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Solutions to the 2019 Tripos Paper

1.

(a) Potential in the midplane:

Φ = − GM

(r − 2Rg)
.

Angular velocity (assuming r > 2Rg):

rΩ2 = −Φr =
GM

(r − 2Rg)2

Ω =
1

(r − 2Rg)

√
GM

r
.

Orbital shear parameter:

q = −d ln Ω

d ln r
=

r

(r − 2Rg)
+

1

2
=

(3r − 2Rg)

2(r − 2Rg)
.

Specific angular momentum:

h = r2Ω =

√
GMr3

(r − 2Rg)
.

Specific energy:

ε =
1

2
r2Ω2 + Φ =

GMr

2(r − 2Rg)2
− GM

(r − 2Rg)
= −GM(r − 4Rg)

2(r − 2Rg)2
.

Squared epicyclic frequency:

Ω2
r = 2(2− q)Ω2 =

(r − 6Rg)

(r − 2Rg)
Ω2 =

(r − 6Rg)

(r − 2Rg)3

GM

r
.

Orbits are unstable to horizontal perturbations when Ω2
r < 0, i.e. when

r < 6Rg = rin.

Specific energy at inner radius:

εin = −GM(6Rg − 4Rg)

2(6Rg − 2Rg)2
= − GM

16Rg

= − c
2

16
.
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(b) In a steady state

F = constant = −Ṁ,

Fh+ G = constant = Fhin,

given that Gin = 0. So

G = −2πν̄Σr3dΩ

dr
= Ṁ(h− hin)

ν̄Σ =
fṀ

3π
,

where

f =
3

2q

(
1− hin

h

)
=

3(x− 2)

(3x− 2)

[
1−

(
6

x

)3/2
(x− 2)

4

]

=
(x− 2)

(x− 2
3
)

[
1− 3

√
3√
2

(x− 2)

x
√
x

]
.

Within rin, gas spirals rapidly into the black hole because the circular
orbits are unstable. The radial velocity |ūr| increases rapidly inwards
and so, to conserve mass, the surface density Σ declines rapidly. It is
reasonable to assume that the low-density material inside rin exerts a
negligible torque on the disc.

Material accreted from large radius to the inner radius rin loses |εin| =
ηc2 in energy per unit mass. This is converted into heat and then
radiation from the disc in a steady state, so the total luminosity of the
disc is Ldisc = ηṀc2, if advection of heat into the black hole can be
neglected.

(c) The radiation pressure is

pr =
4σT 4

3c
=

(
β

1 + β

)
p,

so

Fz = − c

κρ

dpr

dz
=
c

κ

(
β

1 + β

)
Ω2z
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and

dFz

dz
= ρνq2Ω2 =

c

κ

(
β

1 + β

)
Ω2

ρν =

(
β

1 + β

)
1

q2

c

κ
.

The vertically integrated viscosity is

ν̄Σ =

∫
ρν dz = Lz

(
β

1 + β

)
1

q2

c

κ
,

where Lz is the full vertical thickness. Equating this to fṀ/3π with

Ṁ =
Ṁ

ṀE

4πGMc

κ

1

ηc2

and η = 1/16 gives

Lz

(
β

1 + β

)
1

q2

c

κ
=

f

3π

Ṁ

ṀE

4πGMc

κ

16

c2

Lz =
64

3

(
1 + β

β

)
q2f

Ṁ

ṀE

GM

c2
,

as required.

3



2.

(a) The Lagrangian is

L =
1

2

(
ṙ2 + r2φ̇2 + ż2

)
− Φ(r, z).

Define local coordinates (x, y, z) in the neighbourhood of an orbiting
reference point:

r = r0 + x, φ = Ω0t+
y

r0

, z = z,

so that

L =
1

2

[
ẋ2 + (r0 + x)2

(
Ω0 +

ẏ

r0

)2

+ ż2

]
− Φ(r0 + x, z).

