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Within biological fluid dynamics, it is conventional to distinguish between “puller” and “pusher”
microswimmers on the basis of the forward or aft location of the flagella relative to the cell body:
typically, bacteria are pushers and algae are pullers. Here we note that since many pullers have
“outboard” cilia or flagella displaced laterally from the cell centerline on both sides of the organism,
there are two important subclasses whose far-field is that of a stresslet, but whose near field is
qualitatively more complex. The ciliary beat creates not only a propulsive force but also swirling
flows that can be represented by paired rotlets with two possible senses of rotation, either “feeders”
that sweep fluid toward the cell apex, or “expellers” that push fluid away. Experimental studies of the
rotifer Brachionus plicatilis in combination with earlier work on the green algae Chlamydomonas
reinhardtii show that the two classes have markedly different interactions with surfaces. When
swimming near a surface, expellers such as C. reinhardtii scatter from the wall, whereas a feeder
like B. plicatilis stably attaches. This results in a stochastic “run-and-stick” locomotion, with periods
of ballistic motion parallel to the surface interrupted by trapping at the surface.

I. INTRODUCTION

In the description of both individual and collective dynamics of motile microorganisms a considerable simplification
can often be achieved by partitioning their effect on the surrounding fluid into separate contributions from the organism
body and the appendages —cilia or flagella—that confer locomotion. These contributions can further be simplified
into those of equal and opposite point forces acting on the fluid, as required by the force-free condition on a free
swimmer. Thus, peritrichously flagellated bacteria, with a bundle of rotating flagella aft of the body, are termed
“pushers”, while the breast-stroke beating of paired algal flagella forward of the body defines a “puller” [1, 2]. Direct
measurements of the flow fields around freely-swimming algae [3] and bacteria [4] have confirmed that the far-field
flows are consistent with the singularity representation of swimmers.

The force dipole picture gives considerable insight into many features of swimming. Viewing microswimmer sus-
pensions as a collection of interacting stresslets leads to an understanding [1, 5] of why a bacterial suspension exhibits
“bacterial turbulence” [6–8] while a suspension of algae does not. At the individual level, the singularity picture
explains accumulation of sperm cells at no-slip surfaces due to the reorientation of pushers to become parallel to such
boundaries [9]. Attractive interactions between Stokeslets near a no-slip surface [10, 11] underlie the formation of
“hydrodynamic bound states” of Volvox colonies [12], in which negatively buoyant chiral microswimmers are attracted
together in the plane of the surface and orbit each other, a phenomenon later seen in several other systems [13–16].

Not surprisingly, the force dipole representation alone may fail to capture near-field effects, which may require
higher-order singularities or the invocation of lubrication forces which become important in the near-field [17], an effect
documented in swimming spermatozoa [18] and E. coli [19]. A clear breakdown of the stresslet picture is provided
by interactions of the unicellular green alga Chlamydomonas reinhardtii with surfaces [20]. Whereas the stresslet
approximation predicts that pullers nosedive into no-slip surfaces, experiments show instead an “inelastic scattering”
phenomenon, where almost all incoming angles of swimming trajectories lead to approximately zero outgoing angle,
corresponding to swimming parallel to the surface. In these experiments, the reorientation at the surface was shown
to arise from direct ciliary contact interactions. Important later work [21] on scattering of Chlamydomonas by curved
no-slip surfaces showed that similar geometry of reorientation can arise from hydrodynamic interactions without the
need for direct contact with a wall.

The hydrodynamic interactions responsible for the rotation of algae away from the perpendicular orientation favored
by the puller stresslet arise from the the undulatory beating of the two algal cilia. We term these “outboard” cilia, as
they are displaced laterally on either side of the cell centerline. The time-averaged flow field around Chlamydomonas
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FIG. 1. Flow fields of expellers and feeders. (a) Illustrative theoretical flow field for Chlamydomonas reinhardtii using a
superposition of three Stokeslets and two rotlets (not fitted). (b) Schematics showing outward ciliary movement of the expeller
and inward ciliary movement of the feeder. (c) Schematic representation of the body material frame and singularities employed
in (2). The body frame consists of e1 (aligned with the body axis), e2 (in the plane of the coronae, pointing in either direction)
and e3 = e1×e2 (pointing out of the page). The effect of the body on the fluid is represented by means of a system of Stokeslets
and rotlets. The body Stokeslet of strength fe1, representing the drag on the fluid, is balanced by two −fe1/2 Stokeslets at
x± = x0 + de1 ± we2. The circulating flow induced by the cilia is modelled as two rotlets of strength ∓Ge3 placed at x±.
(d) Magnitude and streamlines of the rotifer flow field. (e) Fitted approximation to (d), along with log-log plot of the velocity
decay along (blue) and perpendicular to (green) the body axis; arrows schematically denote the orientation of the Stokeslets
and rotlets. (f) Magnitude and streamlines of theoretical flow field for a rotifer a distance from the wall 104 times larger than
its fitted value in (e); the topology of the flow changes with only the trailing stagnation points surviving [23].

[3], shown in Fig. 1(a), as well as the time-resolved flow field [22], illustrates the swirling action of the flagellar beat,
with an extended power stroke driving flows backward, and a contracted recovery stroke nearer the cell body, driving
weaker flows forward. These complex time-averaged fields can be represented by a superposition of three Stokeslets:
one for the cell body pointing forward, and one in the middle of each flagellum, pointing rearward, as in Fig. 1(b).
The fully time-dependent problem can be modelled by time-varying combinations of singularities [24–26].

The notion that the flow field arising from the beating strokes of eukaryotic cilia can be represented by a Stokeslet
appears as well in studies of so-called “mosaic” ciliated tissues [27], such as the epidermis of developing amphibians, in
which a sparse population of multiciliated cells exists in a background of nonciliated cells. In the simplest picture, the
action of a large number of cilia, with no phase synchrony, in driving flow along the tissue surface can be quantitatively
captured by a single point force parallel to the surface. The representation of the flow due to a flagellum as that of a
moving Stokeslet also forms the basis for a very large amount of work on the synchronization of cilia [28]. Yet, it is also
intuitively reasonable that the orbits of the flagella, with the extended power stroke and contracted recovery stroke,
could also be modelled as a point torque on the fluid, or a rotlet. Importantly, the flow fields for parallel orientation
of both Stokeslets and rotlets near a no-slip surface both decay as 1/r2 [10, 29], so there is no way from the far-field
decay alone to prefer one representation over another. Recent work has, however, shown that the time-averaged flow
generated by a beating cilium near a wall is better represented as a rotlet, especially for near-field transport [30].

