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NOTES ON AFD AND MHD

[These notes are intended for reference but go well beyond what is required for the course.]

1.1. Astrophysical fluid dynamics

1.1.1. Introduction

Astrophysical fluid dynamics (AFD) is a theory relevant to the description of the inte-

riors of stars and planets, exterior phenomena such as discs, winds and jets, and also the

interstellar medium, the intergalactic medium and cosmology itself.

A fluid description is not applicable (i) in solidified regions such as the rocky cores of

giant planets, and (ii) in very tenuous regions where the mean free path of the particles is

not much less than the characteristic macroscopic length-scale of the system (or indeed in

any system if one examines length-scales comparable to or smaller than the mean free path).

There are various flavours of AFD in common use. The basic model involves a compress-

ible, inviscid fluid and is Newtonian (i.e. non-relativistic). The thermal physics of the fluid

may be treated in different ways, either by assuming it to be isothermal or adiabatic, or by

including radiation processes in varying levels of detail.

Magnetohydrodynamics (MHD) generalizes this theory by including the dynamical effects

of magnetic fields. Often the fluid is assumed to be perfectly electrically conducting (ideal

MHD).

One can also include the dynamical (rather than thermal) effects of radiation, result-

ing in a theory of radiation (magneto)hydrodynamics . Dissipative effects such as viscosity

and resistivity can be included. All these theories can also be formulated in a relativistic

framework.

AFD typically differs from ‘laboratory’ or ‘engineering’ fluid dynamics in the relative

importance of certain effects. Effects that may be important in AFD include compressibility,

gravitation, magnetic fields, radiation forces and relativistic phenomena. Effects that are

usually unimportant include viscosity, surface tension and the presence of solid boundaries.

1.1.2. Basic equations

A simple fluid is characterized by a velocity field u(r, t) and two independent thermo-

dynamic properties, of which the most useful are the dynamical quantities: the mass density

ρ(r, t) and the pressure p(r, t). Other properties, such as the temperature and the viscosity,

can be regarded as functions of ρ and p.
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In the Eulerian viewpoint we consider how the properties of the fluid vary in time at a

point that is fixed in space, i.e. attached to the (usually inertial) coordinate system. In the

Lagrangian viewpoint we consider how the properties of the fluid vary at a point that moves

with the fluid. The Eulerian time-derivative of the density, for example, is

∂ρ

∂t
,

while the Lagrangian time-derivative is

Dρ

Dt
=

∂ρ

∂t
+ u � rρ.

Equation of mass conservation

The equation of mass conservation,

∂ρ

∂t
+r � (ρu) = 0

has the typical form of a conservation law. Note that ρu is the mass flux density.

This equation can also be written in the form

Dρ

Dt
= �ρr � u.

In an incompressible fluid, fluid elements preserve their density, and so

r � u = 0.

Although no fluid is strictly incompressible, this can sometimes be a good approximation for

subsonic motions.

Equation of motion

The equation of motion is

ρ
Du
Dt

= �ρrΦ�rp +r �T,

and derives from Newton’s second law. Here Φ is the gravitational potential and T is the

stress tensor, a symmetric tensor field of second rank. Many types of force, such as viscous,

turbulent or magnetic forces, can be represented in the form r �T.
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Poisson’s equation

The gravitational potential is generated by the mass distribution according to Poisson’s

equation, r2Φ = 4πGρ,

where G is Newton’s constant. The solution

Φ(r, t) = �G

Z
ρ(r′, t)jr′ � rj d3r′

will, in general, involve contributions from both inside and outside the fluid body being

considered. Some astrophysical discs are non-self-gravitating, meaning that the internal

contribution can be neglected relative to that of external masses, most importantly the

central object. In this case Φ is known in advance and Poisson’s equation is not coupled to

the other equations.

Thermal energy equation

The thermal energy equation is

ρT
Ds

Dt
=H � C ,

where T is the temperature, s the specific entropy (entropy per unit mass), H the heating

rate per unit volume and C the cooling rate per unit volume. Note that H and C represent

non-adiabatic processes.

In the case of a (Navier–Stokes) viscous stress,

T = 2µS + µb(r � u)I,

where µ is the (shear) viscosity, µb the bulk viscosity and

S =
1

2

hru+ (ru)T
i� 1

3
(r � u)I

is the traceless shear tensor. (I is the unit tensor. Recall that the dynamic viscosity µ and

the kinematic viscosity ν are related by µ = ρν.) The viscous heating rate is

H = T : ru = 2µS2 + µb(r � u)2.

Although molecular viscosity is rarely important in astrophysics, it is commonly used to

parametrize other processes, especially turbulence, that to some extent mimic it.

