Example Sheet 3

1. Use the Cauchy-Schwarz inequality and the properties of the inner product to prove the triangle inequality

$$
|\boldsymbol{x}+\boldsymbol{y}| \leqslant|\boldsymbol{x}|+|\boldsymbol{y}|
$$

for a complex vector space, where $|\boldsymbol{x}|$ is the norm of the vector \boldsymbol{x}. Under what conditions does equality hold?
2. Given a set of vectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{m}(m \geqslant n)$ that span an n-dimensional vector space, show that an orthogonal basis may be constructed by the Gram-Schmidt procedure

$$
\begin{aligned}
& \boldsymbol{e}_{1}=\boldsymbol{u}_{1} \\
& \boldsymbol{e}_{r}=\boldsymbol{u}_{r}-\sum_{s=1}^{r-1} \frac{\boldsymbol{e}_{s} \cdot \boldsymbol{u}_{r}}{\boldsymbol{e}_{s} \cdot \boldsymbol{e}_{s}} \boldsymbol{e}_{s} \quad \text { for } r>1
\end{aligned}
$$

What is the interpretation if any of the vectors \boldsymbol{e}_{r} vanishes?
Find an orthonormal basis for the subspace of a four-dimensional Euclidean space spanned by the three vectors with components $(1,1,0,0),(0,1,2,0)$ and $(0,0,3,4)$.
3. What does it mean to say that the vectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}$ are linearly independent?

Let \mathbf{A} be a linear operator on an n-dimensional vector space, having n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and corresponding eigenvectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}$. Consider the action of the operator $\mathbf{A}-\lambda_{i} \mathbf{1}$ (where $\mathbf{1}$ is the identity operator) on the vector \boldsymbol{e}_{j} in the cases $i=j$ and $i \neq j$. Hence, or otherwise, show that the vectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}$ are linearly independent.
4. An $n \times n$ complex matrix A is such that each row and each column has exactly one non-zero element. The Hermitian conjugate of A is $A^{\dagger}=\left(A^{T}\right)^{*}$ (where A^{T} is the transpose of A, and A^{*} is its complex conjugate). Show that $A^{\dagger} A$ is a real diagonal matrix.
5. An Hermitian matrix A is one for which $A^{\dagger}=A$. Suppose that A and B are both Hermitian matrices. Show that $A B+B A$ is Hermitian. Also show that $A B$ is Hermitian if and only if A and B commute.
6. Find the eigenvalues and eigenvectors of the matrix

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & \alpha & 0 \\
\beta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where neither of the complex constants α and β vanishes. Find the conditions for which (a) the eigenvalues are real, and (b) the eigenvectors are orthogonal. Hence show that both conditions are jointly satisfied if and only if A is Hermitian.
7. For an Hermitian matrix H , explain how to construct a unitary matrix U such that $\mathrm{U}^{\dagger} \mathrm{HU}=\mathrm{D}$, where D is a real diagonal matrix. Illustrate the procedure with the matrix

$$
\mathrm{H}=\left[\begin{array}{cc}
4 & 3 \mathrm{i} \\
-3 \mathrm{i} & -4
\end{array}\right]
$$

8. An anti-Hermitian matrix A is one for which $A^{\dagger}=-A$. What can be said about the eigenvalues of A?

If S is real symmetric and T is real antisymmetric, show that $T \pm i S$ are antiHermitian. Deduce that

$$
\operatorname{det}(T+i S-1) \neq 0
$$

Show that the matrix

$$
\mathrm{U}=(1+\mathrm{T}+\mathrm{iS})(1-\mathrm{T}-\mathrm{iS})^{-1}
$$

is unitary. For

$$
\mathrm{S}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad \mathrm{T}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

show that the eigenvalues of U are $\pm(1-i) / \sqrt{2}$.
9. Show that the eigenvalues of a real orthogonal matrix have unit modulus and that if λ is an eigenvalue then so is λ^{*}. Hence argue that the eigenvalues of a 3×3 real orthogonal matrix R must be a selection from

$$
+1, \quad-1 \quad \text { and } \quad \mathrm{e}^{ \pm \mathrm{i} \alpha} .
$$

Verify that $\operatorname{det} R= \pm 1$. What is the effect of R on vectors orthogonal to an eigenvector with eigenvalue ± 1 ?
10. Find the eigenvalues and normalized eigenvectors of the symmetric matrices

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
5 & 0 & \sqrt{3} \\
0 & 3 & 0 \\
\sqrt{3} & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right]
$$

Describe the related quadratic surfaces.

This example sheet is available at http://www.damtp.cam.ac.uk/user/examples/ Please send any comments and corrections to gio10@cam.ac.uk