Here we reconsider the problem of microswimmers with outboard cilia in light of the background summarized above.
Our primary observation is that Nature presents us with two broad classes of such organisms, distinguished by the
direction of swirling flows created by the cilia. As in Fig. 1(a), the breaststroke beating of biflagellates such as
Chlamydomonas sweeps fluid away from the cell apex; we name these “expellers”. By contrast, the corona of cilia
in more complex multicellular organisms such as the rotifer Brachionus plicatilis shown in Figs. 1(b,c) directs flow
toward the mouth, and are naturally termed as “feeders”. Rotifers are complex “animalcules” with internal organs and
a nervous system, and serve as model organisms for a wide range of biological processes, from evolution [31] to aging



3

[32]. The first observation of rotifers is variously attributed [33] to Antony van Leeuwenhoek [34] and John Harris
[35], with decisive descriptions due to the former in a series of papers in the early years of the 18th century [36–38].
Even in these very early works there is reference made to the tendency of rotifers to attach strongly to surfaces, which
in light of the observations of surface scattering of Chlamydomonas serves to illustrate the fundamental distinction in
surface interactions between expellers and feeders.

After outlining in Sec. II the experimental methods used here to study the swimming and surface interactions
of rotifers, we present in Sec. III a quantitative analysis of the flow field around a freely-swimming rotifer and its
representation in terms of a superposition of Stokeslets and rotlets. This leads naturally to consideration of the
interactions of rotifers with no-slip surfaces, considered in Sec. IV, where we show that they exhibit a rapid transition
from freely swimming to surface attachment. This can be understood quantitatively through a model akin to the
stresslet one in which the additional contribution from the outboard cilia is represented by a rotlet doublet. The
linear stability problem of such “composite” swimmers near a surface is studied in Sec. V. Finally, Sec. VI examines
trajectories on larger spatial and temporal scales. We show experimentally that rotifers swimming near a surface
exhibit the phenomenon of “run-and-stick”, in which roughly straight line swimming is interrupted stochastically by
trapping at the surface through the mechanism discussed in Sec. V. A simple model of stochastic switching between
bound and free states, similar in spirit to one used to study analogous transitions in E. coli [39], is shown to capture
the essential features of the observations. The concluding Sec. VII highlights possible future directions of this research.
Various details of calculations and data analysis are collected in Appendices A-D

II. EXPERIMENTAL METHODS

We use the rotifer Brachionus plicatilis (strain 5010/4) as a model feeder organism [40]. It is approximately
210µm in length and 90µm in width, with individual cilia of length ∼ 50µm and beat frequency ∼ 20 − 30Hz.
The cells can attain swimming speeds of 200 − 400µm/s. They were grown in a coculture with the alga Dunaliella
tertiolecta (strain 19/7c) as a food source in marine f/2 medium at 20 ◦C, under a diurnal cycle of 12 h cool white
light (∼ 15µmol photons/m2s PAR) and 12 h in the dark. All strains and media concentrates were sourced from the
Culture Collection of Algae and Protozoa (CCAP) [41]. To isolate B. plicatilis, the coculture was passed through a
70µm diameter membrane filter (pluriStrainer) to remove the algae.
B. plicatilis is an invertebrate, with a dense ciliary array at the cell apex and a tail at the posterior end as shown

in Fig. 1(c). While swimming, it retracts its tail, appearing like a prolate ellipsoid, and the cilia in front organize
into two clusters of biaxial symmetric metachronal bands on either side of the cell axis, sweeping fluid towards the
centrally located mouth. To quantify flow fields, we acquired brightfield images of B. plicatilis in f/2 medium infused
with polystyrene tracer particles (mass fraction 0.01%). Images were captured at 500 fps using a ×10 objective with
a high-speed camera (Phantom V311) mounted on a Nikon TE-2000U inverted microscope. A dilute suspension of
rotifers (100 cells cm−3) mixed with tracer particles was transferred into a chamber formed by two coverslips separated
by a double-sided tape of thickness 4mm. Fluid velocimetry using PIVlab was performed to analyze the flows [42].
The rigid boundary helps the rotifer swim parallel near to the surface long enough to capture high-resolution images
of its flow-field. When far from the surface, image capture is difficult because the swimmers frequently move out of
the focal plane, causing their bodies to appear defocused.

III. FLOW FIELDS

Figure 1(d) shows time-averaged experimental flow-field of B. plicatilis swimming at a speed of 380 µm s−1 nearly
350µm away from the upper surface of the chamber (See also SM Video 1 [43]). Assuming a typical rotifer size
of L = 210 µm, a maximum swimming speed of U = 400µm/s, and a kinematic viscosity of ν = 106 µm2/s, the
Reynolds number does not exceed Re = UL/ν ∼ 0.08. We therefore work in the inertia-free limit Re = 0. We endow
the swimmer centre of mass x0 with an orthonormal body-fixed frame {e1, e2, e3}, where e1 is the swimming direction
and e2 is the normalised displacement between the cilia bundles located at

x± = x0 + de1 ± we2, (1)

as in Fig. 1(c). The experimental flow in Fig. 1(d) was fit to a superposition of three Stokeslets of strengths fe1 (body
drag), −fe1/2, −fe1/2 (thrust) located at x0, x±, as well as two rotlets with strengths ∓Ge3 at x±, representing
the sweeping ciliary flow towards the mouth [17, 26] (Fig. 1(c) and Appendix A),

ufit(x) =
f

8πµ

[
B(x;x0)−

1

2
B(x;x+)−

1

2
B(x;x−)

]
· e1 +

G

8πµ
[R(x;x−)−R(x;x+)] · e3. (2)
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Here B and R are respectively the Blake tensors for a point force and torque near a no-slip wall [10]. The fit
yields f ∼ 400 pN, G ∼ 4 pN mm, U ∼ 400 µm s−1, d ∼ 130 µm, w ∼ 40 µm. The rotlets displacements d
and w are comparable to the semi-axes, reflecting the bundles’ locations. Furthermore, for a bundle size of 25 − 50
cilia, the force per cilium is on the order of 4 − 10 pN, consistently with the literature [44]. A positive value of G
makes the organism a “feeder”, as in Fig. 1(b). The torque exerted by a single bundle should be on the order of
(thrust per cilium)× (bundle circumference). Assuming a thrust of 10 pN per cilium and a bundle radius of 25 µm,
the estimate G ∼ 2 pN mm resembles the fitted value. Finally, neglecting the no-slip wall and treating the body as a
prolate ellipsoid, the swimming speed in an unbounded fluid is related to the thrust by f = 6πµbζU , where [45]

ζ =

{
3

4
(ξ2 − 1)1/2[(ξ2 + 1)arcoth(ξ)− ξ]

}−1

, and ξ =
a

(a2 − b2)1/2
. (3)

Taking the semi-axes to be a ∼ 100 µm, b ∼ 50 µm and assuming µ = 10−3 Pa s, a thrust of 400 pN should result
in a swimming speed U ∼ 350 µm s−1, similar to the experimental value. The fitted flow in Fig. 1(e) displays good
quantitative agreement with the experimental data in Fig. 1(d) up to 1.5 body lengths ahead of the swimmer. The
flow topology of rotifers changes far from the chamber wall, where the two elliptic stagnation points forward of the
bundles Fig. 1(d,e) disappear leaving only the trailing stagnation points [4, 23, 46]. Notably, unlike for C. reinhardtii
in Fig. 1(a) [3], the rotifer flow field in the absence of a boundary (Fig. 1(f)) lacks a stagnation point ahead of the body,
owing to the smaller aspect ratio and the opposite circulation near the cilia bundles. The inset in Fig. 1(e) suggests
a decay rate r−1.43 for the experimental flow perpendicular to the body axis and a r−1.78 decay along it. These are
consistent with r−2 stresslet flow, which is unaffected by the presence of the wall within a distance r ≪ 2h ∼ 720 µm
of the singularities, with h being the fitted height above the chamber wall. For r ≫ 2h, the presence of the wall is
felt and the flow decays like r−3, rather than r−2. Interestingly, very strong confinement by two no-slip surfaces has
been observed to reverse the sense of circulation of the vortices straddling the body of Chlamydomonas, turning an
expeller flow into one that resembles a feeder [47].