The radiative cooling rate can be written

C = r � F ,
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where F is the radiative energy flux density. In optically thick media the radiation is locally

close to a black-body distribution and may be treated in the diffusion approximation. The

radiative flux is then directed down the temperature gradient,

F = �16σT 3

3κρ
rT,

where σ is the Stefan–Boltzmann constant and κ the Rosseland mean opacity.

To relate the thermal quantities T and s to the dynamical variables ρ and p, an equation

of state is required, together with standard thermodynamic identities. (The local thermo-

dynamic state of a simple fluid is specified by any two of these quantities. This ignores the

possible complications of variable chemical composition.) Most important in astrophysics is

the case of an ideal gas together with black-body radiation, for which

p = pg + pr =
kBρT

µmmp
+

4σT 4

3c
,

where kB is Boltzmann’s constant, mp the mass of the proton and c the speed of light. µm

is the mean molecular weight (2.0 for molecular hydrogen, 1.0 for atomic hydrogen, 0.5 for

fully ionized hydrogen and about 0.6 for ionized matter of cosmic abundances). Radiation

pressure is often negligible but can be important in the centres of stars or in the innermost

part of luminous discs around neutron stars and black holes.

In AFD it is usual to define three adiabatic exponents γ1, γ2 and γ3 by

γ1 =

�
∂ ln p

∂ ln ρ

�
s

,

γ2

γ2 � 1
=

�
∂ ln p

∂ lnT

�
s

,

γ3 � 1 =

�
∂ lnT

∂ ln ρ

�
s

.

The ratio of specific heats γ = cp/cv and the three gamma coefficients are related by

γ1 =

�
γ2

γ2 � 1

�
(γ3 � 1) = χρ + χT (γ3 � 1) = χργ, (1)

where

χρ =

�
∂ ln p

∂ ln ρ

�
T

, χT =

�
∂ ln p

∂ lnT

�
ρ

can be found from the equation of state. In the case of an ideal gas (with negligible radiation

pressure), χρ = χT = 1 and so γ1 = γ2 = γ3 = γ.

We then have the important relation

ρTds =

�
1

γ3 � 1

��
dp� γ1p

ρ
dρ

�
, (2)
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which allows the thermal energy equation to be rewritten in terms of the dynamical variables

ρ and p, i.e. �
1

γ3 � 1

��
Dp

Dt
� γ1p

ρ

Dρ

Dt

�
= T : ru�r � F .

It is often assumed that γ1 = γ2 = γ3 = γ.

Exercise: Derive equations (1) and (2). For the latter you will require the Maxwell relation

that comes from the expression de = T ds�p d(ρ−1) for the differential of the specific internal

energy.

1.2. Elementary derivation of the MHD equations

Magnetohydrodynamics (or MHD) is the dynamics of an electrically conducting fluid

containing a magnetic field. It is a fusion of fluid dynamics and electromagnetism.

1.2.1. The induction equation

We restrict ourselves to a non-relativistic theory in which fluid motions are slow com-

pared to the speed of light. The electromagnetic fields E and B are governed by Maxwell’s

equations without the displacement current,

∂B
∂t

= �r�E,r �B = 0,r�B = µ0J ,

where µ0 is the permeability of free space and J is the electric current density. The fourth

Maxwell equation, involving r �E, is not required in a non-relativistic theory.

Exercise: Show that these equations are invariant under the Galilean transformation to a

frame of reference moving with uniform relative velocity v,

r′ = r � vt,

t′ = t,E′ = E + v �B,B′ = B,J ′ = J ,

as required by a ‘non-relativistic’ theory. (In fact, this is simply ‘Galilean relativity’.)

Ohm’s law for a static medium with electrical conductivity σ is

J = σE.
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For an electrically conducting fluid moving with velocity u this becomes

J = σ(E + u�B),

or E = �u�B +
J
σ

.

From Maxwell’s equations we then obtain the induction equation

∂B
∂t

= r� (u�B)�r� (ηr�B),

where

η =
1

µ0σ

is the magnetic diffusivity. (The resistivity is 1/σ.) Note that this is an evolutionary equation

for B alone, and E and J have been eliminated. The divergence of the induction equation

is
∂

∂t
(r �B) = 0,

so the solenoidal character of B is preserved.

1.2.2. The Lorentz force

A fluid carrying a current density J in a magnetic field B experiences a Lorentz force

Fm = J �B =
1

µ0
(r�B)�B

per unit volume. (The electrostatic force is negligible in the non-relativistic theory.) In

Cartesian components,
(µ0Fm)i = εijk(εjlm∂lBm)Bk

= (∂kBi � ∂iBk)Bk

= Bk∂kBi � ∂i(
1
2B2).

Thus Fm =
1

µ0
B � rB �r B2

2µ0

!
.

