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Lecture 9: Thermal instability / Hydrodynamics of the shearing sheet
9.1. Thermal instability

9
So far, we have assumed a balance between heating and cooling: ZDEQQ = =% =2F,.

Now relax this assumption, but assume that o < 1 so that tg4y, < tin < tyise. Consider behaviour
on the timescale ty,; we can then assume that the disc is hydrostatic and that the surface density
does not evolve.

By solving the equations of vertical structure except thermal balance, we can calculate 7 and €
as functions of (X, 7X). In fact ¢ depends only on r¥. The equation of thermal balance 5 = €
defines a curve in the (X, 7X) plane.
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Along the equilibrium curve, dZ = d¢ and d(vX) = v d3, where § = <68I1(VE)> :
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The internal energy content of disc per unit area is ~ P ~ (Q/a)v3. If some heat is added, 7%
increases but X is fixed on the timescale #,. The system is thermally unstable if the excess heating
outweighs the excess cooling, i.e. if
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In practice 9€ /0% < 0 (because, at fixed 73, ¥ o 1/ < 1/(aT), and € generally increases with
T), so thermal instability occurs (like viscous instability) when 5 < 0. Thermal instability then
dominates (as its timescale is shorter).

9.2. Outbursts

We have seen that a radiative disc with gas pressure and Thomson opacity has 73 o r£%/3 and is
viscously and thermally stable. For cooler discs undergoing H ionization, the graph of 7Y versus X
can involve an ‘S curve’, leading to instability and limit-cycle behaviour, which explains the outbursts
in many cataclysmic variables, X-ray binaries and other systems.



9.3. Hydrodynamics of the shearing sheet

Recall the local view of an astrophysical disc: a linear shear flow uy = —Sz e, in a frame rotating
with Q@ = Qe,. Here Q and S = —rdQ/dr are evaluated at the reference radius ry.
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The model is either horizontally unbounded or equipped with (modified) periodic boundary condi-
tions (see later). Possible treatments of the vertical structure are:

e ignore z completely (2D shearing sheet)

e neglect vertical gravity: homogeneous in z

e include vertical gravity: isothermal, uniform, polytropic, radiative, etc. models

9.4. Homogeneous incompressible fluid

Consider a 3D model, unbounded or periodic in (x,y, z), with a uniform kinematic viscosity v.
The equation of motion is
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subject to the incompressibility condition
V-.-u=0.

The basic state is u = uy = —Sz e, with hydrostatic pressure p = py(2). There is a uniform viscous
stress, but it has no divergence and causes no accretion flow.

Introduce perturbations (not necessarily small):
u:u0+V(X7t), p:p0+P¢<X;t>

Then 5
8—;’+uo-Vv+v-Vuo+v-Vv+2QXV:—VerVVQV,

V-.-v=0.



In components:
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Consider a plane-wave solution in the form of a shearing wave :
v(x,t) = Re{v(t) exp[ik(t) - x]},
w(x,t) = Re {(t) explik(t) - x]}

with time-dependent wavevector k(t). Then
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If we choose

dk

— = Sk, e,,
dt v
,odv
then two terms cancel and we are left with e
This means
ky = kgo + Skyt, k, = constant, k., = constant.

Tilting of the wavefronts by the shear flow, and

Dual shear flow in Fourier space:



Furthermore, the nonlinear term vanishes:
v-Vv=Re [\7 eik'x] - VRe [\7 eik'x]
=Relk-v eik'x] Re [iv eik'x]
=0,

because V - v = 0 implies ¢k - v = 0. (This is a special result for an incompressible fluid. Note also
that the nonlinear term does not vanish for a superposition of shearing waves.)

The amplitude equations for a shearing wave are
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% — 200, = —ik,y — vk?0,,
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S+ (20— 8)i, = ik, — VKD,
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with k2 = |k|2.

The viscous terms can be taken care of by a viscous decay factor

E,(t) = exp (— / vk? dt)

1
= exp {—y [(kgo + k2 + k2)t + Skaokyt® + 382k§t3] } .

The decay is faster than exponential if £, # 0.

Write v = B, (t)v(t) and ¢ = E,(t)1(t) to eliminate the v terms in the amplitude equations. Then
eliminate variables in favour of ¢, to obtain (see Example 2.1)
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where 2 = 2Q(2Q — S) is the square of the epicyclic frequency in the local approximation.

Summary of outcomes (see Example 2.1):

e Stable if Q2 > 0: |v|* oscillates if k, = 0, or decays algebraically if &, # 0.

e Unstable if Q2 < 0: |v|? grows exponentially if k, = 0, or grows algebraically if &, # 0.
When v > 0, E, kills off any algebraic growth for k, # 0. But axisymmetric disturbances (k, = 0)
of sufficiently large scale grow exponentially.
We conclude that a rotating shear flow is linearly stable when Q2 > 0, but unstable when Q2 < 0.

This agrees with the stability of circular test-particle orbits. It also agrees with Rayleigh’s criterion
for the linear stability of a cylindrical shear flow u = rQ(r) e, to axisymmetric perturbations: the
flow is unstable if the specific angular momentum |r?Q| decreases outwards.

The case 22 = 0 (either a non-rotating shear flow or one with uniform specific angular momentum)
is marginally Rayleigh-stable and allows algebraic growth in the absence of viscosity.



