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Numerical Analysis – Lecture 141

Sparse matrices It is often required to solve very large systems Ax = b (n = 105 is considered small in this
context!) where nearly all the elements of A are zero. Such a matrix is called sparse and efficient solution of
Ax = b should exploit sparsity. In particular, we wish the matrices L and U to inherit as much as possible of
the sparsity of A and for the cost of computation to be determined by the number of nonzero entries, rather
than by n. The following theorem shows that certain zeros of A are always inherited by an LU factorization.

Theorem Let A = LU be an LU factorization (without pivoting) of a sparse matrix. Then all leading zeros in
the rows of A to the left of the diagonal are inherited by L and all the leading zeros in the columns of A above
the diagonal are inherited by U .

Proof We assume that Uk,k 6= 0 for all k = 1, . . . , n which is the same as saying that (Ak−1)k,k 6= 0 when
running the LU factorization algorithm (without pivoting). If Ai,1 = 0 this means that Li,1U1,1 = 0 and so
Li,1 = 0. If furthermore Ai,2 = 0 we get Li,1U1,2 +Li,2U2,2 = 0 which implies Li,2 = 0 since Li,1 = 0. In general
we get that if Ai,1 = · · · = Ai,j = 0 where j < i then Li,1 = · · · = Li,j = 0. A similar reasoning applies for
leading zeros in the columns of A above the diagonal. 2

Banded matrices The matrix A is a banded matrix if there exists an integer r < n such that Ai,j = 0 for
|i − j| > r, i, j = 1, 2, . . . , n. In other words, all the nonzero elements of A reside in a band of width 2r + 1
along the main diagonal. In that case, according to the previous theorem, A = LU implies that Li,j = Ui,j = 0
∀ |i− j| > r and sparsity structure is inherited by the factorization.
In general, the expense of calculating an LU factorization of an n× n dense matrix A is O

(
n3
)

operations and

the expense of solving Ax = b, provided that the factorization is known, is O
(
n2
)
. However, in the case of a

banded A, we need just O
(
r2n
)

operations to factorize and O(rn) operations to solve a linear system. If r � n
this represents a very substantial saving!

General sparse matrices feature a wide range of applications, e.g. the solution of partial differential equations,
and there exists a wealth of methods for their solution. One approach is efficient factorization, that minimizes
fill-in (a fill-in is an zero entry of the matrix A that gets filled in during the factorization, i.e., Aij = 0
and yet Lij 6= 0 (if i > j) or Uij 6= 0 (if j > i)). Yet another is to use iterative methods (cf. Part II
Numerical Analysis course). There also exists a substantial body of other, highly effective methods, e.g. Fast
Fourier Transforms, preconditioned conjugate gradients and multigrid techniques (cf. Part II Numerical Analysis
course), fast multipole techniques and much more.

Sparsity and graph theory An exceedingly powerful (and beautiful) methodology of ordering pivots to
minimize fill-in of sparse matrices uses graph theory and, like many other cool applications of mathematics in
numerical analysis, is alas not in the schedules :-(

5.2 QR factorization of matrices

Scalar products, norms and orthogonality We first recall a few definitions. Rn is the linear space of all
real n-tuples.

• For all u,v ∈ Rn we define the scalar product

〈u,v〉 = 〈v,u〉 =

n∑
j=1

ujvj = u>v = v>u .

• The vectors q1, q2, . . . , qm ∈ Rn are orthonormal if

〈qk, q`〉 =

{
1, k = `,
0, k 6= `,

k, ` = 1, 2, . . . ,m.

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
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• An n× n real matrix Q is orthogonal if all its columns are orthonormal. Since (Q>Q)k,` = 〈qk, q`〉, this
implies that Q>Q = I (I is the unit matrix ). Hence Q−1 = Q> and QQ> = QQ−1 = I. We conclude that
the rows of an orthogonal matrix are also orthonormal, and that Q> is an orthogonal matrix. Further,
1 = det I = det(QQ>) = detQdetQ> = (detQ)2, and thus we deduce that detQ = ±1, and that an
orthogonal matrix is nonsingular.

The QR factorization The QR factorization of an m × n matrix A has the form A = QR, where Q is an
m×m orthogonal matrix and R is an m× n upper triangular matrix (i.e., Ri,j = 0 for i > j). When m ≥ n, a
reduced QR factorization of A is a factorization A = QR where Q is m × n with orthonormal columns, and R
is n× n upper triangular.

Application in linear system solving Let m = n and A be nonsingular. We can solve Ax = b by calculating
the QR factorization of A and solving first Qy = b (hence y = Q>b) and then Rx = y (a triangular system!).

Interpretation of the QR factorization Let m ≥ n and denote the columns of A and Q by a1,a2, . . . ,an

and q1, q2, . . . , qn respectively. In a reduced QR factorization:

[ a1 a2 · · · an ] = [ q1 q2 · · · qn ]


R1,1 R1,2 · · · R1,n

0 R2,2

...
...

. . .
. . .

0 Rn,n

 ,

we have ak =
∑k

j=1 Rj,kqj , k = 1, 2, . . . , n. In other words, Q has the property that each kth column of A can
be expressed as a linear combination of the first k columns of Q.

The Gram–Schmidt algorithm Assume that m ≥ n and that the columns of A are linearly independent.
We will see how to construct a reduced QR factorization of A, i.e., Q ∈ Rm×n having orthonormal columns,
R ∈ Rn×n upper-triangular and A = QR: in other words,

∑̀
k=1

Rk,`qk = a`, ` = 1, 2, . . . , n, where A = [ a1 a2 · · · an ]. (5.2)

Equation (5.2) for ` = 1 tells us that we must have q1 = a1/‖a1‖ and R1,1 = ‖a1‖. Next we form the vector
b = a2−〈q1,a2〉q1. It is orthogonal to q1, since 〈q1,a2−〈q1,a2〉q1〉 = 〈q1,a2〉−〈q1,a2〉〈q1, q1〉 = 0. Since the
columns of A are assumed linearly independent, b 6= 0 and we set q2 = b/‖b‖, hence q1 and q2 are orthonormal.
Moreover,

〈q1,a2〉q1 + ‖b‖q2 = 〈q1,a2〉q1 + b = a2,

hence, to obey (5.2) for ` = 2, we let R1,2 = 〈q1,a2〉, R2,2 = ‖b‖.

More generally we get the following classical Gram-Schmidt algorithm to compute a QR factorization: Set
q1 = a1/‖a1‖ and R11 = ‖a1‖. For j = 2, . . . , n: Set Rij = 〈qi,aj〉 for i ≤ j − 1, and bj = aj −

∑j−1
i=1 Rijqi.

Set qj = bj/‖bj‖ and Rjj = ‖bj‖.

The total cost of the classical Gram–Schmidt algorithm is O
(
n2m

)
, since at each iteration j a total of O(mj)

operations are performed.

The disadvantage of the classical Gram–Schmidt is its ill-conditioning : using finite arithmetic, small imprecisions
in the calculation of inner products spread rapidly, leading to effective loss of orthogonality. Errors accumulate
fast and the computed off-diagonal elements of Q>Q may become large.
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