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Lecture 15: Satellite–disc interaction

The interaction of an orbiting companion (moon, planet, star, black hole, etc.) with a disc is one
of the most important problems in the theory of astrophysical discs. For such massive satellites (as
opposed to dust grains or planetesimals) the interaction is predominantly gravitational rather than
hydrodynamic. The gravity of the satellite perturbs nearby orbital motion in the disc and excites
waves and other disturbances. Angular momentum and energy are exchanged, leading to orbital
evolution of the satellite, e.g. inward or outward radial migration of a planet in a protoplanetary
disc.

15.1. Excitation of epicyclic motion by a satellite

We consider the dynamics of test particles in the xy plane, using the local approximation:

ẍ− 2Ωẏ = 2ΩSx− ∂Ψ

∂x
,

ÿ + 2Ωẋ = −∂Ψ

∂y
.

For a satellite of mass Ms on a circular orbit at the reference radius (xs = ys = 0), the potential of
the satellite is

Ψ = − GMs�
x2 + y2

.

The general solution in the absence of Ψ (recall §3.1) is

x = x0 + Re
�
Ae−iΩrt

�
,

y = y0 − Sx0t+Re

�
2ΩA

iΩr

e−iΩrt

�
.

This involves an epicyclic oscillation of complex amplitude A around a guiding centre that follows a
circular orbit (x0, y0 − Sx0t).

To express x0 and A in terms of position and velocity:

x = x0 + Re
�
Ae−iΩrt

�
,

ẋ = Re
�
−iΩrAe−iΩrt

�
= Ωr Im

�
Ae−iΩrt

�
,

ẏ = −Sx0 − 2ΩRe
�
Ae−iΩrt

�
.

So the canonical y-momentum (per unit mass) is

py = ẏ + 2Ωx = (2Ω− S)x0 =
Ω2

r

2Ω
x0

and we can find the epicyclic amplitude from

Ae−iΩrt = Re
�
Ae−iΩrt

�
+ i Im

�
Ae−iΩrt

�

= − (ẏ + Sx)

(2Ω− S)
+

iẋ

Ωr

A =

�
−2Ω

Ω2
r

(ẏ + Sx) +
iẋ

Ωr

�
eiΩrt.



The specific energy is

ε =
1

2

�
ẋ2 + ẏ2

�
− ΩSx2.

Now

ΩrA =

�
−2Ω

Ωr

(ẏ + Sx) + iẋ

�
eiΩrt

Ω2
r|A|2 = ẋ2 +

4Ω2

Ω2
r

(ẏ + Sx)2

= 2ε− ẏ2 + 2ΩSx2 +
4Ω2

Ω2
r

(ẏ + Sx)2

= 2ε+
2ΩS

Ω2
r

ẏ2 +
8Ω2S

Ω2
r

ẏx+
8Ω3S

Ω2
r

x2

= 2ε+
2ΩS

Ω2
r

(ẏ + 2Ωx)2,

so

ε =
1

2
Ω2

r|A|2 −
ΩS

Ω2
r

p2y = constant.

In the presence of a satellite potential, we have instead

ṗy = −∂Ψ

∂y
,

ε+Ψ = constant,

Ȧ =

�
−2Ω

Ω2
r

(ÿ + Sẋ) +
iẍ

Ωr

− 2iΩ

Ωr

(ẏ + Sx)− ẋ

�
eiΩrt,

=

�
−2Ω

Ω2
r

(ÿ + 2Ωẋ) +
i

Ωr

(ẍ− 2Ωẏ − 2ΩSx)

�
eiΩrt,

=

�
2Ω

Ω2
r

∂Ψ

∂y
− i

Ωr

∂Ψ

∂x

�
eiΩrt.

15.2. Linear perturbation theory

We can calculate the change ΔA induced by Ψ using linear perturbation theory.

The basic state is an unperturbed circular orbit (A = 0) at radial separation x0 from the satellite:

x = x0 = constant, y = −Sx0t.

Then, with Ψ = −GMs(x
2 + y2)−1/2,

Ȧ =

�
2Ω

Ω2
r

∂Ψ

∂y
− i

Ωr

∂Ψ

∂x

�
eiΩrt

= GMs(x
2 + y2)−3/2

�
2Ωy

Ω2
r

− ix

Ωr

�
eiΩrt

≈ −i
GMs

Ωrx2
0

(1 + S2t2)−3/2

�
1− i

2Ω

Ωr

St

�
eiΩrt,



giving (the real part of the integral vanishes by symmetry)

ΔA =

� ∞

−∞
Ȧ dt

= −i
GMs

Ωrx2
0

� ∞

−∞
(1 + S2t2)−3/2

�
cosΩrt+

2Ω

Ωr

St sinΩrt

�
dt.

Let

f(k) =

� ∞

−∞
(1 + x2)−3/2 cos kx dx = 2kK1(k) (k > 0),

where K1 is a modified Bessel function. [f(k) decreases monotonically from 2 to 0 as k increases
from 0 to ∞.] Then

ΔA = −iC
GMs

ΩrSx2
0

,

where

C = f

�
Ωr

S

�
− 2Ω

Ωr

f �
�
Ωr

S

�

is a function of q only. For Keplerian orbits (Ωr/S = 2/3), C ≈ 3.36.

So the gravitational encounter of a test particle with the satellite excites an epicyclic oscillation at
first order.

Long before and after the encounter, Ψ → 0. Since ε + Ψ is exactly conserved, Δε = 0 in the
encounter. But

ε =
1

2
Ω2

r|A|2 −
ΩS

Ω2
r

p2y,

so

Δ(p2y) =
Ω4

r

2ΩS
Δ(|A|2).

Assume a circular orbit before the encounter:

A = 0, py =
Ω2

r

2Ω
x0.

Then, after the encounter,

A ≈ −iC
GMs

ΩrSx2
0

,

Δ(p2y) ≈ 2
Ω2

r

2Ω
x0 Δpy =

Ω4
r

2ΩS

�
C

GMs

ΩrSx2
0

�2

,

so

Δpy =
(CGMs)

2

2S3x5
0

,

correct to second order.

Some irreversibility or dissipation is implicit in assuming the initial orbit to be circular.



��� ��� ��� ���

!���

!��

!��

!��

!��

��

��

x

y

15.3. Impulse approximation

A simplified version of the calculation treats the interaction of the test particle with the satellite as
a impulsive two-body interaction at the point of closest approach.

[FIGURE]

We estimate

Δv⊥ ≈ GMs

x2
0

1

S
(acceleration × time)

Δ(v2⊥) +Δ(v2�) = 0 (conservation of energy)
�
GMs

Sx2
0

�2

+ 2Sx0 Δv� ≈ 0

Δv� ≈ −(GMs)
2

2S3x5
0

,

which is the same result but lacking the dimensionless factor C2 ≈ 11.3.


