Dynamics of Astrophysical Discs Professor Gordon Ogilvie

Mathematical Tripos, Part III
Lent Term 2020

Solutions to the 2019 Tripos Paper

1.

(a) Potential in the midplane:

$$
\Phi=-\frac{G M}{\left(r-2 R_{\mathrm{g}}\right)} .
$$

Angular velocity (assuming $r>2 R_{\mathrm{g}}$):

$$
\begin{aligned}
r \Omega^{2} & =-\Phi_{r}=\frac{G M}{\left(r-2 R_{\mathrm{g}}\right)^{2}} \\
\Omega & =\frac{1}{\left(r-2 R_{\mathrm{g}}\right)} \sqrt{\frac{G M}{r}}
\end{aligned}
$$

Orbital shear parameter:

$$
q=-\frac{d \ln \Omega}{d \ln r}=\frac{r}{\left(r-2 R_{\mathrm{g}}\right)}+\frac{1}{2}=\frac{\left(3 r-2 R_{\mathrm{g}}\right)}{2\left(r-2 R_{\mathrm{g}}\right)} .
$$

Specific angular momentum:

$$
h=r^{2} \Omega=\frac{\sqrt{G M r^{3}}}{\left(r-2 R_{\mathrm{g}}\right)} .
$$

Specific energy:

$$
\varepsilon=\frac{1}{2} r^{2} \Omega^{2}+\Phi=\frac{G M r}{2\left(r-2 R_{\mathrm{g}}\right)^{2}}-\frac{G M}{\left(r-2 R_{\mathrm{g}}\right)}=-\frac{G M\left(r-4 R_{\mathrm{g}}\right)}{2\left(r-2 R_{\mathrm{g}}\right)^{2}} .
$$

Squared epicyclic frequency:

$$
\Omega_{r}^{2}=2(2-q) \Omega^{2}=\frac{\left(r-6 R_{\mathrm{g}}\right)}{\left(r-2 R_{\mathrm{g}}\right)} \Omega^{2}=\frac{\left(r-6 R_{\mathrm{g}}\right)}{\left(r-2 R_{\mathrm{g}}\right)^{3}} \frac{G M}{r} .
$$

Orbits are unstable to horizontal perturbations when $\Omega_{r}^{2}<0$, i.e. when $r<6 R_{\mathrm{g}}=r_{\text {in }}$.
Specific energy at inner radius:

$$
\varepsilon_{\text {in }}=-\frac{G M\left(6 R_{\mathrm{g}}-4 R_{\mathrm{g}}\right)}{2\left(6 R_{\mathrm{g}}-2 R_{\mathrm{g}}\right)^{2}}=-\frac{G M}{16 R_{\mathrm{g}}}=-\frac{c^{2}}{16} .
$$

(b) In a steady state

$$
\begin{aligned}
& \mathscr{F}=\text { constant }=-\dot{M}, \\
& \mathscr{F} h+\mathscr{G}=\mathrm{constant}=\mathscr{F} h_{\mathrm{in}},
\end{aligned}
$$

given that $\mathscr{G}_{\text {in }}=0$. So

$$
\begin{aligned}
\mathscr{G} & =-2 \pi \bar{\nu} \Sigma r^{3} \frac{d \Omega}{d r}=\dot{M}\left(h-h_{\text {in }}\right) \\
\bar{\nu} \Sigma & =\frac{f \dot{M}}{3 \pi}
\end{aligned}
$$

where

$$
\begin{aligned}
f & =\frac{3}{2 q}\left(1-\frac{h_{\text {in }}}{h}\right) \\
& =\frac{3(x-2)}{(3 x-2)}\left[1-\left(\frac{6}{x}\right)^{3 / 2} \frac{(x-2)}{4}\right] \\
& =\frac{(x-2)}{\left(x-\frac{2}{3}\right)}\left[1-\frac{3 \sqrt{3}}{\sqrt{2}} \frac{(x-2)}{x \sqrt{x}}\right] .
\end{aligned}
$$

