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Lecture 14: The magnetorotational instability

14.1. Stability analysis

We return to the equations
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describing the time-dependent vertical structure of a magnetized disc.

Consider perturbations to an equilibrium state, of the form
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ṽx e

λt+ikz
�
,

etc., where λ is the (possibly complex) growth rate and k is the (real) vertical wavenumber. The
equations require
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Multiply the first two equations by ikBz and use the last two to substitute for ṽx and ṽy:
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where λη = λ+ ηk2 and the Alfvén frequency is
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Algebraic elimination leads to the magnetorotational dispersion relation
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This gives marginal stability (λ = 0) for k2 = K2 (K being the equilibrium wavenumber) and
instability for k2 < K2. To prove this we use the Routh–Hurwitz stability criteria: the roots of the
real quartic polynomial

λ4 + aλ3 + bλ2 + cλ+ d = 0
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Assume that Ω2
r > 0; otherwise we already have orbital and hydrodynamic instability. Then all of

the Routh–Hurwitz stability criteria are satisfied, except possibly the criterion d > 0. But
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and we have magnetorotational instability (MRI) for d < 0.

The usual boundary conditions for normal modes are that δBx = δBy = 0 at z = ±z+. This gives
solutions involving sin(kz) or cos(kz) (note that the dispersion relation is even in k, so e±ikz can be
combined), with the quantization
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The n = 1 mode has the lowest value of k and therefore determines the overall stability of the
equilibrium, although it may not be the fastest-growing mode.

14.2. The ideal MRI

For ideal MHD (the perfectly conducting limit of zero resistivity) we set η = 0, in which case λη = λ.
The dispersion relation is then a quadratic for λ2:
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Assume again that Ω2
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So the maximum growth rate is half the orbital shear rate, independent of the magnetic field. The
weaker the field is, the shorter the wavelength of the fastest-growing mode, to achieve ωa ∼ Ω.

Exercise: Show that the fastest-growing mode has δvx = δvy and δBx = −δBy, which maximizes
the correlations leading to outward angular momentum transport:

−Txy = ρ δvx δvy −
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.

This shear stress also extracts energy from the orbital shear, allowing the perturbation to grow.

For ideal instability we require
ω2
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Crucially, this condition is satisfied for a Keplerian disc, provided that the field is not too strong,
whereas the Rayleigh criterion for hydrodynamic instability, 4Ω2 − 2ΩS < 0, is not.

The n = 1 mode, with wavenumber k = π/2z+, is the last to be stabilized as Bz is increased. The
disc is unstable for
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14.3. Nonlinear outcome

The MRI typically develops into sustained MHD turbulence in discs that are sufficiently ionized (η
small enough) and not very strongly magnetized. It leads to outward angular-momentum transport
with typically α � 0.1, depending on the field strength and the degree of ionization.

In the absence of a large-scale, imposed magnetic field, it is thought that the MRI can act as a dynamo,
in which the turbulent motions due to the instability sustain the magnetic field against Ohmic
dissipation. Whether this dynamo can operate at the very low viscosities found in astrophysical
discs is an open question.


