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Note on the polytropic model and the gamma function

The gamma function is defined for p > 0 by

L(p) = / P e da
0
and satisfies I'(p + 1) = pI'(p). We have I'(p) = (p — 1)!if p is a positive integer.
Make the substitution z = y*:

P(p) = / Tt dy, 1)
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Consider the integral
1
[p:/ (1 — 2% dx, p = 0.
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Make the substitution z = cos8:
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Multiply both sides by a certain integral of the type (1) to make a double integral in polar
coordinates:
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Transform from polar to Cartesian coordinates:
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Use equation (1) to obtain

The polytropic disc model is of the form



where C,, C}, and a are to be determined.

To satisty dp/dp = —pZ, we require
2(n+1)C, = a*C,.
To satisfy the normalization conditions f pdz = f pdz = 1, we require

I,aC, = I,11aC), = 1.

Thus
C, I I'(n+1)I(n+3
2=9 1)=2 =2 1)—2 =2 1 22— 2 =2
a (n+ )Cp (n+ )[n+1 (n+ )F(n+2 (i3 (n+3)=2n+3

The solution is

I(n+2) 1 I'(n+3) 1

C, = Cp, = ,
T(n+1) /(2n+ 3)x I'(n+2)\/(2n+ 3)r

Please send any comments and corrections to giol0@cam.ac.uk