IV. SCATTERING FROM A NO-SLIP SURFACE

While the interactions between pusher swimmers and boundaries have been shown to be chiefly hydrodynamic
[9], as discussed in the introduction, there is evidence that pullers can interact with walls both through direct wall
contact [20, 21] and through the fluid [21, 26]. Moreover, while the leading-order stresslet flow suggests that pullers
should nosedive into the wall, both scattering [20, 21] and trapping are observed experimentally. Here we study the
hydrodynamic picture of the different scattering properties of feeders and expellers, exemplified by B. plicatilis and
C. reinhardtii. We employ a far-field expansion that includes both the force dipole term [48], and the rotlet dipole
that arises from contracting the two opposite rotlets into a single singularity. This approach offers a simple framework
that can be incorporated into simulations of many-swimmer systems and coarse-grained continuum theories [1].

We quantify the strength of the rotlets via the signed “feeder number”

Fe =
Gw

fdL
, (4)

where L is a again the typical swimmer size. We shall refer to swimmers with |Fe| ≫ (≪)1 as “strong (weak)
feeders/expellers”. B. plicatilis is a weak feeder (Fe ∼ 0.06) while C. reinhardtii is a strong expellers with Fe ∼ −5
(using L ∼ 5 µm, d ∼ 5 µm, w ∼ 10 µm, f ∼ 7.2 pN, G ∼ −87 pN µm, U ∼ 100 µm s−1, and e ∼ 0.75 [3, 44, 49]).
The rotlet flow becomes comparable to that of the force dipole at the “feeder length”

ℓ = FeL. (5)

Indeed, |ℓ| ∼ 5L matches the C. reinhardtii stagnation point [3], located ∼ 6 radii ahead of the cell body.
In the far field r := ∥x∥ ≫ L, a swimmer may be described as a sum of flow singularities, specifically a force dipole

of magnitude O(fd/µr2), and higher-order gradients of Stokeslets of strength O(fd2/µr3) or O(fw2/µr3) [3, 17], a
rotlet dipole of strength O(Gw/µr3) and asymptotically smaller terms that we neglect. Since d,w ∼ L, the force
dipole dominates the quadrupole for r ≫ L. We note here that if G ∼ fL as we may expect, then the rotlet dipole
O(Gw/µr3) ∼ O(fLw/µr3) is dominated by the force dipole for r ≳ L. In practice, however, the relation G ∼ fL
only applies to the peak force and torque f∗, G∗. Because only a fraction of the peak force is converted into thrust
(0.25 for C. reinhardtii), the average force f which sets the swimming speed [44] is typically much lower (f ∼ 0.25f∗

for C. reinhardtii). Therefore, while G∗w/f∗dL ∼ −2, the “effective” feeder number is Fe ∼ −5 for C. reinhardtii. For
strong feeders and expellers the dipole is therefore comparable to the rotlet dipoles for 1 ≪ r/L ≪ |Fe|. This validates
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Fig. 1. Surface scattering of bull spermatozoa is governed by ciliary contact interactions, as evident from the scattering sequences of individual cells at two
temperature values: (A) T = 10 °C and (B) T = 29 °C. The background has been subtracted from the micrographs to enhance the visibility of the cilia. The cyan-
colored line indicates the corner-shaped boundary of themicrofluidic channels (seeMovies S1 and S2 for raw imaging data). The horizontal dotted line in the last
image inB defines θ = 0. (Scale bars: 20 μm.) (C) Theprobability distributions of scattering angles θ from the corner peak at negative angles, due to the fact that the
beat amplitude of the cilia exceeds the size of the cell body (sample size: n = 116 for T = 10 °C and n = 115 for T = 29 °C). At higher temperatures, the cilia exhibit
a larger oscillation amplitude and beat frequency (29), resulting in a larger swimming speed and shifting the typical scattering angles to larger absolute values.

Fig. 2. Surface scattering of Chlamydomonas is governed by ciliary contact interactions. (A) Scattering sequence for WT Chlamydomonas CC-125 (Movie S3).
(Upper) Originalmicrographs. (Lower) Cilia manually marked red. Results for the long-flagellamutant lf3-2 and the short-flagellamutant shf1 look qualitatively
similar (Movies S4 and S5). (Scale bar: 20 μm.) (B) Themutant pushermbo1 remains trapped for several seconds (Movie S6). (Scale bar: 20 μm.) (C) The conditional
probability distributions P(θoutjθin) indicate that, for all four strains, memory of the incidence angle is lost during the collision process, due to multiple flagellar
contact with the surface. (D) The cumulative scattering distribution P(θout) shows how cilia length and swimming mechanisms determine the effective surface-
scattering law. (E) Schematic illustration of the flagella-induced scattering and trapping mechanisms.

1188 | www.pnas.org/cgi/doi/10.1073/pnas.1210548110 Kantsler et al.
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FIG. 2. Scattering of expellers and feeders from surfaces. (a) Scattering of C. reinhardtii off a rigid boundary via steric
interactions, from [20] with permission. (b) Computed trajectories appropriate to C. reinhardtii. (c) Average scattering angle
⟨θout⟩ as a function of incident angle θin for C. reinhardtii. Orange curve shows the predictions of singularity model, with
shaded region indicating variations associated with roll angle. Circles are the scattering data for the mutants CC125 and SHF1
from [21]. (d) Trapping of four rotifers with different initial pitches (see also SM Video 2 [43]). (e) Theoretical trajectories
of rotifers show “snapping” to the boundary for a range of initial pitches and zero initial roll. The colorbar represents the
proportion of the total time elapsed, while circles mark the position at regular time intervals, showing a speed increase near
the boundary. The red line marks the distance z∗ in (8) at which the dipole flow becomes comparable to the swimming speed.

The inset shows the distribution of the impact time t∗ and a fitted ‘ballistic’ p.d.f. pb(t) = 2t0/πt(t
2 − t20)

1/2. (f) Evolution
of the pitch and roll θ and ϕ for five trajectories with different θ0 and ϕ0. Variations in the roll are correlated with the color
shade. As the distance to the wall decreases, the pitch increases to 90◦ and the roll changes abruptly near impact.

representing the swimmer as a force dipole and torque dipole term of respective strengths fd and Gw centred at the
same point x0. Despite the singularity approximation breaking down near a wall, it has been shown to qualitatively
reproduce near-field dynamics [4, 9, 17, 50].

