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Mathematical Tripos Part II Michaelmas 2016

D23 Fluid Dynamics II Grae Worster

Example Sheet 3

Every answer should include at least one relevant sketch

1. A rigid sphere of radius a falls under gravity through a Newtonian fluid of viscosity µ towards a
horizontal rigid plane. Use lubrication theory to show that, when the minimum gap h0 is very small,
the speed of approach of the sphere is

h0W/6πµa2,

where W is the weight of the sphere corrected for buoyancy.

2. A Newtonian fluid of viscosity µ is forced by a pressure difference ∆p through the narrow gap
between two parallel circular cylinders of radius a with axes 2a + b apart. Show that, provided b ≪ a
and ρb3∆p ≪ µ2a, the volume flux through the gap per unit length along the axis of the cylinders is
approximately

2b5/2∆p

9πa1/2µ
,

when the cylinders are fixed.

Show that when the two cylinders rotate with angular velocities Ω1 and Ω2 in opposite directions (i.e. one
rotates Ω1ez while the other one −Ω2ez where ez is the unit vector along the axis of the cylinder), the
change in the volume flux is given by

2

3
ab(Ω1 +Ω2).

3. A viscous fluid coats the outer surface of a cylinder of radius a which rotates with angular velocity Ω
about its axis, which is horizontal. The angle θ is measured from the horizontal on the rising side. Show
that the volume flux per unit length Q(θ, t) is related to the thickness h(θ, t) ≪ a of the fluid layer by

Q = Ωah− g

3ν
h3 cos θ,

and deduce an evolution equation for h(θ, t).
Consider now the possibility of a steady state with Q = const, h = h(θ). Show that a steady solution
with h(θ) continuous and 2π-periodic exists only if

Ωa > (9Q2g/4ν)1/3.

[Hint: Consider a graph of cos θ as a function of h.]

4. A drop of viscous fluid of thickness h(r, t) spreads axisymmetrically on a horizontal surface. Explaining
your reasoning carefully with the aid of a diagram, use mass conservation to show that

∂h

∂t
+

1

r

∂

∂r
(rq) = 0,

where q(r, t) =

∫ h

0

u(r, z, t) dz in plane polar coordinates (r, θ, z) and u is the radial velocity.

Solve the lubrication equations to determine the partial differential equation governing the evolution of
h once the drop has become a thin layer. Look for a similarity solution to the equation and apply a
condition that the volume of the drop is constant to determine the radius of the drop rN (t).

5. A Newtonian fluid with dynamic viscosity µ flows in a shallow container with a free surface at z = 0.
Using cartesian coordinates (x, y, z), the fluid velocity is denoted (ux, uy, uz) ≡ (uH , uz). The base of
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the container is rigid, and is located at z = −h(x, y). An external horizontal stress S(x, y) is applied
at the free surface. Gravity may be neglected. Using lubrication theory, show that the two-dimensional

horizontal volume flux q(x, y) ≡
∫ 0

−h
uHdz satisfies the equations

∇ · q = 0, µq = −1

3
h3∇p+

1

2
h2S,

where p(x, y) is the pressure. Find also an expression for the surface velocity u0(x, y) ≡ uH(x, y, 0) in
terms of S, q and h.

6. The walls of a straight two-dimensional channel are porous and separated by a distance d. A
Newtonian fluid of viscosity µ is driven along the channel by a pressure gradient G = −∂p/∂x. At the
same time, suction is applied to one wall of the channel providing a cross flow with uniform transverse
component of velocity V > 0, with fluid being supplied at this rate to the other wall. Calculate the
steady velocity and vorticity distributions in the fluid. Sketch them (i) when V d/ν ≪ 1 and (ii) when
V d/ν ≫ 1.

7. A Newtonian fluid of viscosity µ fills an annulus a < r < b between a long stationary cylinder r = b
and a long cylinder r = a rotating at angular velocity Ω. Looking up the components of the Navier-Stokes
equation in cylindrical coordinates, find the axisymmetric velocity field, ignoring end effects.
Suppose now that the two cylinders are porous, and a pressure difference is applied so that there is a
radial flow −V a/r in the fluid annulus. Find an expression for the new steady flow around the cylinder
when V a/ν 6= 2 . Comment on the flow structure when V a/ν ≫ 1.
Find the torque (per unit length along the cylinder axis) required to maintain the motion, and show
that it is independent of b in the limit V a/ν → ∞. [Check the dimensions and sign of your result.]

8. Starting from the Navier-Stokes equations for incompressible viscous flow with conservative forces,
obtain the vorticity equation

Dω

Dt
= ω ·∇u+ ν∇2

ω.

Interpret the terms in the equation.
At time t = 0 a concentration of vorticity is created along the z-axis, with the same circulation Γ around
the axis at each z. The fluid is viscous and incompressible, and for t > 0 has only an azimuthal velocity
denoted v. Show that there is a similarity solution of the form vr/Γ = f(η), where r = (x2 + y2)1/2 and
η is a suitable similarity variable. Furthermore, show that all conditions are satisfied by

f(η) = 1
2π (1− e−η2

), η = r/2
√
νt.

Show also that the total vorticity in the flow remains constant at Γ for all t > 0. Sketch v as a function
of r.

9. Calculate the vorticity ω associated with the velocity field

u = (−αx− yf(r, t), −αy + xf(r, t), 2αz) ,

where α is a positive constant, and f(r, t) depends on r = (x2+y2)1/2 and time t. Show that the velocity
field represents a dynamically possible motion if f(r, t) satisfies

2f + r
∂f

∂r
= Aγ(t)e−γ(t)r2 ,

where

γ(t) =
α

2ν

(

1± e−2α(t−t0)
)

−1

,

and A and t0 are constants.
Show that, in the case where the minus sign is taken, γ is approximately 1/[4ν(t− t0)] when t only just
exceeds t0. Which terms in the vorticity equation dominate when this approximation holds?

Please send comments to mgw1@cam.ac.uk.
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