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Supporting Information Text15

1. Experimental methods16

Harvesting and culturing of sponges: Freshwater sponges of the species Ephydatia muelleri, shown in Fig.1(a), living on natural17

stones were collected from the Hirose River (Izumi, Sendai City, Miyagi, Japan). The asexually produced buds of reproductive18

cells known as gemmules were peeled off, and the spicules on them were removed. To remove impurities, the gemmules were19

washed with a 1% aqueous solution of H2O2, followed by three successive rinses with pure water to remove excess H2O2. The20

purified gemmules were stored in a refrigerator at 4°C. Sponges were cultured in a plastic dish with Strekal’s medium at room21

temperature (25◦C).22

Imaging: Choanocyte chambers of E. muelleri were imaged on an inverted microscope (IX71, Olympus Corp., Tokyo,23

Japan), as shown in Fig. S1(a). Flagellar beating in the chambers was imaged with a oil immersion objective (100×, N.A.=24

1.40) and a high speed camera (500 fps, 1024×1024 pixels, FASTCAM SA3, Photron Limited, Tokyo, Japan) for durations of25

5 s. The beating appears as a spatiotemporal brightness fluctuation in the pixels of the images (1, 2), as shown in Fig. S1(b),26

from which the beat frequency was measured from a fast Fourier transform (n=5, N=3: this means 5 different choanocyte27

chambers in 3 different sponges). The various geometric and dynamical characteristics of choanocyte chambers (n=6-8, N=4)28

and the flagellar motion within them (n=3-5, N=4) are shown in Table 1.29

2. Computational fluid dynamics of choanocyte chambers30

Governing equations: Scaled by the flagellar motion, the Reynolds number Re ≪ 1 in a chamber, so the fluid flow in and
around choanocyte chambers is governed by the Stokes equations. In the context of the situation in which a point force is
acting at position r in incompressible Newtonian fluid, the Stokes equations with the forcing term take the form

µ∇2v − ∇p + F · δ(r) = 0, [1]

where µ is the viscosity, v is the velocity, p is the pressure, F is the force, and δ(r) is the Dirac delta function. The fundamental
solution of Eq. 1 in free space is

v = 1
8πµ

J(r) · F , [2]

where J is the Green’s function, also called the Stokeslet (3). It is given by

Jij(x, y) = δij

r
+ rirj

r3 , [3]

where r = |r| and r = x − y. When we consider the viscous traction q on the surface of a rigid body, Eq. 2 can be rewritten as
a boundary integral equation (3),

v(x) = 1
8πµ

∫
J(x, y) · q(y)dS(y). [4]

Flagella have very slender structure with a sufficiently small diameter compared to the length. Consequently, the flagellum can31

be conceptualized as a curved filament, and described by slender-body theory (4).32

Their centerlines are parameterized by arclength s ∈ [0, L], and we measure the chamber radius R in units of the flagellar33

length, with34

ρ = R

L
[5]35

a parameter that controls the size of the central region of the chamber devoid of flagella. The velocity v at point x ∈ si located36

on flagellum i can be written as (5)37

v(x) = − 1
8πµ

∫
ch

J(x, y) · q(y)dS(y) − 1
8πµ

N∑
j

∫
fla

K(x, y) · f(y)dsj(y), [6]38

where f is the force density of the flagella and N is the total number of flagella. The first integral is over all surfaces S,39

including those of the chamber, reticulum and cone cell ring. The second integral is over flagellar centerlines. In Eq. (6), K is40

the kernel (4)41

Kij = δij

b
+ rirj

b3 + ε2L2a2(s′)
2

(
δij

b3 − rirj

b5

)
, [7]42

where b =
√

r2 + ε2a2(s). Here the radius function a satisfies 0 < a(s) ≤ 1 for each s ∈ [0,
√

L2 + ε2], where ε is the ratio of
the length to the radius of flagellum and is set to ε = 0.01. The radius function a(s) is

a(s) = 1√
L2 + ε2

√
L2 + ε2 − s2. [8]
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When the point x is not on a flagellum, the velocity is

v(x) = − 1
8πµ

∫
ch

J(x, y) · q(y)dS(y) − 1
8πµ

N∑
j

∫
fla

[J(x, y) + V (x, y)] · f(y)dsj(y), [9]

where (4, 6)

Vij = ε2L2a2(s′)
2

(
δij

r3 − rirj

r5

)
. [10]

The pressure at point x is (3, 7)

P ∗(x) = − 1
8πµ

∫
ch

p(x, y) · q(y)dS(y)

