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Lecture 4: Evolution of an accretion disc

4.1. Conservation of mass and angular momentum

The evolution of an accretion disc is regulated by the conservation of mass and angular momentum.
These are embodied in the 3D equations of fluid dynamics, which we reduce to a 1D form by
integration.

The equation of mass conservation is
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where ⇢ is the mass density and u is the velocity. In cylindrical polar coordinates,
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Integrate this equation over the cylinder Cr of radius r:
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Assuming no loss or gain through the vertical boundaries, we obtain
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where
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is the 1D mass density (mass per unit radius) and
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is the radial mass flux. Accretion corresponds to radial inflow (F < 0).

The equation of angular-momentum conservation comes from the equation of motion, which we write
in the form
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where the symmetric stress tensor T accounts for momentum transport due to the collective e↵ects
of the fluid (pressure, viscosity, magnetic fields, self-gravity, turbulence, etc.). Combine this with the
equation of mass conservation to obtain the equation of momentum conservation,
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Here � is the external gravitational potential in which the disc orbits, which will usually be dominated
by the central object.



Assuming that � is axisymmetric, the �-component of this equation, multiplied by r, is
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Integrate this equation over the cylinder Cr of radius r, again assuming no loss or gain through the
vertical boundaries, and assuming (to be examined later) that ru� = h(r) from orbital dynamics:
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The radial flux of angular momentum, Fh+ G , is the sum of two parts:

• advection of orbital advection (Fh) by the accretion flow

• an internal torque (G ) due to collective e↵ects

4.2. Di↵usion equation for mass evolution

Since h depends only on r, our two 1D conservation equations are
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Eliminate M to obtain
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which determines F instantaneously. Therefore M evolves according to
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The physical interpretation of this analysis is as follows. Since the motion is assumed to be domi-
nated by circular orbital motion in the midplane, the specific angular momentum of a fluid element
determines its orbital radius through the function h(r) (increasing for stable orbits). Any radial
transport of angular momentum (G ) implies a radial transport of mass (F ). Therefore the evolution
of the mass distribution of the disc is governed by the transport of angular momentum.

A more usual notation refers instead to the surface density ⌃(r, t), the mean radial velocity ūr(r, t)
and the mean e↵ective kinematic viscosity ⌫̄(r, t), related via
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is an azimuthal average (if required). Here the internal torque is being represented as if it were a
viscous torque resulting from the orbital shear.

In these variables, we obtain
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For a Keplerian disc, with ⌦ / r�3/2 and h = r2⌦ / r1/2, this equation simplifies to
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which is a di↵usion equation for the surface density.

Exercise: Using specific angular momentum h(r) as a spatial variable instead of r, show that
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If ⌫̄ depends on r only, show that we obtain a di↵usion equation in the form
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A narrow ring spreads di↵usively because viscous or frictional processes transport angular momentum
outwards from the more rapidly rotating inner part to the less rapidly rotating outer part. The inner
part loses angular momentum and spreads inwards, while the outer part gains angular momentum
and spreads outwards.

[FIGURE]

4.3. Evolution of orbital energy

Recall that d" = ⌦ dh for circular orbits.

Consider
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Here G⌦ is a radial energy flux associated with the internal torque. The RHS of this equation is
minus the rate of dissipation of orbital energy per unit radius.

In the more usual notation (dividing through by 2⇡r to get quantities per unit area), this equation
becomes
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Assuming that the dissipated energy is converted into heat and lost locally by blackbody radiation,
the surface temperature Ts(r, t) of the disc is given by
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More generally this defines the e↵ective temperature Te↵(r, t).

4.4. Viscosity

Possible contributors to the stress Tr� include:

• magnetic fields:
BrB�

µ0
(for su�ciently ionized discs)

• self-gravity: �grg�
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(for su�ciently massive discs)

• fluctuating velocities due to waves, instabilities or turbulence: �h⇢u0
ru

0
�i

• true viscous stress: �⇢⌫r
d⌦

dr
(rarely significant)

Consideration of angular-momentum transport processes and the local vertical structure of the disc
(see later) leads plausibly to a relation of the form

⌫̄ = ⌫̄(r,⌃) (e.g. double power law).

• If ⌫̄ = ⌫̄(r) only, the di↵usion equation is linear

• If ⌫̄ = ⌫̄(r,⌃), the di↵usion equation is nonlinear

Exercise: Suppose that non-zero fluxes of mass and angular momentum through the vertical bound-
aries are permitted. Show that, if S(r, t) and T (r, t) are the rates at which mass and angular mo-
mentum are added to the disc per unit area (azimuthally averaged, if necessary), then the di↵usion
equation is modified to
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