Example Sheet 3

1. Integral relations for the shearing box

A homogeneous incompressible fluid in the shearing sheet satisfies the Navier–Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \boldsymbol{\cdot} \boldsymbol{\nabla} \mathbf{u} + 2 \boldsymbol{\Omega} \times \mathbf{u} = - \boldsymbol{\nabla} \boldsymbol{\Phi}_{\mathrm{t}} - \frac{1}{\rho} \boldsymbol{\nabla} \boldsymbol{p} + \nu \nabla^2 \mathbf{u} \,,$$

$$\nabla \cdot \mathbf{u} = 0$$
,

where

$$\mathbf{u} = -Sx \, \mathbf{e}_u + \mathbf{v}$$

is the total velocity, $\mathbf{\Omega} = \Omega \mathbf{e}_z$ is the angular velocity of the frame of reference, $\Phi_t = -\Omega S x^2$ is the tidal potential (neglecting vertical gravity) and ν is the kinematic viscosity. The velocity perturbation \mathbf{v} therefore satisfies

$$\left(\frac{\partial}{\partial t} - Sx \frac{\partial}{\partial y}\right) \mathbf{v} - Sv_x \mathbf{e}_y + \mathbf{v} \cdot \nabla \mathbf{v} + 2\mathbf{\Omega} \times \mathbf{v} = -\nabla \psi + \nu \nabla^2 \mathbf{v},$$

$$\nabla \cdot \mathbf{v} = 0$$
,

where $\psi = p/\rho$.

The *shearing box* is a rectangular domain

$$0 < x < L_x$$
, $0 < y < L_y$, $0 < z < L_z$,

on which the following boundary conditions are applied, where f stands for ψ or any component of \mathbf{v} :

$$f(0, y, z, t) = f(L_x, (y - SL_x t) \bmod L_y, z, t),$$

$$f(x, 0, z, t) = f(x, L_y, z, t),$$

$$f(x, y, 0, t) = f(x, y, L_z, t).$$
(1)

Interpret these boundary conditions, and show that they are compatible with solutions in the form of shearing waves in which

$$f = \operatorname{Re}\left\{\tilde{f}(t) \exp[i\mathbf{k}(t) \cdot \mathbf{x}]\right\}$$
,

provided that the wavevector lies on the shearing lattice

$$k_x = \frac{2\pi n_x}{L_x} + Sk_y t$$
, $k_y = \frac{2\pi n_y}{L_y}$, $k_z = \frac{2\pi n_z}{L_z}$,

where n_x , n_y and n_z are integers.

Let $\langle \cdot \rangle$ denote a volume average over the box. Show that

$$\left\langle \frac{\partial f}{\partial x} \right\rangle = \left\langle \frac{\partial f}{\partial y} \right\rangle = \left\langle \frac{\partial f}{\partial z} \right\rangle = 0$$

where f is any quantity satisfying the boundary conditions (1), but not necessarily a shearing wave; this result is useful for integration by parts.

Show that

$$\frac{d}{dt}\langle \mathbf{v}\rangle = S\langle v_x\rangle \,\mathbf{e}_y - 2\mathbf{\Omega} \times \langle \mathbf{v}\rangle \,,$$

and deduce that the mean velocity executes an epicyclic oscillation, but if initially zero will remain so.

Show further that

$$\frac{d}{dt} \left(\frac{1}{2} \langle v_x^2 \rangle \right) = 2\Omega \langle v_x v_y \rangle - \nu \langle |\boldsymbol{\nabla} v_x|^2 \rangle + \left\langle \psi \frac{\partial v_x}{\partial x} \right\rangle,
\frac{d}{dt} \left(\frac{1}{2} \langle v_y^2 \rangle \right) = -(2\Omega - S) \langle v_x v_y \rangle - \nu \langle |\boldsymbol{\nabla} v_y|^2 \rangle + \left\langle \psi \frac{\partial v_y}{\partial y} \right\rangle,
\frac{d}{dt} \left(\frac{1}{2} \langle v_z^2 \rangle \right) = -\nu \langle |\boldsymbol{\nabla} v_z|^2 \rangle + \left\langle \psi \frac{\partial v_z}{\partial z} \right\rangle,
\frac{d}{dt} \left(\frac{1}{2} \langle |\mathbf{v}|^2 \rangle \right) = S \langle v_x v_y \rangle - \nu \langle |\boldsymbol{\nabla} \times \mathbf{v}|^2 \rangle.$$

Deduce that, if hydrodynamic turbulence is to be maintained (without external forcing) against viscous dissipation in a Keplerian shear flow $(S/\Omega=3/2)$, then $\langle v_x v_y \rangle$ must be positive (corresponding to outward transport of angular momentum) and the pressurestrain correlation $\langle \psi \partial v_i / \partial x_j \rangle$ must play an important role.

2. Magnetic fields in the shearing sheet

The induction equation in an incompressible fluid of uniform magnetic diffusivity η is

$$\frac{\partial \mathbf{B}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \eta \nabla^2 \mathbf{B}.$$

Supposing that the velocity retains purely the form of a linear shear flow, $\mathbf{u} = -Sx \, \mathbf{e}_y$, show that the induction equation has solutions in the form of shearing waves,

$$\mathbf{B} = \operatorname{Re} \left\{ \tilde{\mathbf{B}}(t) \exp[i\mathbf{k}(t) \cdot \mathbf{x}] \right\} ,$$

provided that the wavevector evolves in time according to

$$\frac{d\mathbf{k}}{dt} = Sk_y \, \mathbf{e}_x \,.$$

Solve for $\mathbf{k}(t)$, and interpret the result geometrically.

Deduce the equations satisfied by the components of the wave amplitude $\tilde{\mathbf{B}}(t)$, and find their general solution. Show that the magnetic energy typically experiences a phase of growth but ultimately decays.

Verify that $\mathbf{B} \cdot \nabla \mathbf{B} = \mathbf{0}$ for this solution, and confirm that the magnetic field has no influence on the flow. Given that any magnetic field can be considered as a superposition of such shearing waves, explain how a non-zero Lorentz force can result.

3. Mechanical analogue of the magnetorotational instability

In the local approximation, the dynamics of two particles of mass m connected by a spring of spring constant $k = \beta m$ is described by the equations

$$\ddot{x}_1 - 2\Omega \dot{y}_1 - 2\Omega S x_1 = \beta(x_2 - x_1),$$

$$\ddot{y}_1 + 2\Omega \dot{x}_1 = \beta(y_2 - y_1),$$

$$\ddot{z}_1 + \Omega_z^2 z_1 = \beta(z_2 - z_1),$$

together with similar equations in which the suffixes 1 and 2 are interchanged.

Assume that the quantities β , Ω , q, $\Omega_r^2 = 2\Omega(2\Omega - S)$ and Ω_z^2 are positive. Show that relative motions of the two particles in the (x, y) plane proportional to $\exp(\lambda t)$ are possible, where

$$\lambda^4 + (\Omega_r^2 + 4\beta)\lambda^2 + 4\beta(\beta - \Omega S) = 0.$$

Determine the range of β for which instability occurs. For fixed Ω and q, find the maximum growth rate of the instability and the value of β for which this occurs. Write down the explicit form of $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ for this optimal solution.

Please send any comments and corrections to gio10@cam.ac.uk Answers to questions 2 and 3 may be submitted for marking.