harmful for overall population

numbers. Explain why this is the case.

7. Consider an infectious disease in some population where immunity wanes with time

(and ignore births and deaths). This can be captured by an SIRS model of an infectious

disease: start with the SIR model from lectures, but recovered individuals (R) can lose

their immunity and become susceptible again at a rate γR. Using the fact that the total

population size N remains constant, reduce the system of equations to two, for S and I

(the populations of susceptibles and infecteds respectively).

Give an expression for the basic reproduction ratio R0 and show that when R0 > 1 the

system has a stable fixed point where both S > 0 and I > 0.

Find the nullclines and sketch trajectories in the S− I plane. What happens in the long

term?
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