Within $r_{\text {in }}$, gas spirals rapidly into the black hole because the circular orbits are unstable. The radial velocity $\left|\bar{u}_{r}\right|$ increases rapidly inwards and so, to conserve mass, the surface density Σ declines rapidly. It is reasonable to assume that the low-density material inside $r_{\text {in }}$ exerts a negligible torque on the disc.
Material accreted from large radius to the inner radius $r_{\text {in }}$ loses $\left|\varepsilon_{\text {in }}\right|=$ ηc^{2} in energy per unit mass. This is converted into heat and then radiation from the disc in a steady state, so the total luminosity of the disc is $L_{\text {disc }}=\eta \dot{M} c^{2}$, if advection of heat into the black hole can be neglected.
(c) The radiation pressure is

$$
p_{\mathrm{r}}=\frac{4 \sigma T^{4}}{3 c}=\left(\frac{\beta}{1+\beta}\right) p
$$

so

$$
F_{z}=-\frac{c}{\kappa \rho} \frac{d p_{\mathrm{r}}}{d z}=\frac{c}{\kappa}\left(\frac{\beta}{1+\beta}\right) \Omega^{2} z
$$

and

$$
\begin{aligned}
\frac{d F_{z}}{d z}=\rho \nu q^{2} \Omega^{2} & =\frac{c}{\kappa}\left(\frac{\beta}{1+\beta}\right) \Omega^{2} \\
\rho \nu & =\left(\frac{\beta}{1+\beta}\right) \frac{1}{q^{2}} \frac{c}{\kappa}
\end{aligned}
$$

The vertically integrated viscosity is

$$
\bar{\nu} \Sigma=\int \rho \nu d z=L_{z}\left(\frac{\beta}{1+\beta}\right) \frac{1}{q^{2}} \frac{c}{\kappa},
$$

where L_{z} is the full vertical thickness. Equating this to $f \dot{M} / 3 \pi$ with

$$
\dot{M}=\frac{\dot{M}}{\dot{M}_{\mathrm{E}}} \frac{4 \pi G M c}{\kappa} \frac{1}{\eta c^{2}}
$$

and $\eta=1 / 16$ gives

$$
\begin{aligned}
L_{z}\left(\frac{\beta}{1+\beta}\right) \frac{1}{q^{2}} \frac{c}{\kappa} & =\frac{f}{3 \pi} \frac{\dot{M}}{\dot{M}_{\mathrm{E}}} \frac{4 \pi G M c}{\kappa} \frac{16}{c^{2}} \\
L_{z} & =\frac{64}{3}\left(\frac{1+\beta}{\beta}\right) q^{2} f \frac{\dot{M}}{\dot{M}_{\mathrm{E}}} \frac{G M}{c^{2}}
\end{aligned}
$$

as required.
2.
(a) The Lagrangian is

$$
L=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)-\Phi(r, z) .
$$

Define local coordinates (x, y, z) in the neighbourhood of an orbiting reference point:

$$
r=r_{0}+x, \quad \phi=\Omega_{0} t+\frac{y}{r_{0}}, \quad z=z
$$

so that

$$
L=\frac{1}{2}\left[\dot{x}^{2}+\left(r_{0}+x\right)^{2}\left(\Omega_{0}+\frac{\dot{y}}{r_{0}}\right)^{2}+\dot{z}^{2}\right]-\Phi\left(r_{0}+x, z\right) .
$$

Expand L up to second order in the local coordinates:

$$
L=L_{0}+L_{1}+L_{2}+\cdots,
$$

with

$$
\begin{aligned}
& L_{0}=\frac{1}{2} r_{0}^{2} \Omega_{0}^{2}-\Phi_{0}, \\
& L_{1}=r_{0} \Omega_{0}^{2} x+r_{0}^{2} \Omega_{0} \dot{y}-\Phi_{r 0} x, \\
& L_{2}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\frac{1}{2} \Omega_{0}^{2} x^{2}+2 \Omega_{0} x \dot{y}-\frac{1}{2} \Phi_{r r 0} x^{2}-\frac{1}{2} \Phi_{z z 0} z^{2},
\end{aligned}
$$

where $\Phi_{0}, \Phi_{r 0}, \Phi_{r r 0}$, etc., are Φ and its partial derivatives evaluated on the reference orbit at $\left(r_{0}, z\right)$, and we use the property that Φ is odd in z. Thus

$$
L_{2}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+2 \Omega_{0} x \dot{y}-\Phi_{\mathrm{t}},
$$

with tidal potential

$$
\Phi_{\mathrm{t}}=\frac{1}{2}\left(\Phi_{r r 0}-\Omega_{0}^{2}\right) x^{2}+\frac{1}{2} \Phi_{z z 0} z^{2} .
$$

