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Lecture 10: Vortices in discs

10.1. The vorticity equation

To study the behaviour of vortices in discs we consider a 2D incompressible sheet. Velocity pertur-
bations in the plane of the disc satisfy the nonlinear equations

�
∂

∂t
− Sx

∂

∂y
+ v ·∇

�
vx − 2Ωvy = −∂ψ

∂x
+ ν∇2vx,

�
∂

∂t
− Sx

∂

∂y
+ v ·∇

�
vy + (2Ω− S)vx = −∂ψ

∂y
+ ν∇2vy,

∂vx
∂x

+
∂vy
∂y

= 0.

Introduce the streamfunction χ(x, y, t) such that

vx =
∂χ

∂y
, vy = −∂χ

∂x
.

The instantaneous streamlines are the curves χ = constant. The vorticity perturbation is
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ez = (−∇2χ) ez = ζ ez.

Take the curl of the equation of motion to eliminate ψ: many terms cancel, leaving the vorticity
equation �
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a nonlinear advection–diffusion equation to be solved in conjunction with Poisson’s equation

∇2χ = −ζ.

The total absolute vorticity is (2Ω − S + ζ) ez, with contributions from background rotation, back-
ground shear and the velocity perturbation.

Note that the Coriolis force drops out of the 2D incompressible dynamics, so the fact that the sheet is
rotating is irrelevant. This model is too constrained to allow epicyclic/inertial oscillations; it involves
pure vortex dynamics with background shear.

Multiply equation (1) by ζ to obtain an equation for the enstrophy
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Integrated over an area A, assuming suitable boundary conditions, this equation implies that the
enstrophy decays:
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To maintain vorticity perturbations in the presence of viscosity requires baroclinic or 3D effects, or
other source terms.

10.2. Zonal flows

Axisymmetric structures in the vorticity correspond to y-independent solutions of equation (1). These
have vx = 0 and satisfy the diffusion equation
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They involve a purely zonal flow vy(x, t) (‘zonal’ = ‘azimuthal’) and are unaffected by background
shear. To the extent that viscosity is negligible, they are equilibrium solutions. They involve a
‘geostrophic’ balance between the Coriolis force and a radial pressure gradient.

10.3. Shearing vortices

Shearing-wave solutions of equation (1),

ζ(x, t) = Re
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ζ̃(t) exp[ik(t) · x]
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,

satisfy the amplitude equation
dζ̃
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= −νk2ζ̃.

The nonlinear term v ·∇ζ vanishes because ∇ · v = 0 implies ik · ṽ = 0. So the vorticity amplitude
decays viscously:

ζ̃ ∝ Eν(t).

The kinetic energy can undergo transient growth:
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10.4. Elliptical vortex patches

In the absence of viscosity, the vorticity equation (1) reduces to

Dζ

Dt
= 0.

Consider a uniform vortex patch defined by a closed contour, inside which ζ = ζ0, a non-zero constant,
and outside which ζ = 0.

The vorticity perturbation ζ generates a velocity field v that, together with the background shear
−Sx ey, advects the contour. Do steady solutions exist in which the flow induced by the vortex
resists the shear?

Consider an elliptical vortex patch (centred on the origin WLOG), with semi-axes a and b, inclined
at an angle θ with respect to y and x axes).

As shown in Example 2.3, the velocity v induced by ζ0 causes the ellipse to rotate with angular
velocity
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while the background shear −Sx ey deforms the ellipse according to
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Combine these effects to obtain
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Note that the area πab is conserved, as expected. Rewrite in terms of the aspect ratio r = a/b:
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Equilibrium solutions representing steady vortices have θ = 0 WLOG (let r < 1 if necessary) and
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In the context of a rotating disc (and assuming S/Ω > 0), vortices are called cyclonic if ζ0/S > 0
(vorticity in the same sense as rotation) and anticyclonic if ζ0/S < 0.

The linearized equations governing the stability of an equilibrium vortex (θ = 0) are
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Vortices have elliptical streamlines and are susceptible to the elliptical instability in 3D. In a Keplerian
disc, sufficiently strong anticyclonic vortices with r < 4 are vigorously unstable (through violation
of a Rayleigh-like criterion). Weaker anticyclonic vortices with r > 4 can exist in a Keplerian disc;
these tend to have weaker forms of elliptical instability involving resonant destabilization of inertial
waves, which may produce turbulent motion without destroying the vortex.

Exercise: The velocity field inside the vortex has a linear dependence on the Cartesian coordinates.
Show that it has the form (including the contribution from background shear)
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