Example Sheet 4

1. Radial oscillations of a star

Show that purely radial (i.e. spherically symmetric) oscillations of a spherical star satisfy the Sturm-Liouville equation

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left[\frac{\gamma p}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \xi_{r}\right)\right]-\frac{4}{r} \frac{\mathrm{~d} p}{\mathrm{~d} r} \xi_{r}+\rho \omega^{2} \xi_{r}=0
$$

How should ξ_{r} behave near the centre of the star and near the surface $r=R$ at which $p=0$?

Show that the associated variational principle can be written in the equivalent forms

$$
\begin{aligned}
\omega^{2} \int_{0}^{R} \rho\left|\xi_{r}\right|^{2} r^{2} \mathrm{~d} r & =\int_{0}^{R}\left[\frac{\gamma p}{r^{2}}\left|\frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \xi_{r}\right)\right|^{2}+4 r \frac{\mathrm{~d} p}{\mathrm{~d} r}\left|\xi_{r}\right|^{2}\right] \mathrm{d} r \\
& =\int_{0}^{R}\left[\gamma p r^{4}\left|\frac{\mathrm{~d}}{\mathrm{~d} r}\left(\frac{\xi_{r}}{r}\right)\right|^{2}+(4-3 \gamma) r \frac{\mathrm{~d} p}{\mathrm{~d} r}\left|\xi_{r}\right|^{2}\right] \mathrm{d} r
\end{aligned}
$$

where γ is assumed to be independent of r. Deduce that the star is unstable to purely radial perturbations if and only if $\gamma<4 / 3$. Why does it not follow from the first form of the variational principle that the star is unstable for all values of γ ?

Can you reach the same conclusion using only the virial theorem?

2. Waves in an isothermal atmosphere

Show that linear waves of frequency ω and horizontal wavenumber k_{h} in a plane-parallel isothermal atmosphere satisfy the equation

$$
\frac{\mathrm{d}^{2} \xi_{z}}{\mathrm{~d} z^{2}}-\frac{1}{H} \frac{\mathrm{~d} \xi_{z}}{\mathrm{~d} z}+\frac{(\gamma-1)}{\gamma^{2} H^{2}} \xi_{z}+\left(\omega^{2}-N^{2}\right)\left(\frac{1}{v_{\mathrm{s}}^{2}}-\frac{k_{\mathrm{h}}^{2}}{\omega^{2}}\right) \xi_{z}=0
$$

where H is the isothermal scale-height, N is the Brunt-Väisälä frequency and v_{s} is the adiabatic sound speed.
Consider solutions of the vertically wavelike form

$$
\xi_{z} \propto \mathrm{e}^{z / 2 H} \exp \left(\mathrm{i} k_{z} z\right)
$$

where k_{z} is real, so that the wave energy density (proportional to $\rho|\boldsymbol{\xi}|^{2}$) is independent of z. Obtain the dispersion relation connecting ω and \boldsymbol{k}. Assuming that $N^{2}>0$, show that propagating waves exist in the limits of high and low frequencies, for which

$$
\omega^{2} \approx v_{\mathrm{s}}^{2} k^{2} \quad \text { (acoustic waves) } \quad \text { and } \quad \omega^{2} \approx \frac{N^{2} k_{\mathrm{h}}^{2}}{k^{2}} \quad \text { (gravity waves) }
$$

respectively. Show that the minimum frequency at which acoustic waves propagate is $v_{\mathrm{s}} / 2 H$.

Explain why the linear approximation must break down above some height in the atmosphere.

3. Magnetic buoyancy instabilities

A perfect gas forms a static atmosphere in a uniform gravitational field $-g \boldsymbol{e}_{z}$, where (x, y, z) are Cartesian coordinates. A horizontal magnetic field $B(z) \boldsymbol{e}_{y}$ is also present.