(b) Lagrange's equations of motion are

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=\frac{\partial L}{\partial q}
$$

for $q=\{x, y, z\}$. Thus

$$
\begin{aligned}
\ddot{x} & =2 \Omega_{0} \dot{y}-\left(\Phi_{r r 0}-\Omega_{0}^{2}\right) x, \\
\ddot{y}+2 \Omega_{0} \dot{x} & =0, \\
\ddot{z} & =-\Phi_{z z 0} z .
\end{aligned}
$$

In the case of a point-mass potential, we have

$$
\begin{aligned}
\Phi & =-G M\left(r^{2}+z^{2}\right)^{-1 / 2}, \\
\Phi(r, 0) & =-G M r^{-1}, \\
\Phi_{r}(r, 0) & =G M r^{-2}, \\
\Phi_{r r}(r, 0) & =-2 G M r^{-3}, \\
\Phi_{z z 0} & =G M r^{-3},
\end{aligned}
$$

and $\Omega^{2}=G M r^{-3}$, so we obtain

$$
\begin{aligned}
\ddot{x} & =2 \Omega_{0} \dot{y}+3 \Omega_{0}^{2} x, \\
\ddot{y}+2 \Omega_{0} \dot{x} & =0, \\
\ddot{z} & =-\Omega_{0}^{2} z .
\end{aligned}
$$

So

$$
\begin{aligned}
& p_{y}=\dot{y}+2 \Omega_{0} x=\text { constant } \\
& \ddot{x}+\Omega_{0}^{2} x=2 \Omega_{0} p_{y},
\end{aligned}
$$

with general solution

$$
x=x_{0}+\operatorname{Re}\left(A e^{-i \Omega_{0} t}\right), \quad x_{0}=\frac{2 p_{y}}{\Omega_{0}} .
$$

Then

$$
\begin{aligned}
& \dot{y}=p_{y}-2 \Omega_{0} x_{0}-2 \Omega_{0} \operatorname{Re}\left(A e^{-i \Omega_{0} t}\right) \\
& y=y_{0}-\frac{3}{2} \Omega_{0} x_{0} t+\operatorname{Re}\left(-2 i A e^{-i \Omega_{0} t}\right),
\end{aligned}
$$

and finally

$$
z=\operatorname{Re}\left(B e^{-i \Omega_{0} t}\right)
$$

where x_{0} and y_{0} are arbitrary real constants and A and B are arbitrary complex constants.

As already noted, the conserved canonical y-momentum is

$$
p_{y}=\frac{1}{2} \Omega_{0} x
$$

The conserved energy is

$$
\begin{aligned}
\varepsilon & =\dot{x} \frac{\partial L}{\partial \dot{x}}+\dot{y} \frac{\partial L}{\partial \dot{y}}+\dot{z} \frac{\partial L}{\partial \dot{z}}-L \\
& =\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\Phi_{\mathrm{t}}
\end{aligned}
$$

This separates into two independent conserved quantities for the horizontal and vertical motion:

$$
\varepsilon_{\mathrm{h}}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{3}{2} x^{2}, \quad \varepsilon_{\mathrm{v}}=\frac{1}{2} \dot{z}^{2}+\frac{1}{2} z^{2} .
$$

For our general solution these evaluate to

$$
\begin{aligned}
\varepsilon_{\mathrm{h}}= & \frac{1}{2} \Omega_{0}^{2}\left(-A_{\mathrm{r}} \sin \Omega_{0} t+A_{\mathrm{i}} \cos \Omega_{0} t\right)^{2} \\
& +\frac{1}{2}\left(-\frac{3}{2} \Omega_{0} x_{0}-2 A_{\mathrm{r}} \cos \Omega_{0} t-2 A_{\mathrm{i}} \sin \Omega_{0} t\right)^{2} \\
& -\frac{3}{2} \Omega_{0}^{2}\left(x_{0}+A_{\mathrm{r}} \cos \Omega_{0} t+A_{\mathrm{i}} \sin \Omega_{0} t\right)^{2} \\
= & \frac{1}{2} \Omega_{0}^{2}\left(|A|^{2}-\frac{3}{4} x_{0}^{2}\right), \\
\varepsilon_{\mathrm{v}}= & \frac{1}{2} \Omega_{0}^{2}\left(-B_{\mathrm{r}} \sin \Omega_{0} t+B_{\mathrm{i}} \cos \Omega_{0} t\right)^{2} \\
& +\frac{1}{2} \Omega_{0}^{2}\left(B_{\mathrm{r}} \cos \Omega_{0} t+B_{\mathrm{i}} \sin \Omega_{0} t\right)^{2} \\
= & \frac{1}{2} \Omega_{0}^{2}|B|^{2},
\end{aligned}
$$