The wall modifies the trajectory of the swimmer through an image flow u∗ ensuring no-slip. The translation of a
prolate ellipsoid is governed by the Faxén equation,

ẋ0 = u∗(x0) + Ue1 +O(L2∇2u∗), (6)

while the orientational dynamics is expressed by Jeffery’s equation [17],

ė1 = Ω× e1, Ω =
1

2
∇× u∗(x0) + Γe1 ×E∗(x0) · e1 +O(L2∇2∇× u∗). (7)

Here, E∗ = (∇u∗ + ∇Tu∗)/2 is the image rate-of-strain tensor, and Γ = (1 − e2)/(1 + e2) is the shear-alignment
parameter with e = b/a the aspect ratio. We henceforth neglect the asymptotically sub-leading terms in (6) and (7).

We now apply the above to the scattering of microswimmers from a no-slip surface, focusing first on expeller
dynamics exemplified by Chlamydomonas. For context, Fig. 2(a) shows a typical scattering event of C. reinhardtii in
which one cilium makes brief contact with the surface. Figure 2(b) examines the case in which purely hydrodynamic
interactions govern scattering, obtained by numerical integration of the dynamics (6) and (7), using typical values
d ∼ 5 µm, w ∼ 10 µm, f ∼ 7.2 pN, G ∼ −87 pN µm, U ∼ 100 µm s−1, e ∼ 0.75 [3, 44, 49]. For a range of
incoming angles θin we observe gliding along the wall for a short distance followed by turning away from the wall
with a scattering angle θout that is monotonically increasing with the incident angle. Figure 2(c) plots the scattering
data of Contino, et al. [21] for the wild type strain CC125 and the short flagella mutant SHF1 of C. reinhardtii
in the range θin ≳ 44◦ where boundary interactions are mostly hydrodynamic. In order to compare the results of
the singularity model with these data we computed the ⟨θout⟩ for 103 random values of the roll angle. The average
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value and spread associated with the roll angle are shown respectively as a solid line and shaded region in Fig. 2(c)
indicate that this model accurately reproduces the approximately linear growth of ⟨θout⟩ with θin. Indeed, we fit
⟨θout⟩ ∼ 0.69 · θin + 11.13◦, while ⟨θout⟩ ∼ 0.59 · θin + 22◦ for the CC125 mutant and ⟨θout⟩ ∼ 0.64 · θin + 21◦ for the
SHF1 mutant [21]. These results provide a quantitative validation of the model of Chlamydomonas as a swimmer
governed by the sum of a puller stresslet and an expeller rotlet doublet.

Turning to rotifers, Fig. 2(d) shows examples of their rapid “snapping” to a solid boundary. In the geometry of an
inverted microscope, these are views from below as rotifers that are initially oriented with their long axis e1 parallel
to the upper chamber coverslip turn and rapidly rotate to become attached to that surface, such that e1 points away
from the observer. As remarked earlier, this phenomenon was known to van Leeuwenhoek, who said in his famous
letter to the Royal Society of 17 October, 1687, “... These Animals also had a second movement; for when they were
unable to make any progress by swimming, they attached themselves to the glass by the organs at the front of the head;
and then they drew their body up short...” [51]. Our studies show that the process of snapping typically takes on the
order of 1 − 2 s from initiation to vertical alignment. Once attached, rotifers are observed to spin around e1 with
a period of ∼ 5 s, sometimes for many complete rotations before ultimately detaching. This motion is likely related
to the spinning motion around e1 seen during free swimming. We discuss the long-time statistics of the switching
between swimming and sticking in Sec. VI below.

Using the fitted values of fd and Gw in the stresslet+rotlet doublet model, Fig. 2(e) shows that numerically
obtained snapping trajectories recapitulate the behavior observed in Fig. 2(d). As the wall is approached the flow
due to the strong puller stresslet increases as 1/z2, and thus we can define the lengthscale

z∗ =

(
fd

8πµU

)1/2

(8)

at which the stresslet flow is comparable to the swimming speed. From the angular dynamics in Fig. 2(f) we deduce
that the body turning is driven by the strong puller stresslet. Defining the yaw χ, pitch θ, and roll φ of the body
frame by {e1, e2, e3} = Rz(χ)Ry(θ)Rx(φ), Fig. 2(f) shows that the pitch rapidly increases to nearly 90◦ and impact
is associated with abrupt twisting motion along the body axis.

V. STABILITY ANALYSIS OF TRAJECTORIES

In this section we show that the presence of “feeder” rotlet flow turns a swimmer located at a distance h from
a wall towards the no-slip wall when the trajectory is nearly perpendicular or parallel to the wall. Conversely, an
“expeller flow” generally rotates the rotifer away from the wall. For a trajectory that is nearly perpendicular to the
wall, i.e. with e1 = −ẑ− εV× ẑ, e2 = ŷ+ εV× ŷ, e3 = x̂+ εV× x̂, up to O(ε2), a careful analysis given in Appendix
C shows that the swimmer moves towards the wall with speed

ḣ = −
[
U +

3fd

32πµh2

(
1 +

4FeL

3h

)]
+O(ε) (9)

Therefore, feeders speed up as they approach the wall, while expellers slow down or even hover if ḣ ∼ 0. Rotlets
control the snapping if the crossover length h ∼ FeL = ℓ is much larger than the body size, i.e. if the organism is a
strong feeder or expeller. Moreover, a nosediving puller is instantaneously rotated towards the wall if

(7Γ− 1)
ℓ

2h
+ Γ + 1 > 0,

5ℓ

2h
+ 1 > 0. (10)

For large force dipoles (|ℓ/h| ≪ 1) the swimmer always aligns perpendicular to the wall [17], while for strong rotlet
dipoles or near collision (|ℓ/h| ≫ 1) the swimmer tends to align parallel to the wall when G < 0 (expeller) and
perpendicular to the wall when G > 0 (strong feeder) provided the body is not too spherical. This analysis reveals
a fundamental difference between rotifers and green algae: whereas the former behave essentially like stresslets when
colliding with the wall (and are thus stable), expeller algae feel the destabilizing effects of the rotlet and are thus
unstable [see Fig. 2(b,c)].

