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Lecture 6: Time-dependent accretion

We return to the diffusion equation governing the spreading of a Keplerian disc,
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Time-dependent solutions illustrate the mechanics of accretion.

6.1. Linear diffusion equation

The linear case, in which ν̄ = ν̄(r), can be treated using Green’s function.

Let Δ(r, r0, t) be the solution M (r, t) = 2πrΣ(r, t) of the diffusion equation with the initial condition
M (r, 0) = δ(r − r0), i.e. a very narrow ring of radius r0 and unit mass. Then the solution for any
initial condition M (r, 0) = M0(r) and time t > 0 is

M (r, t) =
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Δ(r, r0, t)M0(r0) dr0,

by linear superposition.

It is possible to calculate Δ(r, r0, t) in terms of Bessel functions for any power law ν̄ ∝ ra and any
boundary conditions. These functions become elementary if a = (1+4n)/(1+2n) for some integer n.

The easiest special case for illustration is ν̄ ∝ r. Let
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to obtain the classical diffusion equation (see Example 1.4),
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The fundamental solution of the diffusion equation, corresponding to the initial condition g(y, 0) =
δ(y) and no boundary conditions, is
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The solution representing a spreading ring with zero torque (g = 0) at the inner boundary r = rin
(corresponding to y = yin) and with initial radius r0 > rin (corresponding to y = y0) is therefore
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This uses a superposition of translations of the fundamental solution to construct a solution satisfying
the boundary condition by the method of images.

The initial condition
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(the last factor coming from dy/dr at r = r0) gives 2πC =
�
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Radial distributions of mass (left) and angular momentum (right) at times t = 0.001, 0.01, 0.1, 1

for a spreading ring with viscosity ν̄ = Ar, in units such that A = 1 and r0 = 1.

The inner boundary condition is that the torque vanishes at rin = 0.1.

Angular momentum is transported outwards and taken up by a diminishing fraction of the initial
mass moving to larger and larger radii.

In the limit of large time, t � r0/A, we obtain
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which looks like the solution for a steady disc, but with declining accretion rate
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Exercise: Show that, in the joint limit of large radius, r � r0, rin, and large time, t � r0/A, we
obtain a similarity solution (see later) of the form
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The error function erf(x) and the complementary error function erfc(x) are defined by
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The mass remaining in the disc at time t is (substitute
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The radial mass flux is
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giving an accretion rate at rin:

Ṁin(t) = −F (rin, t) =
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This does indeed integrate to give (note that ξin ∝ t−1/2, so dt/t = −2 dξin/ξin)
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i.e. the initial angular momentum minus that accreted through rin.



6.2. Nonlinear diffusion equation

Consider a power-law viscosity

ν̄ = AraΣb, A = constant,

and let rin → 0.

The problem is then scale-free and admits special algebraic similarity solutions (see Examples 1.5
and 1.6). These are generally attractors for solutions of the initial-value problem. Unlike the linear
case, these solutions may have free boundaries beyond which the density vanishes. If the torque
vanishes at the origin, then the total angular momentum is conserved, while the total mass of the
disc declines as a power-law in time.

The conserved angular momentum is

√
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Dimensional analysis gives

[A] = M−bL2−a+2bT−1, [C] = ML1/2.

Using C, A and t (the time elapsed since the formation of the disc), we can construct a time-dependent
characteristic length-scale R(t) given by

R2−a+(5/2)b = CbAt.

Thus
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A spreading ring with a power-law viscosity tends towards the similarity solution long after the ring
has spread to the inner boundary and forgotten its initial radius.

Exercise: Verify that the linear diffusion equation with ν̄ = Ara (a < 2) admits similarity solutions
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(with conserved mass), where the similarity variable is ξ = r/R(t) with R2−a = 3At.