as required.
(c) Collisions allow p_{y} to be exchanged between particles, while conserving the total. So the mean value $\left\langle x_{0}\right\rangle$ over all particles remains zero and the ring remains centred on $x=0$. Inelastic collisions cause the sum of $\varepsilon=\varepsilon_{\mathrm{h}}+\varepsilon_{\mathrm{v}}$ over all particles to decay. Initially $A=B=0$ for all particles and ε is negative. As it decreases further, $\left\langle x_{0}^{2}\right\rangle$ must increase (more so, because A and B become non-zero as a result of collisions). So the ring spreads symmetrically in the $\pm x$ directions.
3.
(a) Start from the ideal MHD equations as given, but including the Coriolis and tidal forces appropriate to the local model. Write $\mathbf{u}=-q \Omega x \mathbf{e}_{y}+\mathbf{v}$, where \mathbf{v} is the departure from the orbital motion. Given that \mathbf{v} and \mathbf{B} depend only on z and t and that $v_{z}=0$, we obtain $B_{z}=$ constant and

$$
\begin{aligned}
\frac{\partial v_{x}}{\partial t}-2 \Omega v_{y} & =\frac{B_{z}}{\mu_{0} \rho} \frac{\partial B_{x}}{\partial z}, \\
\frac{\partial v_{y}}{\partial t}+(2-q) \Omega v_{x} & =\frac{B_{z}}{\mu_{0} \rho} \frac{\partial B_{y}}{\partial z}, \\
\frac{\partial B_{x}}{\partial t} & =B_{z} \frac{\partial v_{x}}{\partial z}, \\
\frac{\partial B_{y}}{\partial t}+q \Omega B_{x} & =B_{z} \frac{\partial v_{y}}{\partial z},
\end{aligned}
$$

as required. The q terms come from $\mathbf{v} \cdot \nabla \mathbf{u}_{0}$ and $\mathbf{B} \cdot \nabla \mathbf{u}_{0}$, where $\mathbf{u}_{0}=-q \Omega x \mathbf{e}_{y}$. The Coriolis term $2 \Omega \mathbf{e} \times \mathbf{u}_{0}$ cancels with the horizontal tidal force so that $\mathbf{v}=\mathbf{0}$ is a valid solution in the absence of \mathbf{B}.
(b) In a steady state:

$$
\begin{aligned}
-2 \Omega v_{y} & =\frac{B_{z}}{\mu_{0} \rho} \frac{d B_{x}}{d z}, \\
(2-q) \Omega v_{x} & =\frac{B_{z}}{\mu_{0} \rho} \frac{d B_{y}}{d z}, \\
0 & =B_{z} \frac{d v_{x}}{d z}, \\
q \Omega B_{x} & =B_{z} \frac{d v_{y}}{d z},
\end{aligned}
$$

so

$$
\frac{d^{2} B_{x}}{d z^{2}}+K^{2} B_{x}=0, \quad \frac{d^{2} B_{y}}{d z^{2}}=0
$$

with

$$
K^{2}=\frac{2 q \Omega^{2} \mu_{0} \rho}{B_{z}^{2}} .
$$

With the given boundary conditions, the solution is

$$
\begin{aligned}
& B_{x}=B_{x}^{+} \frac{\sin (K z)}{\sin \left(K z^{+}\right)}, \quad B_{y}=0, \\
& v_{x}=0, \quad v_{y}=-\frac{B_{x}^{+} B_{z}}{2 \Omega \mu_{0} \rho} \frac{K \cos (K z)}{\sin \left(K z^{+}\right)} .
\end{aligned}
$$

(c) Introduce perturbations of the form

$$
\delta v_{x}=\operatorname{Re}\left(\tilde{v}_{x} e^{s t+i k z}\right),
$$

etc., where $s \in \mathbb{C}$ is the growth rate and $k \in \mathbb{R}$ is the vertical wavenumber. The linearized equations require

$$
\begin{aligned}
s \tilde{v}_{x}-2 \Omega \tilde{v}_{y} & =\frac{B_{z}}{\mu_{0} \rho} i k \tilde{B}_{x}, \\
s \tilde{v}_{y}+(2-q) \Omega \tilde{v}_{x} & =\frac{B_{z}}{\mu_{0} \rho} i k B_{y}, \\
s \tilde{B}_{x} & =B_{z} i k \tilde{v}_{x}, \\
s \tilde{B}_{y}+q \Omega \tilde{B}_{x} & =B_{z} i k \tilde{v}_{y} .
\end{aligned}
$$