Considering now initially parallel trajectories with e1 = x̂, e2 = ŷ cosα+ ẑ sinα, e3 = −ŷ sinα+ ẑ cosα, since the
force dipole does not rotate the swimmer [17], the leading-order effect comes from the rotlets. The presence of the
rotlet tends to steer the swimmer towards the wall for feeders and away from the wall for expellers. Explicitly, we
find that the swimmer is rotated towards the wall if

G
[
6 sin2 φ+ Γ

(
1 + 4 sin2 φ

)
− 1

]
> 0. (11)
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FIG. 3. Results of stability analysis. (a) The case of a trajectory initially oriented nearly perpendicular to the surface.
Trajectories were obtained with the value of Fd extracted from PIV, U = 0, h = 50 with a nearly vertical swimming direction,
tmax = 40 and a 100 × 100 grid. The aspect ratio e and dimensionless feeder length ℓ/2h were varied, and the plot shows
maxi[|ei(tmax)| − |ei(0)|] for i ∈ {1, 2}. White lines mark the theoretical boundaries of the stability regions. (b) Stability
diagram of a rotlet dipole with e1(0) = x̂ and roll φ. For G > 0 (feeder) the dipole is rotated towards the surface (ė1 · ẑ < 0)
for φ sufficiently large, while when G < 0 (expeller) the dipole rotates away from the surface unless φ is small. (c) Sample
trajectories for representative parameter values of C. reinhardtii in different parts of phase space. (d) Sample trajectories for
representative parameter values of rotifer in different parts of phase space.

This is always the case for feeders provided α is not too close to a multiple of π. If this happens, vorticity prevails
over shear alignment and the swimmer turns away from the wall. For expellers (11) predicts that the swimmer will
tend to turn away from the wall provided sinα is not too small, which matches numerical findings [26].

The dynamics of trajectories can be quite complex as a consequence of the competition between the stresslet and
rotlet dipole contributions. Figure 3 shows four trajectories for feeders and expellers initially oriented parallel to the
surface. Fig. 3(c) shows two trajectories corresponding to parameters appropriate to C. reinhardtii with initial roll
φ0 = 11.5◦ and φ0 = 28.6◦. For the former, just inside the stability region, the pitch initially increases and the cell
moves towards the wall, until φ becomes too large. When this occurs, the organism rapidly rotates away from the wall
(decrease in θ) and then departs, never to return. For φ0 = 28.6◦, the alga rotates away from the wall and departs.
Figure 3(d) instead shows two trajectories appropriate to B. plicatilis with φ0 = 5.7◦ and φ0 = 51.6◦. For the former,
inside the unstable region, the rotifer swims away from the wall. When φ0 = 51.6◦, the organism rotates towards the
wall and crashes after a temporary increase in z due to the force dipole.

VI. MOTILITY STATISTICS NEAR SURFACES

The transitions back and forth that rotifers exhibit between free swimming parallel to a surface and to attaching to it
lead to an intriguing type of random walk loosely analogous to several other multi-mode locomotion motifs: the “run-
and-tumble” locomotion of bacteria such as E. coli [52], the “run-reverse-flick” locomotion of Vibrio alginolyticus [53],
and the “run-and-turn” locomotion of Chlamydomonas [54], and the “run-stop-shock” locomotion of Pyramimonas
octopus [55]. It is perhaps most closely related to the behavior exhibited by a particular pathogenic strain of E. coli



8

FIG. 4. Motility statistics of swimming rotifers. (a) Examples of trajectories near the top chamber surface, color-coded by the
swimming speed. (b) PDF of ‘run deviations’ between consecutive stick events and ‘stick deviations’, the difference between
incoming and outgoing angles. (c) PDF of the run-time and stick-time durations. (d) MSD (gray - individual tracks, black -
average) of B. plicatilis exhibits a transition from super-diffusive to diffusive behavior, owing to sticking near the surface. The
green curve and shading illustrate the predicted MSD and 2 standard deviations based on theoretical calculations.

that stochastically transitions between runs parallel to surfaces and adhesive events [39]. We analyzed 62 tracks of
B. plicatilis with typical durations ranging of 20 s. Figure 4(a) shows typical examples of those trajectories, which
follow what we term a “run-and-stick” sequence. As detailed in Sec. IV, a rotifer that is close to a surface may
rapidly reorient to become perpendicular to the surface, becoming stably attached, as in Fig. 2(d). While the rotifer’s
strong puller stresslet flow field leads to strong attachment, they do eventually release owing to biological activity (SM
Video 3 [43]). While attached, the aforementioned spinning of rotifers around the body axis e1 leads to a randomized
swimming direction upon their release (SM Video 1 [43]).

We quantify the run-and-stick trajectories by examining first in Fig. 4(b) two measures of angular deviations: (i)
the ‘run-deviations’ ∆θi = θi − ⟨θi⟩ of trajectory directions θi from the mean direction ⟨θi⟩ of the ith swimming
event, sampled in steps of 0.2 s, and (ii) the ‘stick-deviations’, the angular change ∆ϕ between incoming and outgoing
directions at each sticking event. A sharp peak around 0◦ for run-deviations suggests that the cells swim mostly
in a straight line until reoriented by stick events. The role of biological activity in sticking and unsticking events
becomes even more evident once we assess the ‘run time’ and ‘stick time’ histograms in Fig. 4(c). Averaged over all
62 analyzed tracks near the top surface we find ⟨run time⟩ = 3.6 s and ⟨stick time⟩ = 5.5 s, with both distributions
decaying exponentially, signifying a Poisson processes. Such a process is consistent with the picture that the organism
swims roughly parallel to the wall until its pitch stochastically fluctuates sufficiently to trigger a snapping event. In
this case the waiting time between events should be exponentially distributed with probability density function (p.d.f.)
pe(t) = λe−λt. An alternate view on the waiting time distribution is that the organism swims ballistically at all times
except close to snapping and that all the randomness in the trajectory is embedded in the initial pitch θ. In this case
we can evaluate the corresponding ‘ballistic’ impact time t∗ for an incidence angle θ as t∗ ∼ t0/ sin θ, where t0 = h/U
is a typical swimming time. Because the transition to sticking occurs rapidly relative to the swimming timescale, it
can be ignored. If the incidence angle is chosen uniformly at random in [0, π/2], the ‘run time’ distribution follows the
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ballistic p.d.f. pb(t) = 2t0/πt(t
2− t20)

1/2. Going back to Fig. 2(e), we test this approximation by fitting pb to the p.d.f.
of the collision time for 100 trajectories with uniformly distributed initial pitches and an initial height h = 360 µm
(inset). Results show excellent agreement with χ2 error ∼ 0.02.
In order to see which of the exponential or ballistic p.d.f. better accounts for the data, we fitted both pe and pb to

the data (without automated binning) and computed the χ2 error in the fit. For pe, this was ∼ 0.15, while for pb it
was ∼ 0.74. This analysis shows that snapping is explained much more convincingly by swimming noise rather than
ballistic motion with initially random angles. From the exponential fit, we find a mean free-flight time of ∼ 3.6 s.

Next we examine the mean squared displacement (MSD) of rotifers undergoing run-and-stick locomotion. Figure
4(d) shows the ensemble of MSD measurements for the analyzed tracks and the ensemble average MSD. There is a
clear transition from near-ballistic motion for short times to a diffusive regime on longer timescales, with a crossover
time of ∼ 2− 4 s. To explain this, we propose a mean-field model of a population of rotifers near a boundary in which
the population is coarse-grained into a local number density of freely swimming and trapped rotifers.

