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Lecture 16: Satellite–disc / Particle–disc interaction

16.1. Satellite–disc torques

The y component of the force on the disc, per unit x, at location x, is

Δpy × surface density × encounter rate

=
(CGMs)

2

2S3x5
· Σ · |Sx|

∝ x−4 sgn(x).

The torque per unit radius is the same ×r0. The satellite experiences an equal and opposite torque.

• The effect is of second order in Ms

• A similar result is obtained for the response of a fluid disc, in which case density waves are
excited

• The x−4 divergence is moderated within |x| � H

• Angular-momentum transport is outward

• The gravitational satellite–disc interaction is effectively ‘repulsive’ !

• The one-sided torque leads to gap opening if Ms is large enough and ν small enough

• Asymmetries between inner and outer torques lead to a net torque on the satellite and to
migration (usually inwards)



16.2. Drag forces on particles

The behaviour of solid particles such as dust grains in a gaseous disc is of fundamental importance in
the processes of planet formation. Observations of discs around young stars often reveal more about
the dust than the gas, even though the dust may constitute only about 1% of the total mass.

A particle of mass m with velocity ẋ moving in a gas with velocity u(x, t) experiences a relative wind
velocity u− ẋ and a drag force

F = k(u− ẋ).

For subsonic relative motion (|u− ẋ| � vs), the coefficient k can be regarded as independent of the
relative velocity if either

• the size of the particle is small compared to the mean free path of the gas (the kinetic regime,
Epstein drag), or

• the Reynolds number of the relative motion is small, resulting in a laminar fluid flow around
it (the laminar hydrodynamic regime, Stokes drag).

The acceleration of the particle due to drag can then be written as

F

m
= γ(u− ẋ) =

u− ẋ

ts
,

where ts = m/k is the stopping time and γ = 1/ts. The stopping time is an increasing function of
particle size.

(For larger particles and faster relative motion, k is an increasing function of the relative speed.)

16.3. Radial drift

In the local approximation, the equation of motion of a solid particle is

ẍ− 2Ωẏ = 2ΩSx+ γ(ux − ẋ),

ÿ + 2Ωẋ = γ(uy − ẏ),

z̈ = −Ω2
zz + γ(uz − ż).

If we take the gas velocity to be the orbital shear flow u = −Sx ey, then the equations are linear.
Both the horizontal (epicyclic) and vertical oscillations of the particle are damped.

Exercise: Show that the general solution of these equations under this assumption involves an
epicyclic oscillation with an amplitude that decays ∝ e−γt, while the vertical motion behaves as a
damped harmonic oscillator. Therefore particles tend to settle into circular orbits in the midplane.



Now allow for a small departure from the orbital shear flow, so that

u = [−Sx+ vy(x)] ey.

The radial force balance for the gas associates the zonal flow vy(x) with a radial pressure gradient.
In a 2D model,

−2Ωvy = − 1

Σ

∂P

∂x
.

Write the particle velocity as
ẋ = −Sx ey +w.

Then the equation of motion of the particle is

ẇx − 2Ωwy = γ(−wx),

ẇy + (2Ω− S)wx = γ(vy − wy),

ẇz = −Ω2
zz + γ(−wz).

To the extent that vy can be treated as a constant, a steady solution for the dust velocity is given
by wz = z = 0 and

−2Ωwy = −γwx, (2Ω− S)wx = γ(vy − wy),

which gives

wx =

�
2Ωγ

γ2 + Ω2
r

�
vy, wy =

�
γ2

γ2 + Ω2
r

�
vy.

In terms of the dimensionless Stokes number

St = Ωrts =
Ωr

γ
,

we have

wx =

�
St

1 + St2

�
1

Ωr

1

Σ

∂P

∂x
, wy =

vy

1 + St2
.

Particles with St � 1 (typically sub-cm grains) nearly follow the azimuthal motion of the gas, while
larger particles with St � 1 move independently. In either case the drag causes a radial drift up the
pressure gradient. The drift speed is maximized for St = 1.

In a featureless protoplanetary disc model in which P is a monotonically decreasing function of r,
particles with St ∼ 1 drift into the central star on a timescale ∼ (r/H)2 times the orbital timescale,
i.e. less than 1000 yr from 1AU:

|wx| ∼
1

rΩ

P

Σ
∼ c2s

rΩ

r

|wx|
∼ r2Ω

H2Ω2
∼

� r

H

�2 1

Ω
.

If the disc has structures such as zonal flows, vortices or spiral density waves in which local pressure
maxima occur, then particles may be trapped in them, enhancing the processes of planet formation.



16.4. Trapping of dust in a vortex

Recall the flow inside an equilibrium elliptical vortex patch of aspect ratio r and strength ζ0 (see
§10.4):

u = A
�y
r
,−rx

�
, A =

S

r − 1
,

ζ0
S

= − (r + 1)

r(r − 1)
.

The equation of motion of a particle inside the vortex is

ẍ− 2Ωẏ = 2ΩSx− γ(ẋ− ux),

ÿ + 2Ωẋ = −γ(ẏ − uy).

This is a linear system with solutions x, y ∝ eλt:

�
λ2 + γλ− 2ΩS −2Ωλ− γAr−1

2Ωλ+ γAr λ2 + γλ

��
x
y

�
=
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0
0

�

�
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�
+
�
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�
(2Ωλ+ γAr) = 0

λ4 + 2γλ3 +
�
γ2 + Ω2

r

�
λ2 − 2Ωζ0γλ+ γ2A2 = 0.

The solutions all decay provided that Re(λ) < 0 for all four roots of the quartic equation.

Assume that Ω2
r > 0; otherwise we have orbital and hydrodynamic instability.

• In the limit of large γ (small St, small particles), the product of roots is O(γ2) and the sum
of roots is O(γ1). Two roots are O(γ1) and two are O(γ0). The first scaling gives the balance
λ4 + 2γλ3 + γ2λ2 ∼ 0, i.e. λ ∼ −γ (twice). These solutions decay. The second scaling gives
the balance γ2λ2 + γ2A2 ∼ 0, i.e. λ ∼ ±iA. Expanding further, with λ ∼ ±iA + cγ−1, gives,
at O(γ1), 2(±iA)3 + 2(±iA)c − 2Ωζ0(±iA) = 0, i.e. c = A2 + Ωζ0. These solutions decay if
Ωζ0 < −A2.

• In the limit of small γ (large St, large particles), the product of roots is O(γ2) and the sum
of roots is O(γ1). Two roots are O(γ0) and two are O(γ1). The first scaling gives the balance
λ4 + Ω2

rλ
2 ∼ 0, i.e. λ ∼ ±iΩr. Expanding further, with λ ∼ ±iΩr + cγ, gives, at O(γ1),

4(±iΩr)
3c+2(±iΩr)

3+2Ω2
r(±iΩr)c−2Ωζ0(±iΩr) = 0, i.e. c = −1− (Ωζ0/Ω

2
r). These solutions

decay if Ωζ0 > −Ω2
r. The second scaling gives the balance Ω2

rλ
2 − 2Ωζ0γλ + γ2A2 = 0, i.e.

λ ∼ (Ωζ0 ±
�

(Ωζ0)2 − Ω2
rA

2)(γ/Ω2
r). These solutions decay if Ωζ0 < 0.

For all roots to decay in both limits, we require −Ω2
r < Ωζ0 < −A2. For a Keplerian disc this

translates into anticyclonic vortices with r > 3. Vortices of such shapes trap particles of all sizes.

Exercise: Use the Routh–Hurwitz stability criteria (§14.1) to verify this conclusion.

Please send any comments and corrections to gio10@cam.ac.uk