− 1
8πµ

N∑
i

∫
fla

p(x, y) · f(y)dsi(y), [11]

where p = 2r/r3. Contribution of the slender kernel to the pressure field is neglected as it decays quickly.43

Flagellar motions: Each of the flagella within a computational choanocyte chamber is actuated with a prescribed waveform44

at a frequency ν = 1/T , where T is the period of motion, and fixed at its base on the choanocyte chamber surface at a point45

xb. We define the orthonormal body frame g1 and g2 at xb as g1(xb) = −n(xb), and g2(xb) = b(xb) ∧ n(xb)/|b(xb) ∧ n(xb)|,46

where b(xb) = e1 ∧ n(xb), e1 = (1, 0, 0) and n(xb) is the outward unit normal vector to the surface. With τ = t/T , the motion47

of a flagellum is parameterized as48

xfla = ξg1(xb) + Aξ

ℓ(t) cos
(

kLξ

ℓ(t) − 2πτ + φ

)
g2(xb), [12]49

where A is the beat amplitude, k = 2π/λ, with λ the wavelength, the coordinate ξ ∈ [0, ℓ(t)] spans the time-dependent projected50

length ℓ(t) of the flagellum under the constraint of fixed total arclength L. For the oscillating flagellum described by Eq. (12),51

the projected arclength ℓ is considerably less than the total arclength L. For the amplitude A = 0.14L used in numerics and52

for the values of kℓ ∼ (3 − 4)π typical of experiment we have ℓ/L ∼ 0.76. This contraction plays an important role in the53

pressure distribution within the choanocyte chamber. As we observed no phase synchrony in our studies of sponge flagella,54

much as earlier studies of multicellular choanoflagellates saw no synchrony (8, 9), in computations we randomly set the phase55

φ for each flagellum in the range φ ∈ [0, 2π], reproduce the independent flagellar motion in the chamber.56

Boundary element method: When the choanocyte chamber is fixed and there is no background flow, the boundary conditions
are

v(x) =
{

0 x ∈ chamber
vfla(x) x ∈ flagella

[13]

where vfla = ∂xfla/∂t is the flagella velocity, and the chamber includes the reticulum and cone cell ring.57

The choanocyte chamber surface, reticulum and cone cell ring were composed of 9,710 triangular mesh elements and 5,40158

nodal points. These quantities depended on the chamber radius, the size of apopyles, and the number of flagella. The prosopyles59

and apopyle were represented by removing twelve meshes from a rigid sphere discretized by a triangular mesh, as shown in60

Fig. S2(b). The remaining portion is treated as a wall to which the no-slip condition was applied as in Eq. (13). The flow rate61

through the prosopyle was calculated using Gaussian integration at the removed meshes.62

To check the mesh convergence, we have generated the finest mesh currently available in our model, where the rigid sphere63

consists of 20,480 meshes and 10,242 nodes, as shown in Fig. S2(a). For each prosopyle, 52 meshes were removed (black area of64

Fig. S2(a)). The flow rates through the apopyle and the prosopyles are shown in Fig. S2(c). The difference between the flow65

rates obtained by the fine mesh and the coarse mesh is less than 8%. Given the small error and the reduced computational66

cost, the model depicted in Fig. S2(b) was adopted.67

Each flagellum was discretized into 20 elements with 21 nodes. All physical quantities were computed at each discretized
point. The boundary integral equations Eq. (6) and Eq. (9) were computed using Gaussian integration, leading to the linear
algebraic equations

[vc] = [Jcc][q] + [Jcf ][f ], [14]
[vf ] = [Jfc][q] + [Jff ][f ]. [15]

Both [vc] and [q] have size 3Nc, and that of [vf ] and [f ] is 3Nf , where Nc is the total number of nodes on the chamber
surface, the reticulum and the cone cell ring, and Nf is the total number of nodes on the flagella. The matrix size of [Jcc] is
3Nc × 3Nc and [Jcf ] is 3Nc × 3Nf . Considering the boundary condition Eq. (13), the equations can be rewritten as[

Jcc Jcf

Jfc Jff

] [
q
f

]
=

[
0

vfla

]
. [16]

The dense matrix was solved using the lower-upper (LU) factorization technique.68
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3. Point force model69