Let f+(x, θ, t) be the number density of freely swimming rotifers at position x and angle θ at time t. Similarly, let
f−(x, t) be the number density of trapped rotifers at position x and time t. Based on the motility statistics in Fig. 4,
we assume that individual rotifers transition between freely swimming and trapped at a rate ν− and from a trapped
state to freely swimming at a rate ν+. Neglecting diffusion between trapping events on account of the small angular
displacement in Fig. 4(b), we propose that the distributions obey the evolution equations

∂f+

∂t
+ V n · ∇xf

+ = −ν−f
+ +

ν+
2π

f− (12a)

∂f−

∂t
= −ν+f

− + ν−

∫ 2π

0

f+(x, θ, t)dθ, (12b)

where n = [cos θ, sin θ]. We term (12a) and (12b) a run-and-stick model. Eq. 12a is the statement that a parcel
of freely swimming rotifers with angle θ loses ν−f

+ swimmers per unit time due to sticking, and gains ν+f
−dθ/2π

swimmers per unit time as a result of unsticking events. The 1/2π factor denotes the fact that the swimming angle
upon release is uniformly random due to loss of orientation in the trapped state. Likewise, Eq. 12b models the fact
that the trapped population loses members at a rate ν+ and gains members (with arbitrary swimming angle) at a
rate ν−. From f+ and f− we may define the total rotifer number density ρ(x, t) as

ρ(x, t) = f−(x, t) +

∫ 2π

0

f+(x, θ, t)dθ, (13)

which, from (12a) and (12b), satisfies the conservation law

∂ρ

∂t
+∇x ·

∫ 2π

0

V nf+dθ = 0. (14)

Appendix D provides the details of the calculation of the MSD of the run-and-stick model, with the result

⟨r2(t)⟩
2V 2

=
ν2− − ν−ν+ − ν2+

ν2−(ν− + ν+)
2 +

ν+t

ν−(ν− + ν+)
+

ν−e
−t(ν−+ν+)

ν+(ν− + ν+)
2 − e−ν−t(ν− − ν+)

ν2−ν+
. (15)

At short times t ≪ ν−1
− , there is ballistic behavior with ⟨r2(t)⟩ = V 2t2 +O(V 2ν−t

3), crossing over to linear behavior
at long times, from which we calculate an effective diffusion coefficient for the population based on the asymptotic
result MSD ∼ 4Dt for t → ∞ in two dimensions (Appendix D), yielding

D =
V 2ν+

2ν−(ν− + ν+)
. (16)

Taking V = 280 µm s−1, ν+ = (5.5 s)−1, ν− = (3.6 s)−1, we obtain D ∼ 0.057 mm2 s−1, in good agreement with
experiments.

The result (16) can be compared with the classic run-and-tumble (RT) process, which formally corresponds to the
limit ν+ → ∞. This yields the quasi-steady result ∂f−/∂t = 0, and hence

∂f+

∂t
+ V n · ∇f+ =

ν−
2π

∫ 2π

0

f+dθ − ν−f
+, (17)
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which corresponds to an RT process with frequency ν− [56]. In this limit, D ↗ DRT = V 2/2ν−; for finite ν+, D < DRT

so the population spreads more slowly than for RT due to the extra latency from sticking events. Equivalently, there
an effective free-flight time smaller than the inverse sticking rate,

τeff =
ν+

ν−(ν− + ν+)
<

1

ν−
. (18)

VII. DISCUSSION

In this paper, we demonstrated that puller microswimmers may be classified as “feeders” or “expellers” depending
on the sense of circulation of the cilia-driven flows. These two classes may be identified by their near-field flows (Fig. 1),
with expellers exhibiting a stagnation point ahead of the cell body and feeders conversely presenting incoming flow at
their apex. Boundary interactions also differ in relation to the “feeder number” Fe quantifying the relative strengths
of the Stokeslet and rotlets associated with propulsion. While strong expellers (|Fe| ≫ 1) glide along the wall and
then depart, feeders tend to collide and even attach to the boundary. By comparing with experimental data, we
demonstrated that such behaviour is closely captured by an approximation consisting of a force dipole and a rotlet
dipole located at the same point within the organism body (Fig. 2). A linear stability analysis confirms that the rotlet
dipole generally turns feeders towards the boundary for both parallel and orthogonal incoming trajectories, leading to
collision, while expellers are rotated away from the boundary, leading to scattering (Fig. 3). Motility statistics (Fig. 4)
reveal that both the free-flight and the trapped times of rotifers are exponentially distributed, signifying that sticking
and unsticking are well described by Poisson processes. While rotifers perform nearly ballistic motion on timescales
much shorter than the average free-flight time, their long-term motion is significantly modified by sticking events.
In particular, the changes of incoming and outgoing directions are random, leading to a crossover from ballistic to
diffusive scaling. The motility near the surface is well-described by a mean field run-and-stick model predicting an
effective diffusive behaviour in good quantitative agreement with experimental data.

While the results presented here show that many aspects of the swimming dynamics of rotifers can be understood
using familiar methods in fluid mechanics, we note that rotifers possess muscles with which they can deform their
body and sensory organs for touch and light. They are therefore capable of significantly more complex behaviors than
the bacteria and protists that serve as paradigms of microswimmers. Thus, their dynamics near surfaces may reflect
at least in part a tactic response as much as a purely passive hydrodynamic phenomenon. Finally, the possibility of
interesting collective effects, whether in bulk or at surfaces, from organisms such as rotifers remains to be explored.
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Appendix A: Fitting the flow

The rotifer’s body is seen to lie within the focal plane throughout the analyzed videos, implying that it is parallel
to the no-slip wall at z = 0. We thus orient the PIV field of view so that the body frame of reference is {e1, e2, e3} =
{x̂, ŷ, ẑ} and fit the flow in the xy plane. Such procedure is performed after removing the solid-body motion velocity
corresponding to the rotifer location. We model the rotifer via a far-field approach whereby the body and locomotion
apparatus are replaced by point singularities; the thrust is taken to be being parallel to the body axis, and the
balancing effects of the cilia bundle and the body drag are represented by Stokeslets of strength F x̂, −F x̂/2, −F x̂/2
located at x0, x± = x0 + dx̂±wŷ. We additionally place two rotlets of strengths ∓Ge3 at x±, as in Fig. 2. Because
the field of view is confined to the xy plane, we can only detect the ẑ component of the rotlets from the cilia bundles.
The flow Ansatz is then given by Eq. 2 in the main text, where B is the Green’s function for a point force near a
no-slip boundary,

Bij(x;x0) =

(
δij
r

+
rirj
r3

)
−
(
δij
R

+
RiRj

R3

)
+ 2h(δjβδβk − δj3δ3k)

∂

∂Rk

[
hRi

R3
−
(
δi3
R

+
RiR3

R3

)]
, (A1)

with β = 1, 2, h = x0 · ẑ, r = x− x0, R = x− x∗
0 and x∗

0 = x0 − 2hẑ. Similarly, R is the Green’s function for a point
torque near a no-slip boundary,

Rij(x;x0) =
εijkrk
r3

− εijkRk

R3
+ 2hεkj3

(
δik
R3

− 3RiRk

R5

)
+ 6εkj3

RiRkR3

R5
. (A2)

For simplicity, we pin x0 on the body axis, so we only fit the distance from the wall and the axial position of the body
Stokeslets, giving 6 fitting parameters in total.

