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Lecture 9: Thermal instability / Hydrodynamics of the shearing sheet

9.1. Thermal instability

So far, we have assumed a balance between heating and cooling:
9

4
⌫̄⌃⌦2 = H = C = 2Fs.

Now relax this assumption, but assume that ↵ ⌧ 1 so that tdyn ⌧ tth ⌧ tvisc. Consider behaviour
on the timescale tth; we can then assume that the disc is hydrostatic and that the surface density
does not evolve.

By solving the equations of vertical structure except thermal balance, we can calculate H and C

as functions of (⌃, ⌫̄⌃). In fact H depends only on ⌫̄⌃. The equation of thermal balance H = C

defines a curve in the (⌃, ⌫̄⌃) plane.

Along the equilibrium curve, dH = dC and d(⌫̄⌃) = �⌫̄ d⌃, where � =
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The internal energy content of disc per unit area is ⇠ P ⇠ (⌦/↵)⌫̄⌃. If some heat is added, ⌫̄⌃
increases but ⌃ is fixed on the timescale tth. The system is thermally unstable if the excess heating
outweighs the excess cooling, i.e. if
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In practice @C /@⌃ < 0 (because, at fixed ⌫̄⌃, ⌃ / 1/⌫̄ / 1/(↵T ), and C generally increases with
T ), so thermal instability occurs (like viscous instability) when � < 0. Thermal instability then
dominates (as its timescale is shorter).

9.2. Outbursts

We have seen that a radiative disc with gas pressure and Thomson opacity has ⌫̄⌃ / r⌃5/3 and is
viscously and thermally stable. For cooler discs undergoing H ionization, the graph of ⌫̄⌃ versus ⌃
can involve an ‘S curve’, leading to instability and limit-cycle behaviour, which explains the outbursts
in many cataclysmic variables, X-ray binaries and other systems.



9.3. Hydrodynamics of the shearing sheet

Recall the local view of an astrophysical disc: a linear shear flow u0 = �Sx ey in a frame rotating
with ⌦ = ⌦ ez. Here ⌦ and S = �r d⌦/dr are evaluated at the reference radius r0.

The model is either horizontally unbounded or equipped with (modified) periodic boundary condi-
tions (see later). Possible treatments of the vertical structure are:

• ignore z completely (2D shearing sheet)

• neglect vertical gravity: homogeneous in z

• include vertical gravity: isothermal, uniform, polytropic, radiative, etc. models

9.4. Homogeneous incompressible fluid

Consider a 3D model, unbounded or periodic in (x, y, z), with a uniform kinematic viscosity ⌫.

The equation of motion is
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subject to the incompressibility condition

r · u = 0.

The basic state is u = u0 = �Sx ey, with hydrostatic pressure p = p0(z). There is a uniform viscous
stress, but it has no divergence and causes no accretion flow.

Introduce perturbations (not necessarily small):

u = u0 + v(x, t), p = p0 + ⇢ (x, t).

Then
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r · v = 0.



In components:
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Consider a plane-wave solution in the form of a shearing wave :

v(x, t) = Re {ṽ(t) exp[ik(t) · x]} ,

 (x, t) = Re
n
 ̃(t) exp[ik(t) · x]

o
,

with time-dependent wavevector k(t). Then
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If we choose
dk

dt
= Sky ex,

then two terms cancel and we are left with
dṽ

dt
.

This means
kx = kx0 + Skyt, ky = constant, kz = constant.

Tilting of the wavefronts by the shear flow, and

Dual shear flow in Fourier space:



Furthermore, the nonlinear term vanishes:
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because r · v = 0 implies ik · ṽ = 0. (This is a special result for an incompressible fluid. Note also
that the nonlinear term does not vanish for a superposition of shearing waves.)

The amplitude equations for a shearing wave are
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with k2 = |k|2.

The viscous terms can be taken care of by a viscous decay factor

E⌫(t) = exp
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The decay is faster than exponential if ky 6= 0.

Write ṽ = E⌫(t)v̂(t) and  ̃ = E⌫(t) ̂(t) to eliminate the ⌫ terms in the amplitude equations. Then
eliminate variables in favour of v̂x to obtain (see Example 2.1)
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where ⌦2
r = 2⌦(2⌦� S) is the square of the epicyclic frequency in the local approximation.

Summary of outcomes (see Example 2.1):

• Stable if ⌦2
r > 0: |v̂|2 oscillates if ky = 0, or decays algebraically if ky 6= 0.

• Unstable if ⌦2
r < 0: |v̂|2 grows exponentially if ky = 0, or grows algebraically if ky 6= 0.

When ⌫ > 0, E⌫ kills o↵ any algebraic growth for ky 6= 0. But axisymmetric disturbances (ky = 0)
of su�ciently large scale grow exponentially.

We conclude that a rotating shear flow is linearly stable when ⌦2
r > 0, but unstable when ⌦2

r < 0.

This agrees with the stability of circular test-particle orbits. It also agrees with Rayleigh’s criterion
for the linear stability of a cylindrical shear flow u = r⌦(r) e� to axisymmetric perturbations: the
flow is unstable if the specific angular momentum |r2⌦| decreases outwards.

The case ⌦2
r = 0 (either a non-rotating shear flow or one with uniform specific angular momentum)

is marginally Rayleigh-stable and allows algebraic growth in the absence of viscosity.


