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Solutions to the 2019 Tripos Paper

(a) Potential in the midplane:
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Specific angular momentum:
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Specific energy:
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Squared epicyclic frequency:
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Orbits are unstable to horizontal perturbations when Q2 < 0, i.e. when
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Specific energy at inner radius:
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(b) In a steady state
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given that ¢, = 0. So
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Within ry,, gas spirals rapidly into the black hole because the circular
orbits are unstable. The radial velocity |u,| increases rapidly inwards
and so, to conserve mass, the surface density > declines rapidly. It is
reasonable to assume that the low-density material inside ry, exerts a
negligible torque on the disc.

Material accreted from large radius to the inner radius ry, loses |ey,| =
nc® in energy per unit mass. This is converted into heat and then
radiation from the disc in a steady state, so the total luminosity of the
disc 1S Lgise = nM c?, if advection of heat into the black hole can be
neglected.

The radiation pressure is
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The vertically integrated viscosity is
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where L, is the full vertical thickness. Equating this to fM /31 with

M 4rGMec 1

M =
Mg Kk nc?

and n = 1/16 gives
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as required.



(a) The Lagrangian is
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Define local coordinates (x,¥, z) in the neighbourhood of an orbiting
reference point:

r=r19+, QS:QOt—I—E, Z =2z,
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so that
1 7\
L:§ :t2+(r0+x)2<ﬂo—|——> + 22| — ®(rg + z, 2).
T'o

Expand L up to second order in the local coordinates:
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with
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where &g, ®,9, P,..9, etc., are ® and its partial derivatives evaluated
on the reference orbit at (rg, z), and we use the property that ¢ is odd
in z. Thus
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with tidal potential
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(b) Lagrange’s equations of motion are
dOL OL
dt 0¢  Oq
for ¢ = {x,y, z}. Thus
T = QQOy - ((I)rr() - Qg)xa
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In the case of a point-mass potential, we have
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and Q2 = GMr—3, so we obtain
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with general solution
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and finally
z = Re (B e‘mot) ,

where x4 and 1y, are arbitrary real constants and A and B are arbitrary
complex constants.
As already noted, the conserved canonical y-momentum is
1
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The conserved energy is
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This separates into two independent conserved quantities for the hor-
izontal and vertical motion:
3 5 1 1

2 | 2y O Lo 1,
(2* + 9°) 5T v =5 57

DO | —

Eh =

For our general solution these evaluate to
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as required.



(c) Collisions allow p, to be exchanged between particles, while conserving
the total. So the mean value (z() over all particles remains zero and
the ring remains centred on z = 0. Inelastic collisions cause the sum
of e = g, + &, over all particles to decay. Initially A = B = 0 for all
particles and ¢ is negative. As it decreases further, (z2) must increase
(more so, because A and B become non-zero as a result of collisions).

So the ring spreads symmetrically in the +x directions.



(a) Start from the ideal MHD equations as given, but including the Coriolis
and tidal forces appropriate to the local model. Write u = —¢QQx e, +v,
where v is the departure from the orbital motion. Given that v and
B depend only on z and ¢ and that v, = 0, we obtain B, = constant

and
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as required. The ¢ terms come from v - Vuy and B - Vug, where
uy = —¢Qz e,. The Coriolis term 22 e X uy cancels with the horizontal

tidal force so that v = 0 is a valid solution in the absence of B.

(b) In a steady state:
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With the given boundary conditions, the solution is
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Introduce perturbations of the form
ov, = Re (@x st tikz ) :

etc., where s € C is the growth rate and k£ € R is the vertical wavenum-
ber. The linearized equations require
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Hop
- 8 B, .
sty + (2 — q)Q0, = Iuopszy,
sB, = B, iki,,

SBy + qQBx = B, ikv,.

Multiply first two equations by ¢k B, and use last two to substitute for
v, and vy:

$’B, — ZQ(SBy + qQBx) = — = B,,

s(sB, + ¢QB,) + (2 — ¢)QsB, = ——=B,,.

Introduce the Alfvén frequency
kB,
VHop

w, =k-v, =

so that
(s* +wi — 2¢0) B, — 2QsB, = 0,
2QsB, + (s* + w?) B, =0,

leading to the dispersion relation
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as required.

The relevant solutions satisfying the boundary conditions (0B, =
0B, = 0 at z = £27) have B, x B,  sin(kz) or cos(kz) with ei-
ther sin(kz") =0 or cos(kzt) =0, i.e. kzT =nw/2, n=1,2,3,....

Solve the quadratic for s?, noting that 2(2 — ¢)Q* = Q2
st (2w2 + 02)s® + wi(w? —2¢0*) =0
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Instability (s* > 0 for + root) if
1
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(related to constant term in quadratic), i.e.
0 < w? < 2¢0%

Since w? oc k* o< n?, the n = 1 mode is the critical one for overall
stability. Equilibrium is unstable if

k2 B?
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for k =7 /227, ie. if
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as required.
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The instability criterion is equivalent to

2
k2 <i)
27/

where k is the wavenumber of the equilibrium solution. The first max-
imum of B, o sin(kz) in z > 0 occurs at z = 7/2k, which is less than
2T if the disc is unstable.
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