In fitting the flow field, we care particularly about capturing the four near-field lobes, a signature of proximity to
a no-slip surface. We therefore propose as the metric to minimize the function

∥up − ua∥⋆ =
1

2

∑
xi

(1− cos θi)w(x), (A3)

where up and ua are the PIV and analytical flows, θi is the angle with respect to the PIV flow direction and the xi

are the PIV lattice nodes after removal of the region corresponding to the rotifer’s body. The weight function w(x)
is the sum of four Gaussians centred at the vortices,

w(x) = C

4∑
n=1

exp

(
−∥x− xi∥2

2σ2

)
, (A4)
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where σ is the standard deviation (set by the vortex size), assumed for simplicity to be equal for all vortices, and C
is a (numerically determined) normalising constant such that∑

xi

w(xi) = 1. (A5)

We chose σ = 1 in our fitting and constrained the singularity locations lie close to the solid-body region of PIV,
specifically within a rectangle 1.5 times larger than the rotifer’s body. This fit only determines the flow up to
rescaling f → κf , G → κG. We find the optimal value of κ via a least-squares method.

Appendix B: Equations of Motion

In the absence of a wall, the swimmer swims without rotation in a straight line with velocity Ue1. The no-slip
condition on the wall induces a perturbation flow u∗(x) that may formally be obtained by placing suitable “image
singularities” at the mirror-image of the body’s location x∗

0 = x0− 2(x0 · ẑ)ẑ in order to exactly cancel the organism’s
flow at the wall. Such a flow advects and rotates the organism according to the Faxén laws for a prolate ellipsoid,

ẋ0 = Ue1 + u∗(x0) (B1)

d

dt
{e1, e2, e3} =

[
1

2
∇× u∗(x0) + Γe1 ×E∗(x0) · e1

]
× {e1, e2, e3}, (B2)

where Γ = (1− e2)/(1 + e2) is the Bretherton parameter encoding shear-alignment, 0 ≤ e ≤ 1 is the ellipsoid’s aspect
ratio, and E∗ = (∇u∗ +∇Tu∗)/2 is the rat-of-strain tensor of the image flow. For simplicity, we henceforth model
the rotifer as a superposition of a force dipole of strength fd along e1 and a rotlet dipole of strength Gw along e2.

The image flow u∗
rd induced by the rotlet dipole (located at x0) at an arbitrary point x is

u∗
rd(x) = −wG

4πµ
e2 · ∇yR

∗(x;y)|(x;x0)·e3. (B3)

The image flow R∗(x;y) · e3 generated by a rotlet of strength e3 located at y is

R∗
ij(x;x0) = −εijkRk

R3
+ 2(ẑ · y)εkj3

(
δik
R3

− 3RiRk

R5

)
+ 6εkj3

RiRkR3

R5
, (B4)

where R = x− y∗, y∗ = y − 2(ẑ · y)ẑ. The vorticity and rate-of-strain tensor of this flow at the position x0 are

∇× u∗
rd(x0) = −wG

4πµ
∇x × [e2 · ∇yR

∗(x;y) · e3] |(x0;x0), (B5)

E∗
rd(x0) = −wG

8πµ
∇x [e2 · ∇yR

∗(x;y) · e3]−
wG

8πµ
∇T

x [e2 · ∇yR
∗(x;y) · e3] |(x0;x0). (B6)

On the other hand, the image flow u∗
fd produced by the force dipole (located at x0) at an arbitrary point x is

u∗
fd(x) = − fd

8πµ
e1 · ∇yB

∗(x;y)|(x;x0)·e1, (B7)

where the image flow B∗(x;y) · e1 generated by a Stokeslet of strength e1 located at y is

B∗
ij(x;y) = −

(
δij
R

+
RiRj

R3

)
+ 2(ẑ · y)(δjβδβk − δj3δ3k)

∂

∂Rk

[
hRi

R3
−
(
δi3
R

+
RiR3

R3

)]
, (B8)

where R is defined as in (B4). The corresponding vorticity and rate-of-strain tensor are

∇× u∗
fd(x0) = − fd

8πµ
∇x × [e1 · ∇yB(x;y) · e1] |(x0;x0), (B9)

E∗
fd(x0) = − fd

16πµ
∇x [e1 · ∇yB(x;y) · e1]−

fd

16πµ
∇T

x [e1 · ∇yB(x;y) · e1] |(x0;x0). (B10)

The combined effect of both singularities is obtained by adding up their respective contributions to the flow by
linearity. In the numeric studies, we integrate (B1)) and (B2)) for the trajectory with the Matlab ode45 routine.
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flow may be important [30]. We are currently investigating
whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.
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FIG. 4 (color online). Time- and azimuthally-averaged flow field of C. reinhardtii. (a) Streamlines (red [medium gray]) computed
from velocity vectors (blue [dark gray]). The spiraling near elliptic points is an artifact of the direct integration of a noisy experimental
velocity field. A color scheme indicates flow speed magnitudes. (b) Streamlines of the azimuthally-averaged flow of the three-Stokeslet
model: flagellar thrust is distributed among two Stokeslets placed (not fitted) at the approximate flagellar position (lateral green
arrows), whose sum balances drag on the cell body (central red arrow). (c) Decay of kuðrÞk for the three directions indicated by
separate colors in the inset, compared to results from the three-Stokeslet model (dashed lines).
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FIG. 5. Test of the far-field model. (a) Experimental flow field around C. reinhardtii, from [3]. (b) Approximation consisting
of two singularities located at the cell-center, a force dipole and a rotlet dipole. This differs from the approach in [3] in which
three separated singularities were used.

Appendix C: Linear Stability Analysis

We aim to understand analytically the effect of the far-field singularities on the trajectory of a swimmer of typical
size L when swimming (nearly) perpendicular or parallel to a no-slip surface. Such singularities consist of a force dipole
of strength fd, a rotlet dipole of strength Gw, and terms smaller by a factor O(L/∥x∥), which we neglect. Despite the
rotlet dipole being asymptotically smaller, it becomes comparable to the force dipole at a distance ∥x∥ = ℓ ∼ Gw/fd
from the body. This implies that for “strong feeders/expellers” with |ℓ| ≫ L, the rotlets govern the impact dynamics.
Indeed, the singularity description is still accurate for such an organism as distances from the wall in the range
L ≪ z ≪ |ℓ|. Figure 5 shows that such singularities convincingly capture the flow around C. reinhardtii, including
the stagnation point. This motivates using the above far-field description of pullers in the calculations.