Expand L up to second order in the local coordinates:

L = L0 + L1 + L2 + · · · ,

with

L0 =
1

2
r2

0Ω2
0 − Φ0,

L1 = r0Ω2
0x+ r2

0Ω0ẏ − Φr0x,

L2 =
1

2

(
ẋ2 + ẏ2 + ż2

)
+

1

2
Ω2

0x
2 + 2Ω0xẏ −

1

2
Φrr0x

2 − 1

2
Φzz0z

2,

where Φ0, Φr0, Φrr0, etc., are Φ and its partial derivatives evaluated
on the reference orbit at (r0, z), and we use the property that Φ is odd
in z. Thus

L2 =
1

2

(
ẋ2 + ẏ2 + ż2

)
+ 2Ω0xẏ − Φt,

with tidal potential

Φt =
1

2
(Φrr0 − Ω2

0)x2 +
1

2
Φzz0z

2.
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(b) Lagrange’s equations of motion are

d

dt

∂L

∂q̇
=
∂L

∂q

for q = {x, y, z}. Thus

ẍ = 2Ω0ẏ − (Φrr0 − Ω2
0)x,

ÿ + 2Ω0ẋ = 0,

z̈ = −Φzz0z.

In the case of a point-mass potential, we have

Φ = −GM(r2 + z2)−1/2,

Φ(r, 0) = −GMr−1,

Φr(r, 0) = GMr−2,

Φrr(r, 0) = −2GMr−3,

Φzz0 = GMr−3,

and Ω2 = GMr−3, so we obtain

ẍ = 2Ω0ẏ + 3Ω2
0x,

ÿ + 2Ω0ẋ = 0,

z̈ = −Ω2
0z.

So

py = ẏ + 2Ω0x = constant,

ẍ+ Ω2
0x = 2Ω0py,

with general solution

x = x0 + Re
(
Ae−iΩ0t

)
, x0 =

2py
Ω0

.

Then

ẏ = py − 2Ω0x0 − 2Ω0 Re
(
Ae−iΩ0t

)
y = y0 −

3

2
Ω0x0t+ Re

(
−2iA e−iΩ0t

)
,
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and finally

z = Re
(
B e−iΩ0t

)
,

where x0 and y0 are arbitrary real constants and A and B are arbitrary
complex constants.

As already noted, the conserved canonical y-momentum is

py =
1

2
Ω0x.

The conserved energy is

ε = ẋ
∂L

∂ẋ
+ ẏ

∂L

∂ẏ
+ ż

∂L

∂ż
− L

=
1

2

(
ẋ2 + ẏ2 + ż2

)
+ Φt.

This separates into two independent conserved quantities for the hor-
izontal and vertical motion:

εh =
1

2

(
ẋ2 + ẏ2

)
− 3

2
x2, εv =

1

2
ż2 +

1

2
z2.

For our general solution these evaluate to

εh =
1

2
Ω2

0(−Ar sin Ω0t+ Ai cos Ω0t)
2

+
1

2

(
−3

2
Ω0x0 − 2Ar cos Ω0t− 2Ai sin Ω0t

)2

− 3

2
Ω2

0(x0 + Ar cos Ω0t+ Ai sin Ω0t)
2

=
1

2
Ω2

0

(
|A|2 − 3

4
x2

0

)
,

εv =
1

2
Ω2

0(−Br sin Ω0t+Bi cos Ω0t)
2

+
1

2
Ω2

0(Br cos Ω0t+Bi sin Ω0t)
2

=
1

2
Ω2

0|B|2,

as required.
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(c) Collisions allow py to be exchanged between particles, while conserving
the total. So the mean value 〈x0〉 over all particles remains zero and
the ring remains centred on x = 0. Inelastic collisions cause the sum
of ε = εh + εv over all particles to decay. Initially A = B = 0 for all
particles and ε is negative. As it decreases further, 〈x2

0〉 must increase
(more so, because A and B become non-zero as a result of collisions).
So the ring spreads symmetrically in the ±x directions.
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3.