The first term is a curvature force due to a tension in the field lines. The second term is the

gradient of an isotropic magnetic pressure

pm =
B2

2µ0
,

which is also equal to the energy density of the magnetic field.
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Alternatively, one can write Fm = r �M,

where

M =
BB
µ0

� B2

2µ0
I

is the Maxwell stress tensor. If the magnetic field is locally aligned with the z-axis, then

M =

2664 0 0 0

0 0 0

0 0 +B2

µ0

3775+

2664
� B2

2µ0
0 0

0 � B2

2µ0
0

0 0 � B2

2µ0

3775 .

The first term represents a magnetic tension Tm = B2/µ0 per unit area in the field lines.

This gives rise to Alfvén waves, which travel parallel to the field with characteristic speed

vA =

�
Tm

ρ

�1/2

=
B

(µ0ρ)1/2
,

the Alfvén speed. This is often considered as a vector Alfvén velocity,

vA =
B

(µ0ρ)1/2
.

The magnetic pressure also affects the propagation of sound waves, which become magne-

toacoustic waves.

The combination

Π = p +
B2

2µ0

is often referred to as the total pressure. The ratio

β =
p

B2/2µ0

is known as the plasma beta.

1.2.3. Joule heating

Like viscosity, resistivity is a source of irreversibility and dissipation. (Note, however,

that while viscosity is the microscopic transport coefficient for momentum, resistivity is

inversely proportional to the microscopic transport coefficient for electrical current.) In the

presence of resistivity, magnetic energy is dissipated at a rate

HJoule =
J2

σ
= µ0ηJ2
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per unit volume and converted into heat.

1.2.4. Summary of the MHD equations

A full set of MHD equations, including compressibility and dissipative effects, might read

∂ρ

∂t
+r � (ρu) = 0,

ρ
Du
Dt

= �ρrΦ�rp +r �T +
1

µ0
(r�B)�B,

ρT
Ds

Dt
= T : ru+ µ0ηJ2 �r � F ,

r �B = 0,

∂B
∂t

= r� (u�B)�r� (ηr�B),

together with constitutive relations determining the viscosity, magnetic diffusivity, opacity,

equation of state, etc. Most of these equations can be written in at least one other way that

may be useful in different circumstances.

These equations display the essential nonlinearity of MHD. When the velocity field is

prescribed, an artifice known as the kinematic approximation, the induction equation is a

relatively straightforward linear evolutionary equation for the magnetic field. However, a

sufficiently strong magnetic field will modify the velocity field through its dynamical effect,

the Lorentz force. This nonlinear coupling leads to a rich variety of behaviour. (Of course,

the purely hydrodynamic nonlinearity of the u � ru term is still present. Another, less

important nonlinear effect of the magnetic field occurs through Joule heating.)

1.3. Kinematics of the magnetic field

1.3.1. Ideal MHD

For a perfect electrical conductor, σ ! 1 and so η ! 0. This limit is known as ideal

MHD. The induction equation becomes

∂B
∂t

= r� (u�B).

This equation has a beautiful geometrical interpretation: the magnetic field lines are ‘frozen

in’ to the fluid and can be identified with material lines. To show this, write the induction

equation in the form
DB
Dt

= B � ru� (r � u)B,
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and use the equation of mass conservation,

Dρ

Dt
= �ρr � u,

to obtain
D

Dt

�B
ρ

�
=

�B
ρ

� � ru.

This is exactly the same equation satisfied by an infinitesimal material line element δr as it

is stretched by the velocity gradient:

D

Dt
δr = δu = δr � ru.

Precisely the same equation,

∂!
∂t

= r� (u� !),

is satisfied by the vorticity ! = r� u in barotropic (homentropic) ideal fluid dynamics in

the absence of a magnetic field. However, the fact that ! and u are directly related by the

curl operation means that the analogy between vorticity dynamics and MHD is not perfect.

Another way to demonstrate the result of flux freezing is to represent the magnetic field

using Euler potentials α and β, B = rα�rβ.

This is sometimes called a Clebsch representation. By using two scalar potentials we are able

to represent a three-dimensional vector field satisfying the constraint r �B = 0. A vector

potential of the form A = αrβ +rγ generates this magnetic field. The magnetic field lines

are the intersections of the families of surfaces α = constant and β = constant.

After some algebra it can be shown that

∂B
∂t
�r� (u�B) = r�Dα

Dt

��rβ +rα�r�Dβ

Dt

�
. (3)

The ideal induction equation is therefore satisfied if the Euler potentials are conserved

following the fluid flow, i.e. if the families of surfaces α = constant and β = constant are

material surfaces. In this case the magnetic field lines can also be identified with material

lines.

Exercise: Derive equation (3).
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1.3.2. Non-ideal MHD

When η > 0 the resistivity of the fluid causes diffusion of the magnetic field and dissipa-

tion of magnetic energy. In the case of a uniform magnetic diffusivity, the induction equation

becomes
∂B
∂t

= r� (u�B) + ηr2B.