Derive the linearized equations governing small displacements of the form

$$
\operatorname{Re}\left[\boldsymbol{\xi}(z) \exp \left(-\mathrm{i} \omega t+\mathrm{i} k_{x} x+\mathrm{i} k_{y} y\right)\right],
$$

where k_{x} and k_{y} are real horizontal wavenumbers, and show that

$$
\omega^{2} \int_{a}^{b} \rho|\boldsymbol{\xi}|^{2} \mathrm{~d} z=\left[\xi_{z}^{*} \delta \Pi\right]_{a}^{b}+\int_{a}^{b}\left(\frac{|\delta \Pi|^{2}}{\gamma p+\frac{B^{2}}{\mu_{0}}}-\frac{\left|\rho g \xi_{z}+\frac{B^{2}}{\mu_{0}} \mathrm{i} k_{y} \xi_{y}\right|^{2}}{\gamma p+\frac{B^{2}}{\mu_{0}}}+\frac{B^{2}}{\mu_{0}} k_{y}^{2}|\boldsymbol{\xi}|^{2}-g \frac{\mathrm{~d} \rho}{\mathrm{~d} z}\left|\xi_{z}\right|^{2}\right) \mathrm{d} z,
$$

where $z=a$ and $z=b$ are the lower and upper boundaries of the atmosphere, and $\delta \Pi$ is the Eulerian perturbation of total pressure. (Self-gravitation may be neglected.)

You may assume that the atmosphere is unstable if and only if the integral on the righthand side can be made negative by a trial displacement $\boldsymbol{\xi}$ satisfying the boundary conditions, which are such that $\left[\xi_{z}^{*} \delta \Pi\right]_{a}^{b}=0$. You may also assume that the horizontal wavenumbers are unconstrained. Explain why the integral can be minimized with respect to ξ_{x} by letting $\xi_{x} \rightarrow 0$ and $k_{x} \rightarrow \infty$ in such a way that $\delta \Pi=0$.

Hence show that the atmosphere is unstable to disturbances with $k_{y}=0$ if and only if

$$
-\frac{\mathrm{d} \ln \rho}{\mathrm{~d} z}<\frac{\rho g}{\gamma p+\frac{B^{2}}{\mu_{0}}}
$$

at some point.
Assuming that this condition is not satisfied anywhere, show further that the atmosphere is unstable to disturbances with $k_{y} \neq 0$ if and only if

$$
-\frac{\mathrm{d} \ln \rho}{\mathrm{~d} z}<\frac{\rho g}{\gamma p}
$$

at some point.
How does these stability criteria compare with the hydrodynamic stability criterion $N^{2}<$ 0 ?

4. Waves in a rotating fluid

Write down the equations of ideal gas dynamics in cylindrical polar coordinates (r, ϕ, z), assuming axisymmetry. Consider a steady, axisymmetric basic state in uniform rotation, with density $\rho(r, z)$, pressure $p(r, z)$ and velocity $\boldsymbol{u}=r \Omega \boldsymbol{e}_{\phi}$. Determine the linearized equations governing axisymmetric perturbations of the form

$$
\operatorname{Re}\left[\delta \rho(r, z) \mathrm{e}^{-\mathrm{i} \omega t}\right]
$$

etc. If the basic state is adiabatically stratified (i.e. $s=$ constant) and self-gravity may be neglected, show that the linearized equations reduce to

$$
\begin{aligned}
& -\mathrm{i} \omega \delta u_{r}-2 \Omega \delta u_{\phi}=-\frac{\partial W}{\partial r} \\
& -\mathrm{i} \omega \delta u_{\phi}+2 \Omega \delta u_{r}=0 \\
& -\mathrm{i} \omega \delta u_{z}=-\frac{\partial W}{\partial z} \\
& -\mathrm{i} \omega W+\frac{v_{\mathrm{s}}^{2}}{\rho}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \rho \delta u_{r}\right)+\frac{\partial}{\partial z}\left(\rho \delta u_{z}\right)\right]=0,
\end{aligned}
$$

where $W=\delta p / \rho$.
Eliminate $\delta \boldsymbol{u}$ to obtain a second-order partial differential equation for W. Is the equation of elliptic or hyperbolic type? What are the relevant solutions of this equation if the fluid has uniform density and fills a cylindrical container $\{r<a, 0<z<H\}$ with rigid boundaries?

Please send any comments and corrections to gio10@cam.ac.uk