(a) Start from the ideal MHD equations as given, but including the Coriolis
and tidal forces appropriate to the local model. Write u = −qΩx ey+v,
where v is the departure from the orbital motion. Given that v and
B depend only on z and t and that vz = 0, we obtain Bz = constant
and

∂vx
∂t
− 2Ωvy =

Bz

µ0ρ

∂Bx

∂z
,

∂vy
∂t

+ (2− q)Ωvx =
Bz

µ0ρ

∂By

∂z
,

∂Bx

∂t
= Bz

∂vx
∂z

,

∂By

∂t
+ qΩBx = Bz

∂vy
∂z

,

as required. The q terms come from v · ∇u0 and B · ∇u0, where
u0 = −qΩx ey. The Coriolis term 2Ω e×u0 cancels with the horizontal
tidal force so that v = 0 is a valid solution in the absence of B.

(b) In a steady state:

−2Ωvy =
Bz

µ0ρ

dBx

dz
,

(2− q)Ωvx =
Bz

µ0ρ

dBy

dz
,

0 = Bz
dvx
dz

,

qΩBx = Bz
dvy
dz

,

so

d2Bx

dz2
+K2Bx = 0,

d2By

dz2
= 0,

with

K2 =
2qΩ2µ0ρ

B2
z

.
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With the given boundary conditions, the solution is

Bx = B+
x

sin(Kz)

sin(Kz+)
, By = 0,

vx = 0, vy = −B
+
x Bz

2Ωµ0ρ

K cos(Kz)

sin(Kz+)
.

(c) Introduce perturbations of the form

δvx = Re
(
ṽx e

st+ikz
)
,

etc., where s ∈ C is the growth rate and k ∈ R is the vertical wavenum-
ber. The linearized equations require

sṽx − 2Ωṽy =
Bz

µ0ρ
ikB̃x,

sṽy + (2− q)Ωṽx =
Bz

µ0ρ
ikBy,

sB̃x = Bz ikṽx,

sB̃y + qΩB̃x = Bz ikṽy.

Multiply first two equations by ikBz and use last two to substitute for
vx and vy:

s2B̃x − 2Ω(sB̃y + qΩB̃x) = −k
2B2

z

µ0ρ
B̃x,

s(sB̃y + qΩB̃x) + (2− q)ΩsB̃x = −k
2B2

z

µ0ρ
B̃y.

Introduce the Alfvén frequency

ωa = k · va =
kBz√
µ0ρ

,

so that(
s2 + ω2

a − 2qΩ2
)
Bx − 2ΩsBy = 0,

2ΩsBx +
(
s2 + ω2

a

)
By = 0,

leading to the dispersion relation(
s2 + ω2

a − 2qΩ2
) (
s2 + ω2

a

)
+ 4Ω2s2 = 0,
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as required.

The relevant solutions satisfying the boundary conditions (δBx =
δBy = 0 at z = ±z+) have Bx ∝ By ∝ sin(kz) or cos(kz) with ei-
ther sin(kz+) = 0 or cos(kz+) = 0, i.e. kz+ = nπ/2, n = 1, 2, 3, . . . .

Solve the quadratic for s2, noting that 2(2− q)Ω2 = Ω2
r:

s4 + (2ω2
a + Ω2

r)s
2 + ω2

a(ω2
a − 2qΩ2) = 0

s2 = −ω2
a −

Ω2
r

2
±
√

Ω4
r

4
+ 4Ω2ω2

a.

Instability (s2 > 0 for + root) if

Ω4
r

4
+ 4Ω2ω2

a >

(
ω2

a +
Ω2

r

2

)2

,

i.e.

ω2
a(2qΩ2 − ω2

a) > 0

(related to constant term in quadratic), i.e.

0 < ω2
a < 2qΩ2.

Since ω2
a ∝ k2 ∝ n2, the n = 1 mode is the critical one for overall

stability. Equilibrium is unstable if

0 <
k2B2

z

µ0ρ
< 2qΩ2

for k = π/2z+, i.e. if

0 <
π2B2

z

8qµ0ρz+2Ω2
< 1,

as required.

(d) The instability criterion is equivalent to

k2 >
( π

2z+

)2

,

where k is the wavenumber of the equilibrium solution. The first max-
imum of Bx ∝ sin(kz) in z > 0 occurs at z = π/2k, which is less than
z+ if the disc is unstable.
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