Example Sheet 2

1. Define $\delta_{\epsilon}(x)$ for $\epsilon>0$ by

$$
\delta_{\epsilon}(x)=\frac{1}{\pi x} \sin \left(\frac{x}{\epsilon}\right) .
$$

(a) Evaluate

$$
\int_{-\infty}^{\infty} \delta_{\epsilon}(x) \mathrm{d} x \quad \text { given that } \quad \int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2}
$$

(b) Argue that for a 'good' function f and a constant ξ

$$
\lim _{\epsilon \rightarrow 0+} \int_{-\infty}^{\infty} \delta_{\epsilon}(x-\xi) f(x) \mathrm{d} x=f(\xi)
$$

(c) Sketch $\delta_{\epsilon}(x)$ and comment.
2. (a) Starting from the definition that $\delta(x)$ is the generalized function such that for all 'good' functions $f(x)$

$$
\int_{-\infty}^{\infty} \delta(x-\xi) f(x) \mathrm{d} x=f(\xi)
$$

show that, for constant $a \neq 0$,

$$
x \delta(x)=0 \quad \text { and } \quad \delta(a x)=\frac{1}{|a|} \delta(x)
$$

(b) Evaluate

$$
\int_{-\infty}^{\infty}|x| \delta\left(x^{2}-a^{2}\right) \mathrm{d} x
$$

where a is a non-zero constant. Hint: the answer is not $2 a$. If keen, discuss the case $a=0$.
3. The differential equation

$$
y^{\prime \prime}+y=H(x)-H(x-\epsilon),
$$

where H is the Heaviside step function and ϵ is a positive parameter, represents a simple harmonic oscillator subject to a constant force for a finite time. By solving
the equation in the three intervals of x separately and applying appropriate matching conditions, show that the solution that vanishes for $x<0$ is

$$
y= \begin{cases}0, & x<0 \\ 1-\cos x, & 0<x<\epsilon \\ \cos (x-\epsilon)-\cos x, & x>\epsilon\end{cases}
$$

Hence show that the solution of

$$
y^{\prime \prime}+y=\frac{H(x)-H(x-\epsilon)}{\epsilon}
$$

that vanishes for $x<0$ agrees, in the limit $\epsilon \rightarrow 0$, with the appropriate solution of $y^{\prime \prime}+y=\delta(x)$, namely $y=H(x) \sin x$.
4. The function $G(x, \xi)$ is defined by

$$
G(x, \xi)= \begin{cases}x(\xi-1), & 0 \leqslant x \leqslant \xi \\ \xi(x-1), & \xi \leqslant x \leqslant 1\end{cases}
$$

If $f(x)$ is continuous for $0 \leqslant x \leqslant 1$, and

$$
y(x)=\int_{0}^{1} f(\xi) G(x, \xi) \mathrm{d} \xi
$$

show that $y^{\prime \prime}(x)=f(x)$ and find $y(0)$ and $y(1)$.
Hint: use the definition of $G(x, \xi)$ to write $y(x)$ as the sum of two integrals, one with $\xi \leqslant x$ and the other with $x \leqslant \xi$.
5. Solve

$$
y^{\prime \prime}-y=\delta(x-a)
$$

subject to the boundary condition that y is bounded as $x \rightarrow \pm \infty$. Hence show that the solution of

$$
y^{\prime \prime}-y=f(x)
$$

subject to the same boundary condition, and with $f(x) \rightarrow 0$ as $x \rightarrow \pm \infty$, is

$$
y=-\frac{1}{2} \int_{-\infty}^{\infty} f(a) \exp (-|x-a|) \mathrm{d} a
$$

6. Use the method of Green's function to solve
(a)

$$
y^{\prime \prime}-y=x^{2} \quad \text { with } \quad y(0)=y(1)=0
$$

(b)

$$
y^{\prime \prime}+\omega^{2} y=x \quad \text { with } \quad y^{\prime}(0)=y(\pi / \omega)=0
$$

(c)

$$
y^{\prime \prime \prime \prime}=f(x) \quad \text { with } \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=0 .
$$

7. Use the method of Green's function to find the general solution of

$$
y^{\prime \prime}-2 y^{\prime}+y=2 x \mathrm{e}^{x}
$$

Hint: invent any convenient boundary conditions to obtain a particular solution, then deduce the general solution.
8. Show that the equation

$$
y^{\prime \prime}+p y^{\prime}+q y=f(x)
$$

where p and q are constants, can be written in the form

$$
z^{\prime}-a z=f, \quad y^{\prime}-b y=z
$$

for suitable choices of the constants a and b. Solve these first-order equations using integrating factors, subject to the initial conditions $y(0)=y^{\prime}(0)=0$, to obtain the solution

$$
y(x)=\mathrm{e}^{b x} \int_{0}^{x} \int_{0}^{\eta} f(\xi) \mathrm{e}^{-a \xi} \mathrm{e}^{(a-b) \eta} \mathrm{d} \xi \mathrm{~d} \eta
$$

By changing the order of integration and carrying out the integration with respect to η, show that

$$
y(x)=\frac{1}{a-b} \int_{0}^{x} f(\xi)\left[\mathrm{e}^{a(x-\xi)}-\mathrm{e}^{b(x-\xi)}\right] \mathrm{d} \xi
$$

and interpret this result.
9. Let α and β be positive constants, and let $H(x)$ denote the Heaviside step function. Find the Fourier transforms of
(a) the odd function $f_{\mathrm{o}}(x)$, where f_{o} is defined for $x>0$ by

$$
f_{\mathrm{o}}(x)= \begin{cases}1, & 0<x \leqslant 1 \\ 0, & x>1\end{cases}
$$

(b) the even function $f_{\mathrm{e}}(x)=\mathrm{e}^{-|x|}$.
(c) the even function $g(x)$, where

$$
g(x)= \begin{cases}1, & |x|<\alpha \\ 0, & |x| \geqslant \alpha\end{cases}
$$

(d) the function

$$
h(x)=H(x) \sinh (\alpha x) \mathrm{e}^{-\beta x}, \quad \text { where } \quad \alpha<\beta .
$$

10. Show that, if a function f and its Fourier transform \tilde{f} are both real, then f is even. Show also that, if a function f is real and its Fourier transform \tilde{f} is purely imaginary, then f is odd.
11. (a) Use Parseval's theorem and the result of question 9a to show that

$$
\int_{-\infty}^{\infty}\left(\frac{1-\cos x}{x}\right)^{2} \mathrm{~d} x=\pi
$$

(b) Use Parseval's theorem and the result of question 9b to evaluate the integral

$$
\int_{0}^{\infty} \frac{\mathrm{d} k}{\left(1+k^{2}\right)^{2}}
$$

12. For $g(x)$ as given in question 9 c define

$$
G(x)=\int_{-\infty}^{\infty} g(x-\xi) g(\xi) \mathrm{d} \xi
$$

Find an expression for $G(x)$. Explicitly demonstrate that the Fourier transforms of $G(x)$ and $g(x)$ satisfy the convolution theorem.

This example sheet is available at http://www.damtp.cam.ac.uk/user/examples/ Please send any comments and corrections to gio10@cam.ac.uk