Magnetic field lines are no longer frozen in to the fluid, but are able to slip through it. If

L and U represent characteristic scales of length and velocity for the flow, the characteristic

time-scales for advection and diffusion of the field are

Tadvection =
L

U
,

Tdiffusion =
L2

η
.

The relative importance of advection is measured by the magnetic Reynolds number

Rm =
Tdiffusion

Tadvection
=

LU

η
.

When Rm� 1, as is typical in astrophysics, ideal MHD is a good approximation. However,

a highly conducting fluid can violate the constraints of ideal MHD by developing very small-

scale structures for which Rm is not large. This happens in reconnection and in turbulence.

The magnetic diffusivity has the same dimensions as the kinematic viscosity ν. Their

ratio is (one definition of) the magnetic Prandtl number

Pm =
ν

η
.

1.4. Energetics and conservation laws

1.4.1. Synthesis of the total energy equation, including dissipation

Kinetic energy:

ρ
D

Dt
(1
2u2) = �ρu � rΦ� u � rp + u � (r �T) +

1

µ0
u � [(r�B)�B] .

Gravitational energy (assuming Φ to be independent of t):

ρ
DΦ

Dt
= ρu � rΦ.

Thermal energy (noting de = T ds� p d(ρ−1)) ρ de = p d ln ρ + ρT ds):

ρ
De

Dt
= �pr � u+ T : ru+ µ0ηJ2 �r � F .
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Sum of these three:

ρ
D

Dt
(1
2u2 + Φ + e) =

1

µ0
(r�B) � (�u�B + ηr�B)�r � (pu�T � u+ F )

or (using specific enthalpy w = e + (p/ρ))

∂

∂t

h
ρ(1

2u2 + Φ + e)
i

+r � hρu(1
2u2 + Φ + w)�T � u+ F i =

1

µ0
(r�B) �E.

Magnetic energy:

∂

∂t

 
B2

2µ0

!
= � 1

µ0
B � r �E.

Total energy:

∂

∂t

"
ρ(1

2u2 + Φ + e) +
B2

2µ0

#
+r � �ρu(1

2u2 + Φ + w) +
E �B

µ0
�T � u+ F � = 0.

Note that (E �B)/µ0 is the electromagnetic Poynting flux, while �T � u is the viscous

energy flux.

1.4.2. Other conservation laws in ideal MHD

[Note: The term ‘ideal MHD’ is usually understood to mean that all dissipative and

non-adiabatic effects, including viscosity, resistivity, viscous and Joule heating, and radiative

cooling, are neglected.]

Mass:
∂ρ

∂t
+r � (ρu) = 0.

z-component (e.g.) of momentum (not conserved in an external gravitational field):

∂

∂t
(ρuz) +r � �ρuzu� BzB

µ0
+ Π ez

�
= �ρ

∂Φ

∂z
.

z-component (e.g.) of angular momentum (conserved only in an axisymmetric gravita-

tional field):
∂

∂t
(ρruφ) +r � �ρruφu� rBφB

µ0
+ rΠ eφ

�
= �ρ

∂Φ

∂φ
.

In ideal fluid dynamics there are also certain invariants with a geometrical or topological

interpretation. In barotropic (homentropic) flow, for example, vorticity (or, equivalently,

circulation) is conserved, while, in non-barotropic flow, potential vorticity is conserved. The

Lorentz force breaks these conservation laws because the curl of the Lorentz force per unit

mass does not vanish in general. However, some new topological invariants associated with

the magnetic field appear.
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The magnetic helicity in a volume V is

Hm =

Z
V
A �B dV,

where A is the magnetic vector potential, such that B = r�A. Now

∂A
∂t

= �E �rΦe

= u�B � ηr�B �rΦe,

where Φe is the electrostatic potential. This can be thought of as the ‘uncurl’ of the induction

equation. In ideal MHD, therefore, magnetic helicity is conserved:

∂

∂t
(A �B) +r � [ΦeB +A� (u�B)] = 0.

However, care is needed because Hm is not uniquely defined unless B �n = 0 on the surface

S of V . Under a gauge transformation A 7! A+rχ, Φe 7! Φe � ∂χ/∂t, Hm changes by an

amount Z
V
B � rχ dV =

Z
V
r � (χB) dV =

Z
S

χB � ndS.

The cross-helicity in a volume V is

Hc =

Z
V
u �B dV.

It is helpful here to write the equation of motion in ideal MHD in the form

∂u
∂t

+ (r� u)� u = �r(1
2u2 + Φ + w) + Trs +

1

µ0ρ
(r�B)�B,

using the relation dw = ρ−1 dp + T ds. Thus

∂

∂t
(u �B) +r � hu� (u�B) + (1

2u2 + w + Φ)Bi = TB � rs,

and so cross-helicity is conserved in ideal MHD in barotropic (homentropic) flow.
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