Multiply first two equations by $i k B_{z}$ and use last two to substitute for v_{x} and v_{y} :

$$
\begin{aligned}
s^{2} \tilde{B}_{x}-2 \Omega\left(s \tilde{B}_{y}+q \Omega \tilde{B}_{x}\right) & =-\frac{k^{2} B_{z}^{2}}{\mu_{0} \rho} \tilde{B}_{x}, \\
s\left(s \tilde{B}_{y}+q \Omega \tilde{B}_{x}\right)+(2-q) \Omega s \tilde{B}_{x} & =-\frac{k^{2} B_{z}^{2}}{\mu_{0} \rho} \tilde{B}_{y} .
\end{aligned}
$$

Introduce the Alfvén frequency

$$
\omega_{\mathrm{a}}=\mathbf{k} \cdot \mathbf{v}_{\mathrm{a}}=\frac{k B_{z}}{\sqrt{\mu_{0} \rho}}
$$

so that

$$
\begin{array}{r}
\left(s^{2}+\omega_{\mathrm{a}}^{2}-2 q \Omega^{2}\right) B_{x}-2 \Omega s B_{y}=0 \\
2 \Omega s B_{x}+\left(s^{2}+\omega_{\mathrm{a}}^{2}\right) B_{y}=0,
\end{array}
$$

leading to the dispersion relation

$$
\left(s^{2}+\omega_{\mathrm{a}}^{2}-2 q \Omega^{2}\right)\left(s^{2}+\omega_{\mathrm{a}}^{2}\right)+4 \Omega^{2} s^{2}=0,
$$

as required.
The relevant solutions satisfying the boundary conditions ($\delta B_{x}=$ $\delta B_{y}=0$ at $z= \pm z^{+}$) have $B_{x} \propto B_{y} \propto \sin (k z)$ or $\cos (k z)$ with either $\sin \left(k z^{+}\right)=0$ or $\cos \left(k z^{+}\right)=0$, i.e. $k z^{+}=n \pi / 2, n=1,2,3, \ldots$.
Solve the quadratic for s^{2}, noting that $2(2-q) \Omega^{2}=\Omega_{r}^{2}$:

$$
\begin{aligned}
& s^{4}+\left(2 \omega_{\mathrm{a}}^{2}+\Omega_{r}^{2}\right) s^{2}+\omega_{\mathrm{a}}^{2}\left(\omega_{\mathrm{a}}^{2}-2 q \Omega^{2}\right)=0 \\
& s^{2}=-\omega_{\mathrm{a}}^{2}-\frac{\Omega_{r}^{2}}{2} \pm \sqrt{\frac{\Omega_{r}^{4}}{4}+4 \Omega^{2} \omega_{\mathrm{a}}^{2}} .
\end{aligned}
$$

Instability $\left(s^{2}>0\right.$ for + root $)$ if

$$
\frac{\Omega_{r}^{4}}{4}+4 \Omega^{2} \omega_{\mathrm{a}}^{2}>\left(\omega_{\mathrm{a}}^{2}+\frac{\Omega_{r}^{2}}{2}\right)^{2},
$$

i.e.

$$
\omega_{\mathrm{a}}^{2}\left(2 q \Omega^{2}-\omega_{\mathrm{a}}^{2}\right)>0
$$

(related to constant term in quadratic), i.e.

$$
0<\omega_{\mathrm{a}}^{2}<2 q \Omega^{2} .
$$

Since $\omega_{\mathrm{a}}^{2} \propto k^{2} \propto n^{2}$, the $n=1$ mode is the critical one for overall stability. Equilibrium is unstable if

$$
0<\frac{k^{2} B_{z}^{2}}{\mu_{0} \rho}<2 q \Omega^{2}
$$

for $k=\pi / 2 z^{+}$, i.e. if

$$
0<\frac{\pi^{2} B_{z}^{2}}{8 q \mu_{0} \rho z^{+2} \Omega^{2}}<1
$$

as required.
(d) The instability criterion is equivalent to

$$
k^{2}>\left(\frac{\pi}{2 z^{+}}\right)^{2}
$$

where k is the wavenumber of the equilibrium solution. The first maximum of $B_{x} \propto \sin (k z)$ in $z>0$ occurs at $z=\pi / 2 k$, which is less than z^{+}if the disc is unstable.

