## Example Sheet 1

1. (a) To what quantities do the following expressions in suffix notation (using the summation convention) correspond? Simplify where appropriate.

$$
\delta_{i i}, \quad \delta_{i j} a_{j}, \quad \delta_{i j} a_{i} a_{j}, \quad \delta_{i j} \delta_{i j}, \quad \epsilon_{i j i}, \quad \epsilon_{i j k} \delta_{j k}, \quad b_{i} \epsilon_{i j k} a_{k} c_{j}, \quad \epsilon_{i j k} A_{3 i} A_{1 k} A_{2 j}
$$

(b) For each of the following equations, either give the equivalent in vector or matrix notation, or explain why the equation is invalid.

$$
\begin{array}{ll}
x_{i}=a_{i} b_{k} c_{k}+d_{i}, \quad x_{i}=a_{j} b_{i}+c_{k} d_{i} e_{k} f_{j}, & u=\left(\epsilon_{j k l} v_{k} w_{l}\right) x_{j}, \\
\epsilon_{i j k} x_{j} y_{k} \epsilon_{i l m} x_{l} y_{m}=1, \quad A_{i k} B_{k l}=T_{i k} \delta_{k l}, & x_{\alpha}=A_{\alpha i} B_{\beta i} y_{\beta} .
\end{array}
$$

(c) Write the following equations in suffix notation using the summation convention.

$$
(\boldsymbol{x}+\mu \boldsymbol{y}) \cdot(\boldsymbol{x}-\mu \boldsymbol{y})=0, \quad \boldsymbol{x}=|\boldsymbol{a}|^{2} \boldsymbol{b}-|\boldsymbol{b}|^{2} \boldsymbol{a}, \quad(2 \boldsymbol{x} \times \boldsymbol{y}) \cdot(\boldsymbol{a}+\boldsymbol{b})=\lambda
$$

2. (a) Show that

$$
a \cdot(b \times c)=b \cdot(c \times a)=c \cdot(a \times b)
$$

(b) Explain why

$$
\epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
$$

Hence find $\epsilon_{i j k} \epsilon_{i j k}$.
3. A fluid flow has the constant velocity vector (in Cartesian coordinates)

$$
\boldsymbol{v}(\boldsymbol{r})=(0,0, W)
$$

Explicitly calculate the volume flux of fluid,

$$
Q=\int \boldsymbol{v} \cdot \mathrm{d} \boldsymbol{S}
$$

flowing across (a) the open hemispherical surface $r=a, z \geqslant 0$, and (b) the disc $r \leqslant a, z=0$. Verify that the divergence theorem holds.
4. For a surface $S$ enclosing a volume $V$, apply the divergence theorem to a vector field $\boldsymbol{F}=\boldsymbol{a} p$, where $\boldsymbol{a}$ is an arbitrary constant vector and $p(\boldsymbol{r})$ is a scalar field. Deduce that

$$
\int_{V}(\boldsymbol{\nabla} p) \mathrm{d} V=\int_{S} p \mathrm{~d} \boldsymbol{S}
$$

5. A time-independent magnetic field $\boldsymbol{B}(\boldsymbol{r})$ is given by

$$
\boldsymbol{B}=\frac{\mu_{0} I}{2 \pi} \frac{\boldsymbol{e}_{z} \times \boldsymbol{r}}{x^{2}+y^{2}}
$$

where $\mu_{0}$ is the magnetic permeability and $I$ is a constant. Using Cartesian coordinates, calculate the electric current density $\boldsymbol{J}$ given by the steady Maxwell equation $\boldsymbol{\nabla} \times \boldsymbol{B}=\mu_{0} \boldsymbol{J}$. Also evaluate $\oint_{C} \boldsymbol{B} \cdot \mathrm{~d} \boldsymbol{r}$, where $C$ is a circle of radius $a$ in the plane $z=0$ and centred on $x=y=0$. Discuss whether Stokes's theorem applies in this situation.
6. Show that, in Cartesian coordinates,

$$
\nabla^{2} \boldsymbol{F}=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{F})-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{F})
$$

This vector identity remains true for all coordinate systems; however, for nonCartesian coordinates,

$$
\left(\nabla^{2} \boldsymbol{F}\right)_{i} \neq \nabla^{2} F_{i} .
$$

Why is this the case? Illustrate this point by evaluating $\nabla^{2} \boldsymbol{F}$ for $\boldsymbol{F}=f(\rho) \boldsymbol{e}_{\phi}$ in cylindrical polar coordinates $(\rho, \phi, z)$ and comparing the result with $\nabla^{2} f$.
7. Find the general circularly symmetric solution to the fourth-order equation

$$
\nabla^{4} \Psi \equiv \nabla^{2}\left(\nabla^{2} \Psi\right)=0
$$

Hint: use plane polar coordinates ( $\rho, \phi$ ), and do not be too eager to expand everything out.
Find those circularly symmetric solutions in the unit disc that are equal to unity at the centre $\rho=0$ and vanish on the boundary $\rho=1$. Give a further condition to render the solution unique.
8. Parabolic coordinates $(u, v, \phi)$ are defined in terms of Cartesian coordinates $(x, y, z)$ by

$$
x=u v \cos \phi, \quad y=u v \sin \phi, \quad z=\frac{1}{2}\left(u^{2}-v^{2}\right) .
$$

