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Lecture 11: Density waves and gravitational instability

11.1. The compressible shearing sheet

Now consider, in the local model, a 2D compressible sheet that is self-gravitating but inviscid.
(See Example 2.4 for the effects of viscosity.) The sheet has velocity u(x, y, t), surface density
Σ(x, y, t) =

�
ρ dz and 2D pressure P (x, y, t) =

�
p dz, satisfying the equation of mass conservation,

∂Σ

∂t
+∇ · (Σu) = 0,

and the equation of motion,

∂u

∂t
+ u ·∇u+ 2Ω× u = −∇Φt,m −∇Φd,m − 1

Σ
∇P,

where the tidal potential in the midplane is Φt,m = −ΩSx2, the disc potential Φd(x, y, z, t) satisfies
Poisson’s equation

∇2Φd = 4πGΣ δ(z),

and its value in the midplane is Φd,m(x, y, t) = Φd(x, y, 0, t).

To avoid the complications of thermal physics and focus on the dynamics, we assume a barotropic
relation P = P (Σ).

(These equations are only a model; they cannot be derived exactly from the true 3D equations.)

Poisson’s equation can be solved conveniently in the Fourier domain. Let

Σ̃(kx, ky, t) =

� ∞

−∞

� ∞

−∞
Σ(x, y, t) e−ikxx e−ikyy dx dy,

etc., so that �
−k2 +

∂2

∂z2

�
Φ̃d = 4πGΣ̃ δ(z),

where
k =

�
k2
x + k2

y

is the horizontal wavenumber. The relevant solution (decaying as |z| → ∞) for k �= 0 is

Φ̃d = −2πGΣ̃

k
e−k|z|,

so that �
∂Φ̃d

∂z

�0+

0−
= 4πGΣ̃,

as required. So

Φ̃d,m = −2πGΣ̃

k
.

(The k = 0 component of the potential gives no horizontal force anyway.)



11.2. Conservation of potential vorticity

Use the vector identity
(∇× u)× u = u ·∇u−∇ �

1
2
|u|2

�

to rewrite the equation of motion as

∂u

∂t
+ [(2Ω+∇× u)× u] = −∇(· · · ),

since P = P (Σ). Take the curl:

∂

∂t
(∇× u) +∇× [(2Ω+∇× u)× u] = 0.

Now use the vector identity

∇× (A×B) = B ·∇A−A ·∇B+A(∇ ·B)−B(∇ ·A)

to obtain (since the problem is 2D)

�
∂

∂t
+ u ·∇

�
(2Ω+∇× u) = −(2Ω+∇× u)(∇ · u)

= (2Ω+∇× u)
1

Σ

�
∂

∂t
+ u ·∇

�
Σ.

Thus
Df

Dt
= 0,

where

f =
2Ω+ (∇× u)z

Σ

is the potential vorticity or ‘vortensity’ (vorticity divided by surface density).

Vortices and zonal flows correspond to coherent structures in this conserved quantity. Unlike the
incompressible 2D case, though, vortex dynamics is not the whole story. Vortical disturbances are
coupled to acoustic ones, so a vortex can excite waves.

11.3. Linear stability of a uniform 2D self-gravitating sheet

The uniform basic state of the sheet is the solution u = −Sx ey, Σ = constant, P = constant.

The linearized equations for small perturbations v, Σ�, etc., are

�
∂

∂t
− Sx

∂

∂y

�
Σ� + Σ∇ · v = 0,

�
∂

∂t
− Sx

∂

∂y

�
v − Svx ey + 2Ω× v = −∇Φ�

d,m − 1

Σ
∇P �,

∇2Φ�
d = 4πGΣ� δ(z),

with

P � =
dP

dΣ
Σ� = v2sΣ

�,

where vs = constant is the (adiabatic) sound speed of the basic state.



The solutions are shearing waves:

Σ�(x, t) = Re
�
Σ̃�(t) exp [ik(t) · x]

�
,

etc., satisfying the amplitude equations

dΣ̃�

dt
+ Σ ik · ṽ = 0,

dṽx
dt

− 2Ωṽy = −ikx

�
Φ̃�

d,m + v2s
Σ̃�

Σ

�
,

dṽy
dt

+ (2Ω− S)ṽx = −iky

�
Φ̃�

d,m + v2s
Σ̃�

Σ

�
,

Φ̃�
d,m = −2πGΣ̃�

k
.

The potential vorticity perturbation

f̃ � =
ikxṽy − ikyṽx

Σ
− (2Ω− S)Σ̃�

Σ2

satisfies df̃ �/dt, as expected (exercise).

Consider axisymmetric waves: ky = 0, kx = constant, k = |kx|. Then the equations have constant
coefficients, so we can assume the amplitudes are ∝ e−iωt:

− iωΣ̃� + Σ ikxṽx = 0,

− iωṽx − 2Ωṽy = −ikx

�
v2s −

2πGΣ

|kx|

�
Σ̃�

Σ
,

− iωṽy + (2Ω− S)ṽx = 0.

Multiply the second equation by iω and eliminate Σ̃� and ṽy:

ω2ṽx − 2Ω(2Ω− S)ṽx = k2
x

�
v2s −

2πGΣ

|kx|

�
ṽx.

We deduce the dispersion relation for density waves :

ω2 = Ω2
r − 2πGΣ|kx|+ v2sk

2
x. (1)

There is also a time-independent (ω = 0) vortical solution (f̃ � �= 0) with ṽx = 0. This involves a
sinusoidal azimuthal velocity perturbation vy(x) giving rise to a Coriolis force that is balanced by
pressure and self-gravity: an example of a zonal flow.

The dispersion relation (1) has positive, stabilizing contributions from inertial forces (Ω2
r) and acoustic

forces (v2sk
2
x), and a negative, destabilizing contribution from self-gravity. It describes ‘acoustic–

inertial waves’ that can potentially be destabilized by self-gravity.



The disc is unstable to axisymmetric disturbances if ω2 < 0 for some kx. ω2 is minimized wrt |kx|
when

0 = −2πGΣ+ 2v2s |kx| ⇒ |kx| =
πGΣ

v2s
,

so

(ω2)min = Ω2
r −

(πGΣ)2

v2s
= Ω2

r

�
1− 1

Q2

�
,

where

Q =
vsΩr

πGΣ

is the Toomre stability parameter. We have gravitational instability (GI) if Q < 1.

The definition of Q involves the product of the stabilizing influences (acoustic and inertial restoring
forces) divided by a measure of the destabilizing influence (self-gravity).

Dispersion relations for density waves:


