Lecture 13: Magnetic fields in discs

13.1. Equations of magnetohydrodynamics (MHD)

To examine the role of magnetic fields in astrophysical discs, we simplify the problem by considering a homogeneous, incompressible, inviscid fluid of uniform density ρ and electrical conductivity σ. We work in rationalized units. To convert the magnetic field \mathbf{B} from rationalized to Gaussian units, multiply by $\sqrt{\mu_{0} / 4 \pi}$.

The induction equation,

$$
\frac{\partial \mathbf{B}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{B}=\mathbf{B} \cdot \nabla \mathbf{u}+\eta \nabla^{2} \mathbf{B}
$$

describes the advection of the magnetic field \mathbf{B} by the fluid flow, together with its diffusion due to resistivity. The magnetic diffusivity is

$$
\eta=\frac{1}{\mu_{0} \sigma} .
$$

The induction equation comes from Maxwell's equations without the displacement current,

$$
\frac{\partial \mathbf{B}}{\partial t}=-\boldsymbol{\nabla} \times \mathbf{E}, \quad \boldsymbol{\nabla} \cdot \mathbf{B}=0, \quad \boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J}
$$

together with Ohm's Law for a moving medium,

$$
\mathbf{J}=\sigma(\mathbf{E}+\mathbf{u} \times \mathbf{B}) .
$$

The Lorentz force per unit volume is the divergence of the Maxwell stress tensor

$$
\mathbf{M}=\frac{\mathbf{B B}}{\mu_{0}}-\frac{|\mathbf{B}|^{2}}{2 \mu_{0}} \mathbf{I},
$$

of which the first term represents a magnetic tension in the field lines and the second term represents an isotropic magnetic pressure. Since $\boldsymbol{\nabla} \cdot \mathbf{B}=0$, we have

$$
\boldsymbol{\nabla} \cdot \mathbf{M}=\frac{1}{\mu_{0}} \mathbf{B} \cdot \boldsymbol{\nabla} \mathbf{B}-\boldsymbol{\nabla}\left(\frac{|\mathbf{B}|^{2}}{2 \mu_{0}}\right) .
$$

The equation of motion including the Lorentz force is

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla \Phi-\frac{1}{\rho} \nabla \Pi+\frac{1}{\mu_{0} \rho} \mathbf{B} \cdot \nabla \mathbf{B}
$$

where

$$
\Pi=p+\frac{|\mathbf{B}|^{2}}{2 \mu_{0}}
$$

is the total (gas plus magnetic) pressure.
The incompressibility and solenoidal conditions are

$$
\boldsymbol{\nabla} \cdot \mathbf{u}=\boldsymbol{\nabla} \cdot \mathbf{B}=0
$$

In the context of the local model of astrophysical discs, we add the Coriolis and centrifugal forces to obtain the equation of motion

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}+2 \boldsymbol{\Omega} \times \mathbf{u}=-\nabla \Phi_{\mathrm{t}}-\frac{1}{\rho} \nabla \Pi+\frac{1}{\mu_{0} \rho} \mathbf{B} \cdot \nabla \mathbf{B}
$$

Rotation does not affect the induction equation.

13.2. Horizontally invariant solutions

Write $\mathbf{u}=-S x \mathbf{e}_{y}+\mathbf{v}$, where \mathbf{v} is the departure from orbital motion. Look for horizontally invariant solutions in which \mathbf{v}, \mathbf{B} and Π are independent of x and y. Then $\partial v_{z} / \partial z=\partial B_{z} / \partial z=0$ and

$$
\begin{aligned}
\frac{D v_{x}}{D t}-2 \Omega v_{y} & =\frac{B_{z}}{\mu_{0} \rho} \frac{\partial B_{x}}{\partial z} \\
\frac{D v_{y}}{D t}+(2 \Omega-S) v_{x} & =\frac{B_{z}}{\mu_{0} \rho} \frac{\partial B_{y}}{\partial z} \\
\frac{\partial v_{z}}{\partial t} & =-\Omega_{z}^{2} z-\frac{1}{\rho} \frac{\partial \Pi}{\partial z} \\
\frac{D B_{x}}{D t} & =B_{z} \frac{\partial v_{x}}{\partial z}+\eta \frac{\partial^{2} B_{x}}{\partial z^{2}} \\
\frac{D B_{y}}{D t} & =-S B_{x}+B_{z} \frac{\partial v_{y}}{\partial z}+\eta \frac{\partial^{2} B_{y}}{\partial z^{2}} \\
\frac{\partial B_{z}}{\partial t} & =0
\end{aligned}
$$

with

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+v_{z} \frac{\partial}{\partial z}
$$

In this model, $B_{z}=$ constant is a conserved uniform vertical magnetic flux passing through the disc.
Assume that the disc has upper and lower surfaces $z=z_{ \pm}(t)$, with full thickness $z^{+}-z^{-}=\Sigma / \rho=$ constant. Above and below the disc, assume that $\rho=0$ and magnetic field is force-free: $B_{x}=$ $B_{x}^{ \pm}=$constant and $B_{y}=B_{y}^{ \pm}$, respectively. The inclinations $B_{x, y}^{ \pm} / B_{z}$ are determined by global considerations.

Exercise: Integrate the vertical equation of motion over the disc, with the boundary condition $p=0$ at $z=z^{ \pm}$, to obtain

$$
\ddot{Z}=-\Omega_{z}^{2} Z-\frac{\left(\Pi^{+}-\Pi^{-}\right)}{\Sigma}
$$

where $Z=\left(z^{+}+z^{-}\right) / 2$ is the height of the centre of mass and $\Pi^{ \pm}=\left|\mathbf{B}^{+}\right|^{2} / 2 \mu_{0}$. This equation allows a free oscillation about an equilibrium position (which is $Z=0$ if $\Pi^{+}=\Pi^{-}$).

Assume that the vertical oscillation is absent so that $v_{z}=0$. Then the equations of the model reduce to a linear problem:

$$
\begin{aligned}
\frac{\partial v_{x}}{\partial t}-2 \Omega v_{y} & =\frac{B_{z}}{\mu_{0} \rho} \frac{\partial B_{x}}{\partial z} \\
\frac{\partial v_{y}}{\partial t}+(2 \Omega-S) v_{x} & =\frac{B_{z}}{\mu_{0} \rho} \frac{\partial B_{y}}{\partial z} \\
\frac{\partial B_{x}}{\partial t} & =B_{z} \frac{\partial v_{x}}{\partial z}+\eta \frac{\partial^{2} B_{x}}{\partial z^{2}}, \\
\frac{\partial B_{y}}{\partial t}+S B_{x} & =B_{z} \frac{\partial v_{y}}{\partial z}+\eta \frac{\partial^{2} B_{y}}{\partial z^{2}} .
\end{aligned}
$$

13.3. Equilibrium solutions

In a steady state

$$
\begin{aligned}
-2 \Omega v_{y} & =\frac{B_{z}}{\mu_{0} \rho} \frac{d B_{x}}{d z}, \\
(2 \Omega-S) v_{x} & =\frac{B_{z}}{\mu_{0} \rho} \frac{d B_{y}}{d z}, \\
0 & =B_{z} \frac{d v_{x}}{d z}+\eta \frac{d^{2} B_{x}}{d z^{2}}, \\
S B_{x} & =B_{z} \frac{d v_{y}}{d z}+\eta \frac{d^{2} B_{y}}{d z^{2}} .
\end{aligned}
$$

Eliminate variables in favour of B_{x} to obtain (exercise)

$$
\frac{d^{2} B_{x}}{d z^{2}}+K^{2} B_{x}=0, \quad K^{2}=\frac{2 \Omega S v_{\mathrm{a} z}^{2}}{v_{\mathrm{a} z}^{4}+\eta^{2} \Omega_{r}^{2}},
$$

where

$$
v_{\mathrm{a} z}=\frac{B_{z}}{\sqrt{\mu_{0} \rho}}
$$

is the vertical Alfvén velocity. The solution is a combination of $\sin (K z)$ and $\cos (K z)$.
The situation that is usually considered involves symmetrical boundary conditions: $B_{x}= \pm B_{x}^{+}$and $B_{y}= \pm B_{y}^{+}$at $z= \pm z^{+}$. The relevant solution is

$$
\begin{aligned}
B_{x} & =B_{x}^{+} \frac{\sin (K z)}{\sin \left(K z^{+}\right)} \\
B_{y} & =B_{y}^{+} \frac{z}{z^{+}}-\frac{(2 \Omega-S) \eta}{v_{\mathrm{a} z}^{2}} B_{x}^{+}\left[\frac{\sin (K z)}{\sin \left(K z^{+}\right)}-\frac{z}{z^{+}}\right], \\
v_{x} & =\frac{v_{\mathrm{a} z}^{2}}{(2 \Omega-S) z^{+}} \frac{B_{y}^{+}}{B_{z}}-\eta \frac{B_{x}^{+}}{B_{z}}\left[\frac{K \cos (K z)}{\sin \left(K z^{+}\right)}-\frac{1}{z^{+}}\right], \\
v_{y} & =-\frac{v_{\mathrm{a} z}^{2}}{2 \Omega} \frac{B_{x}^{+}}{B_{z}} \frac{K \cos (K z)}{\sin \left(K z^{+}\right)} .
\end{aligned}
$$

The meridional (x and z) components of \mathbf{B} are called the poloidal magnetic field, while the azimuthal (y) component is called the toroidal magnetic field.

The poloidal magnetic field bends in the $x z$ plane to match the boundary conditions. The shape is close to a parabola if $K z^{+} \ll 1$, i.e. in the limit of a strong field and/or a high resistivity; otherwise the shape is more 'bendy'.

There is a z-dependent departure from the orbital motion $\left(v_{y}\right)$ with the Coriolis and Lorentz forces balancing. We have isorotation (i.e. constant angular velocity) along field lines if $\eta=0$. More generally, the ratio of the two terms on the RHS of the y-component of the induction equation is $\eta^{2} \Omega_{r}^{2} / v_{\mathrm{a} z}^{4}$.

There is a mean radial velocity (i.e. an accretion flow) if a non-zero magnetic torque $\propto B_{y}^{+} B_{z}$ acts on the disc to remove (or add) angular momentum. (This could result either from a magnetized outflow or from a magnetic connection to an external object rotating at a different rate.)

Above the disc, assuming very low density, we have

$$
B_{x}=B_{x}^{+}, \quad B_{y}=B_{y}^{+}, \quad v_{x}=\text { constant }, \quad v_{y}=\frac{B_{x}^{+}}{B_{z}} S z+\text { constant }
$$

The uniform, force-free magnetic field acts as a rigid channel for the gas. The net acceleration parallel to \mathbf{B} due to inertial forces and gravity is proportional to

$$
\frac{B_{x}^{+}}{B_{z}} 2 \Omega v_{y}-\frac{B_{y}^{+}}{B_{z}}(2 \Omega-S) v_{x}-\Omega_{z}^{2} z=\left(\frac{B_{x}^{+}}{B_{z}}\right)^{2} 2 \Omega S z-\Omega_{z}^{2} z+\text { constant }
$$

If the field is sufficiently inclined to the vertical, i.e. if

$$
\left(\frac{B_{x}^{+}}{B_{z}}\right)^{2}>\frac{\Omega_{z}^{2}}{2 \Omega S}
$$

then this net acceleration increases with z and will become positive at some height above the disc. A hydrostatic solution is then impossible and an outflow (jet or wind) is launched along the field lines. This is known as magnetocentrifugal acceleration. For a Keplerian disc $\left(\Omega_{z}=\Omega, S / \Omega=3 / 2\right)$, it requires $i>30^{\circ}$, where $i=\arctan \left|B_{x}^{+} / B_{z}\right|$ is the inclination.