Show that the surfaces of constant $u$, and those of constant $v$, are surfaces obtained by rotating parabolae about the $z$-axis. What are the surfaces of constant $\phi$ ? Show that the coordinate surfaces intersect at right angles and hence that these coordinates are orthogonal. Find the scale factors $\left(h_{u}, h_{v}, h_{\phi}\right)$ defined by

$$
|\mathrm{d} \boldsymbol{r}|^{2}=h_{u}^{2} \mathrm{~d} u^{2}+h_{v}^{2} \mathrm{~d} v^{2}+h_{\phi}^{2} \mathrm{~d} \phi^{2} .
$$

Hence obtain the Laplacian in these coordinates using the formula

$$
\nabla^{2}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial}{\partial q_{3}}\right)\right] .
$$

9. Consider the two-stage transformation of Cartesian coordinates $(x, y, z)$ given by

$$
\begin{aligned}
& x=a x^{\prime}, \quad y=b y^{\prime}, \quad z=c z^{\prime}, \\
& x^{\prime}=r^{\prime} \sin \theta^{\prime} \cos \phi^{\prime}, \quad y^{\prime}=r^{\prime} \sin \theta^{\prime} \sin \phi^{\prime}, \quad z^{\prime}=r^{\prime} \cos \theta^{\prime}
\end{aligned}
$$

where $a, b$ and $c$ are positive constants. Calculate the Jacobians of the transformations $(x, y, z) \mapsto\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \mapsto\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$ and verify explicitly that

$$
\frac{\partial(x, y, z)}{\partial\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)}=\frac{\partial(x, y, z)}{\partial\left(x^{\prime}, y^{\prime}, z^{\prime}\right)} \frac{\partial\left(x^{\prime}, y^{\prime}, z^{\prime}\right)}{\partial\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)} .
$$

Are the coordinates $\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$ orthogonal? What range of these coordinates is required to cover the interior of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 ?
$$

Express the volume element in coordinates $\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$ and hence calculate the volume of the ellipsoid.
10. A two-dimensional coordinate system $(\lambda, \phi)$ is defined by

$$
\rho=R(\lambda, \phi) \equiv \frac{\lambda}{1+e \cos \phi},
$$

where $(\rho, \phi)$ are plane polar coordinates and $e$ is a constant with $0<e<1$. Describe the families of curves $\lambda=$ constant and $\phi=$ constant. Find an expression for the squared line element $|\mathrm{d} \boldsymbol{r}|^{2}$ in terms of $\mathrm{d} \lambda, \mathrm{d} \phi, R$ and its partial derivatives. Are the coordinates $(\lambda, \phi)$ orthogonal? Calculate the Jacobian $\partial(\rho, \phi) / \partial(\lambda, \phi)$ and the area element in these coordinates.

How do the results change if $e$ is a function of $\lambda$ ? What happens to the Jacobian if

$$
\left|e-\lambda \frac{\mathrm{d} e}{\mathrm{~d} \lambda}\right| \geqslant 1
$$

and what are the consequences for the coordinate system?
11. A uniform stretched string of length $L$, mass per unit length $\rho$ and tension $T=\rho c^{2}$ is fixed at both ends. The motion of the string is resisted by the surrounding medium, the resistive force per unit length being $-2 \mu \rho \dot{y}$, where $y(x, t)$ is the transverse displacement and $\dot{y}=\partial y / \partial t$. Generalize the argument given in lectures to show that the equation of motion of the string is

$$
\frac{\partial^{2} y}{\partial t^{2}}+2 \mu \frac{\partial y}{\partial t}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

Find $y(x, t)$ if $\mu=\pi c / L, y(x, 0)=d \sin (\pi x / L)$ and $\dot{y}(x, 0)=0$.
If an extra transverse force $F \sin (\pi x / L) \cos (\pi c t / L)$ per unit length acts on the string, find the resulting forced oscillation.
12. Show that the solution of Laplace's equation, $\nabla^{2} \Phi=0$, in the region $0<x<a$, $0<y<b, 0<z<c$, with $\Phi=1$ on the surface $z=0$ and $\Phi=0$ on the other surfaces, is

$$
\Phi=\frac{16}{\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin [(2 m-1) \pi x / a] \sin [(2 n-1) \pi y / b] \sinh [k(c-z)]}{(2 m-1)(2 n-1) \sinh (k c)},
$$

where $k^{2}=(2 m-1)^{2} \pi^{2} / a^{2}+(2 n-1)^{2} \pi^{2} / b^{2}$.
13. The temperature distribution $\theta(x, t)$ along a thin bar of length $L$ satisfies the onedimensional diffusion equation

$$
\frac{\partial \theta}{\partial t}=\nu \frac{\partial^{2} \theta}{\partial x^{2}}
$$

where the diffusivity $\nu$ is a constant, $t$ denotes time and $x$ is the distance from one of the ends. Find $\theta(x, t)$ if the bar is insulated at each end (i.e. if $\partial \theta / \partial x=0$ at each end), and if the initial temperature distribution is given by

$$
\theta(x, 0)=2 \theta_{0} \cos ^{2}\left(\frac{\pi x}{L}\right)
$$

where $\theta_{0}$ is a constant. For large times what is the temperature distribution in the bar? Comment.

This example sheet is available at http://www.damtp.cam.ac.uk/user/examples/ Please send any comments and corrections to gio10@cam.ac.uk

