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Lecture 7: Vertical structure

7.1. Hydrostatic equilibrium

The dominant force balance in the z direction perpendicular to the plane of the disc is

0 = −ρ
∂Φ

∂z
− ∂p

∂z
.

The Taylor expansion of Φ about the midplane is Φ(r, z) = Φ(r, 0)+ 1
2
Φzz(r, 0)z

2+ · · · , so the vertical
gravity in a thin disc is

gz = −∂Φ

∂z
≈ −Φzz(r, 0)z = −Ω2

zz,

where Ωz(r) is the vertical frequency (recall that Ωz = Ω for a Keplerian disc).

The equation of vertical hydrostatic equilibrium is therefore

∂p

∂z
= −ρΩ2

zz.

This is essentially an ordinary differential equation in z at each r (and φ and t). [In the local
approximation the ODE dp

dz
= −ρΩ2

zz is exact for hydrostatic solutions independent of (x, y, t).]

As in a star, pressure supports the disc against gravity in the vertical direction. But note that the
disc is centrifugally supported in the radial direction.

This analysis is for a non-self-gravitating disc, using the vertical gravity due to the central object.
In a self-gravitating disc the disc makes an additional contribution to gz and affects the hydrostatic
structure.

If p and ρ are related in a known way, we can solve for the hydrostatic structure. e.g. for an
isothermal ideal gas, p = c2sρ, where cs = constant is the isothermal sound speed. Then the solution
is a Gaussian:

p ∝ ρ ∝ exp

�
− z2

2H2

�
,

with scaleheight

H =
cs
Ωz

�
=

cs
Ω

for Keplerian
�
.

Formally, the disc extends to z = ±∞, and the thin-disc approximation breaks down once z/r is no
longer small, but there is essentially no mass at such heights.



7.2. Hydrostatic models

More generally, define the surface density Σ, vertically integrated pressure P and scaleheight H by

Σ =

�
ρ dz, P =

�
p dz, ΣH2 =

�
ρz2 dz,

where the integrals are over the full vertical extent of disc. H can be interpreted as the standard
deviation of the mass distribution. Note that (assuming boundary conditions zp → 0 as z → ±∞)

P =

�
1 · p dz = [zp]−

�
z
dp

dz
dz = 0 +

�
zρΩ2

zz dz = ΣH2Ω2
z.

We can reduce the problem to a dimensionless form:

ρ(z) = ρ̂ · ρ̃(z̃), p(z) = p̂ · p̃(z̃),

where

ρ̂ =
Σ

H
, p̂ =

P

H

are characteristic values of density and pressure, while ρ̃ and p̃ are dimensionless functions of the
dimensionless coordinate

z̃ =
z

H
.

These satisfy the dimensionless equation of hydrostatic equilibrium,

dp̃

dz̃
= −ρ̃z̃,

and the normalization conditions
�

ρ̃ dz̃ =

�
p̃ dz̃ =

�
ρ̃z̃2 dz̃ = 1.

The isothermal model (p ∝ ρ) is the solution

ρ̃ = p̃ =
1√
2π

exp

�
− z̃2

2

�
.

The uniform model (ρ = constant) is the solution

ρ̃ =

�
1

2
√
3
, z̃2 < 3,

0, z̃2 > 3,
, p̃ =

�
1

4
√
3
(3− z̃2), z̃2 < 3,

0, z̃2 > 3.

The polytropic model of index n (p ∝ ρ1+1/n, where n > 0 is not necessarily an integer) is the solution

ρ̃ = Cρ

�
1− z̃2

2n+ 3

�n

, p̃ = Cp

�
1− z̃2

2n+ 3

�n+1

,

(valid for z̃2 < 2n+ 3 only, otherwise ρ̃ = p̃ = 0), with normalizing constants

Cρ =
Γ(n+ 3

2
)

Γ(n+ 1)

1�
(2n+ 3)π

, Cp =
(n+ 3

2
)

(n+ 1)
Cρ =

Γ(n+ 5
2
)

Γ(n+ 2)

1�
(2n+ 3)π

.



