Note on the polytropic model and the gamma function

The gamma function is defined for $p>0$ by

$$
\Gamma(p)=\int_{0}^{\infty} x^{p-1} e^{-x} d x
$$

and satisfies $\Gamma(p+1)=p \Gamma(p)$. We have $\Gamma(p)=(p-1)$! if p is a positive integer.
Make the substitution $x=y^{2}$:

$$
\begin{equation*}
\Gamma(p)=\int_{0}^{\infty} 2 y^{2 p-1} e^{-y^{2}} d y \tag{1}
\end{equation*}
$$

Consider the integral

$$
I_{p}=\int_{-1}^{1}\left(1-x^{2}\right)^{p} d x, \quad p \geqslant 0
$$

Make the substitution $x=\cos \theta$:

$$
I_{p}=\int_{-\pi / 2}^{\pi / 2} \cos ^{2 p+1} \theta d \theta
$$

Multiply both sides by a certain integral of the type (1) to make a double integral in polar coordinates:

$$
\begin{aligned}
I_{p} \int_{0}^{r} 2 r^{2 p+2} e^{-r^{2}} d r & =\int_{-\pi / 2}^{\pi / 2} \cos ^{2 p+1} \theta d \theta \int_{0}^{r} 2 r^{2 p+2} e^{-r^{2}} d r \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\infty} 2(r \cos \theta)^{2 p+1} e^{-r^{2}} r d r d \theta
\end{aligned}
$$

Transform from polar to Cartesian coordinates:

$$
\begin{aligned}
I_{p} \int_{0}^{r} 2 r^{2 p+2} e^{-r^{2}} d r & =\int_{-\infty}^{\infty} \int_{0}^{\infty} 2 x^{2 p+1} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{-\infty}^{\infty} e^{-y^{2}} d y \int_{0}^{\infty} 2 x^{2 p+1} e^{-x^{2}} d x
\end{aligned}
$$

Use equation (1) to obtain

$$
\begin{equation*}
I_{p}=\frac{\sqrt{\pi} \Gamma(p+1)}{\Gamma\left(p+\frac{3}{2}\right)} . \tag{2}
\end{equation*}
$$

The polytropic disc model is of the form

$$
\tilde{\rho}=C_{\rho}\left(1-\frac{\tilde{z}^{2}}{a^{2}}\right)^{n}, \quad \tilde{p}=C_{p}\left(1-\frac{\tilde{z}^{2}}{a^{2}}\right)^{n+1}
$$

where C_{ρ}, C_{p} and a are to be determined.
To satisfy $d \tilde{p} / d \rho=-\tilde{\rho} \tilde{z}$, we require

$$
2(n+1) C_{p}=a^{2} C_{\rho} .
$$

To satisfy the normalization conditions $\int \tilde{\rho} d \tilde{z}=\int \tilde{p} d \tilde{z}=1$, we require

$$
I_{n} a C_{\rho}=I_{n+1} a C_{p}=1
$$

Thus

$$
a^{2}=2(n+1) \frac{C_{p}}{C_{\rho}}=2(n+1) \frac{I_{n}}{I_{n+1}}=2(n+1) \frac{\Gamma(n+1)}{\Gamma(n+2)} \frac{\Gamma\left(n+\frac{5}{2}\right)}{\Gamma\left(n+\frac{3}{2}\right)}=2\left(n+\frac{3}{2}\right)=2 n+3 .
$$

The solution is

$$
C_{\rho}=\frac{\Gamma\left(n+\frac{3}{2}\right)}{\Gamma(n+1)} \frac{1}{\sqrt{(2 n+3) \pi}}, \quad C_{p}=\frac{\Gamma\left(n+\frac{5}{2}\right)}{\Gamma(n+2)} \frac{1}{\sqrt{(2 n+3) \pi}}
$$

Please send any comments and corrections to gio10@cam.ac.uk