1. Dynamics for a Nearly-Perpendicular Trajectory

A swimmer initially moving perpendicularly to the wall, i.e. with {e1, e2, e3} = {−ẑ, ŷ, x̂}, will continue to move
perpendicularly by symmetry. In this section we analyze the evolution of a small perturbation

{e1, e2, e3} = Π(t) · {−ẑ, ŷ, x̂}, (C1)

for t ≥ 0, where Πij(t) = Iij + εϵikjVk(t)+O(ε2), with |ε| ≪ 1, is an infinitesimal rotation matrix. All equations are
up to O(ε2), since {e1, e2, e3} must have unit length. From (B3) and (B7) we obtain the leading-order velocity

ẋ0 = −
[
U +

3fd

32πµz20
+

Gw

8πµz30

]
ẑ+O(ε). (C2)

Thus, feeders (G > 0) receive a boost from the suction flow setup by the rotlets, while expellers (G < 0) are slowed
down. If G is large and negative, eventually ẋ0 = 0 at leading order, so the organism hovers above the wall. Turning
our attention to the rotational dynamics, from (B5), (B6), (B9) and (B10) the rate of turning ė3 is

ė1 = −3(7ΓGw −Gw + 2fdz0 + 2Γfdz0)

128πµz04
(e1 · x̂)x̂− 3(Γ + 1)(5Gw + 2fdz0)

128πµz04
(e1 · ŷ)ŷ. (C3)

The rotifer is thus rotated towards the wall when ėx/ex < 0, ėy/ey < 0, which is the case when

(7Γ− 1)Gw + 2fdz0(1 + Γ) > 0, and 5Gw + 2fdz0 > 0. (C4)

Equation (C4) shows that, unless the body is very nearly spherical, strong expellers are rotated away from the wall
while strong feeders are rotated towards the wall. Rotation towards the wall is facilitated by shear alignment and
impeded by the vorticity. Indeed, when Γ ≪ 1, ėx/ex > 0 for G large and positive, while if Γ ∼ 1 both ex and ey
shrink over time. For rotifers, Γ ∼ 0.9 > 1/7, so the rotlets have a stabilizing effect.
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(i)

(iv)(iii)

(ii)

FIG. 6. Flow produced by a rotlet dipole above a no-slip wall at z = 0: (i) Expeller flow when the swimmer is facing towards
the wall; (ii) Feeder flow when the swimmer is facing towards the wall; (iii) Expeller flow when the swimmer is parallel to the
wall; (iv) Feeder flow when the swimmer is parallel to the wall

2. Dynamics for a Parallel Trajectory

Similarly to section C 1, we compute the translational and orientational dynamics for swimming parallel to the
surface, i.e. when

e1 = x̂, e2 = ŷ cosα+ ẑ sinα, e3 = −ŷ sinα+ ẑ cosα, (C5)

where α ∈ [0, π/2] is the “roll” angle around the body axis. Unlike in C 1, the material frame (C5) rotates even in
the absence of an initial perturbation. From (B3) and (B7) we obtain the leading-order instantaneous translational
velocity, while (B5), (B6), (B9) and (B10) provide the instantaneous rate of turning towards the wall

ẋ0 =

(
U +

Gw

32πµz30

)
x̂+

3fd

64πµz20
ẑ (C6)

ė1 = −3(Γ + 3)Gw sin 2α

256πµz40
ŷ +

[
3wG

(
1− 6 sin2 α

)
128πµz40

−
3wΓG

(
1 + 4 sin2 α

)
128πµz40

]
ẑ (C7)

ė2 =
3 (Γ + 1)Gw sinα

(
3 sin2 α+ 2

)
128πµz40

x̂ (C8)

ė3 =
3Gw cosα

(
4Γ− 3 cos2 α− 3Γ cos2 α+ 2

)
128πµz40

x̂ (C9)

As expected, the “puller” dipole is repelled by the surface, but it is not rotated by the image flow. The rotation is
instead driven entirely by the rotlet dipole flow. A feeder (G > 0) experiences a speed boost along the swimming
direction, and is rotated towards the wall (ė1 · ẑ < 0) provided that

sinα >

(
1− Γ

6 + 4Γ

)1/2

, (C10)
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where the right-hand-side ranges from 0 (when e = 0) to 6−1/2 ∼ 0.41 (when e = 1). As in the orthogonal case,
rotation towards the wall is promoted by shear alignment and, when sinα ≪ 1, is impeded by the vorticity. Therefore,
for most roll angles feeders are attracted to the wall and expellers are repelled by the wall.

The hydrodynamic mechanism for reorientation is explained by examining the flow streamlines, plotted in Fig. 6
for strong expellers and feeders. Feeders facing towards the wall are sucked in, while expellers are slowed down by
the outgoing rotlet flow. As for swimmers oriented parallel to the wall, the puller dipole tends to rotate the swimmer
towards the wall in both case, but the rotlets aid rotation for feeders and impede it for expellers.

Appendix D: Continuum Run-and-Stick Process

In order to solve (12a) and (12b) for a function g(x, t) we define the Laplace-Fourier transform (LFT) g̃(k, s) by

g̃(k, s) :=

∫ ∞

0

dt e−st

∫
R2

d2x e−ik·xg(x, t). (D1)

If we assume the initial conditions f+(x, θ, 0) = δ(2)(x)/2π, f−(x, t) = 0, corresponding to all rotiers released from
the origin with uniformly random orientations, taking the LFT of (12a) and 12b gives

2π (s+ iV k · n+ ν−) f̃
+ = 1 + ν+f̃

−, (D2)

(s+ ν+)f̃
− = ν−

∫ 2π

0

f̃+(k, θ, s)dθ. (D3)

Using (D3) to eliminate f̃− in (D2) and integrating over θ we obtain∫ 2π

0

f̃+dθ =
1

2π

(
1 +

ν+ν−
s+ ν+

∫ 2π

0

f̃+dθ

)∫ 2π

0

dθ

s+ ν− + iV k · n
. (D4)

The integral may be evaluated by letting z = eiθ and using the residue theorem, yielding∫ 2π

0

f̃+dθ =

{
[(s+ ν−)

2 + V 2k2]1/2 − ν+ν−
s+ ν+

}−1

, (D5)

where k = ∥k∥. We may now evaluate f̃− from (D3) and express the LFT of the total number density as

ρ̃ =
s+ ν+ + ν−

s+ ν+

{
[(s+ ν−)

2 + V 2k2]1/2 − ν+ν−
s+ ν+

}−1

. (D6)

Denoting the Laplace transform by L, we may exploit the rotational symmetry of ρ to write the MSD directly in
terms of ρ̃,

⟨r2(t)⟩ = 2π

∫ ∞

0

ρ(r, t)r3dr = L−1

{
−2

∂2

∂k2
ρ̃(k, s)

∣∣∣∣
k=0

}
, (D7)

Evaluating the inverse Laplace transform by means of (D6), we obtain the analytical expression (15) for the MSD
given in the main text.
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