Here

Γ(p) =

� ∞

0

xp−1 e−x dx, p > 0

is the Gamma function, equal to (p− 1)! for integers p. A useful integral here is

� 1

−1

(1− x2)p dx =

√
π Γ(p+ 1)

Γ(p+ 3
2
)

, p > −1.

It can be shown that the polytropic model reduces to the uniform model in the limit n → 0 and
reduces to the isothermal model in the limit n → ∞.

While the isothermal model extends formally to z = ±∞, the other models have definite surfaces
beyond which there is a vacuum.

7.3. Order-of-magnitude estimates and time-scales

Here we consider simple scaling relations (∼), omitting numerical factors of order unity.

An important dimensionless parameter of a thin disc is the aspect ratio

H

r
� 1.

From hydrostatic equilibrium,

∂p

∂z
= −ρΩ2

zz ⇒ p

H
∼ ρΩ2H ⇒ cs ∼ ΩH,

where cs =
�

p/ρ is the isothermal sound speed.

The dimensions of dynamic viscosity
[ρν] = ML−1T−1

are the same of those of p/Ω. We write

ρν =
αp

Ω
,

where α is the dimensionless viscosity parameter. If α is regarded as a constant, this relation is
known as the alpha viscosity prescription. Then

ν =
αc2s
Ω

∼ αcsH.

In the kinetic theory of gases, the kinematic viscosity is ν ∼ v�, where v is the mean speed of the
molecules and � is their mean free path. This molecular viscosity is negligible for astrophysical discs.
But a similar estimate can be made for the effective ‘eddy viscosity’ of turbulence, if v is a typical
turbulent velocity and � is the correlation length of the turbulence. For subsonic turbulence with
v � cs and � � H, we expect that α � 1.

The stress is then

Trφ = ρνr
dΩ

dr
= −qαp.

The idea behind |Trφ| ∼ αp is that, whatever physical process gives rise to the stress, it should
scale with the pressure. This assumption is probably correct for local processes such as small-scale
turbulent motions resulting from instabilities (see later).



Three important characteristic time-scales in a disc can be defined:

Dynamical time-scale (time-scale of orbital motion and of vertical hydrostatic equilibrium):

tdyn ∼ 1

Ω
∼ H

cs
.

Viscous time-scale (time-scale of radial motion and of evolution of the surface density):

tvisc ∼
r2

ν̄
∼ α−1

�
H

r

�−2

tdyn.

Thermal time-scale (time-scale of vertical thermal balance):

tth ∼ internal energy/area

dissipation rate/area
∼ P

ν̄ΣΩ2
∼ c2s

ν̄Ω2
∼ H2

ν̄
∼ α−1tdyn.

For a thin disc with α < 1, we have the hierarchy

tdyn < tth � tvisc.

Furthermore, all three time-scales usually increase with r.

The Mach number of the orbital motion is

Ma ∼ rΩ

cs
∼

�
H

r

�−1

.

The typical accretion velocity is

|ūr| ∼
ν̄

r
∼ α

�
H

r

�
cs.

For a thin disc, we have the hierarchy

|ūr| � cs � rΩ,

so the orbital motion is highly supersonic while the accretion flow is highly subsonic.

The relative contribution of the radial pressure gradient to the radial component of the equation of
motion is

∂p

∂r

�
ρrΩ2 ∼ ρc2s

r

�
ρrΩ2 ∼ c2s

r2Ω2
∼

�
H

r

�2

.

Vertical variations of the radial gravitational acceleration are also of this order. Other terms in the
radial equation of motion, such as inertial terms associated with the radial motion, are smaller still.
Therefore

uφ = rΩ

�
1 +O

�
H

r

�2
�
,

so treating the azimuthal fluid velocity as equal to the orbital velocity of a test particle is an excellent
approximation for a thin disc. In general, the thin-disc approximations involve fractional errors of
O(H/r)2. A formal asymptotic treatment of thin discs is possible, using as small parameter a
characteristic value of (H/r)2.

Exercise: If Φ = −GM/R and p/ρ = c2s = �2GM/r (‘locally isothermal’), where R =
√
r2 + z2 and

� = constant, show that exact force balances are achieved in all directions if

ρ = f(r) exp

�
r −R

�2R

�
, Ω2 =

GM

r3

�
r

R
− �2

�
1− d ln f

d ln r

��
.