A recurring theme in biological fluid dynamics is the representation of flow fields around multiflagellated organisms by suitable70

singularities in Stokes flow. For example, experimental studies of freely-swimming colonies of the green alga Volvox carteri,71

a spheroid consisting of ∼ 103 biflagellated cells on its surface, have shown a dominant far-field behavior associated with72

a Stokeslet arising from the density offset between the colony and the surrounding water; a single point force accurately73

summarizes the effects of a thousand cilia (10). At smaller scales, an accurate representation of the swirling flows near a single74

biflagellated alga Chlamydomonas reinhardtii when it swims in a breaststroke fashion requires three point forces: one for the75

cell body and one each for the opposing flagella (10, 11).76

Returning to the densely-packing choanocyte chambers, it is natural to examine the extent to which the fluid dynamical77

properties we have found in the numerical studies described above can be represented by the action of one or several point78

forces. Such a representation would be useful in understanding the input-output characteristics of the chamber, particularly79

within a coarse-grained model of the the sponge network.80

In the original full simulation, there were flagella, the reticulum and the cone cell ring inside a spherical chamber, and the81

flow was generated as shown in Fig. S3(a). We then integrated the forces acting on these internal structures consolidated82

them into a set of point forces. Fig. S3(b-d) shows the flow field when the internal structure is divided almost equally into M83

sections and M point forces are applied at the indicated locations, for the cases (b) M = 35, (c) 10 and (d) 1 point force at the84

sphere center. In all of these coarse-grained models, a flow can be observed from the center of the spherical chamber towards85

the apopyle.86

Fig. S3(a-d) also show the pressure field. Due to the different distribution of forces, the pressure distribution is also altered87

from one value of M to another, but for all values M > 1 there is a similar scale of the high pressure acting at the centre of the88

chamber. It is only when M = 1 that there is a significant reduction in the central pressure. This can be seen in the flow rate89

of the coarse-grained models relative to that in the fully-resolved numerics, shown in Fig. S3(e). Even for M as small as 1090

flux is quantitatively matched within a few percent. But the single point force drastically underestimates the flux as a direct91

consequence of underestimating the central pressure. We conclude that the effects of flagella around the apopyle, opposed to92

the directional flow, are indeed crucial to obtain the scale of flux from choanocyte chambers seen in experiment. At the same93

time, a significantly simplified representation of the chamber is possible.94

4. Pressure difference95

When the coanocyte chamber faces pressure difference during acting pump, we can consider effects of pumping and background96

pressure separately in Stokes flow. We investigated the effect of opposing pressure on fluid flow without flagellar motion in97

addition to flagella driven flow without ambient pressure as shown in Fig. S4. Pressure difference across the chamber is defined98

as ∆P = Pout − Pin, where Pout is the pressure at outside of the apopyle and Pin is the pressure at outside of the prosopyle.99

Leaky flow rate and pressure at center of the chamber should be linear to ∆P , and can be C1∆P and C2∆P . High pressure100

zone is set a little distance away from the apopyle, and we determin Pout around the apopyle. Given that Pin is set to 0, it101

follows that ∆P = Pout, which in turn implies that C1 = Qp/Pout and C2 = Pc/Pout, where Qp is the flow rate through the102

prosopyles and Pc is the pressure at center of the chamber. We calculated C1 and C2 for each opening angle θa.103
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Fig. S1. Flagellar beating in a choanocyte chamber of E. muelleri. (a) Microscope image of a choanocyte chamber. (b) Spaciotemporal brightness fluctuation in the choanocyte
chamber showing flagellar beating. (c) Slice of data in (b) showing the temporal oscillations in pixel intensity.
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Fig. S2. (a-b) Discretization of the surface of the choanocyte chamber by triangular mesh, and representation of the prosopyles and the apopyle. Mesh (b) is used in the main
text, while mesh (a) is used here to check mesh convergence. (c) The flow rate according to fineness of mesh. Red bar is the flow rate through the apopyle, and green bar is
total flow rate through the prosopyles.
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Fig. S3. Flow generated by coarse-grained models of a choanocyte chamber. (a-d) Flow and pressure fields generated by 35 point forces (a), 10 point forces (b), and a single
point force (c), the full simulation (d), where dots indicate the positions of the point forces and black arrows indicate the time-averaged forces. (e) Flow rate of the coarse-grained
models Q̄P F relative to the flow rate of the full simulation Q̄.
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Fig. S4. Flow field and pressure gradient of separated two situation. (a) Flagella drive the flow without ambient pressure. (b) There is only pressure gradient without flagellar
motion.
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Movie S1. Sectional observation of a choanocyte chamber of E. muelleri. This movie speed was decreased104

0.25-fold.105
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