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This article combines my early interest in how microstructure leads to
rheology and my later interest in how rheology leads to flow behaviour.

As there are different definitions in the literature, let me recall the defi-
nitions of normal stresses that I shall use. In a simple shear u = (γy, 0, 0),
the stress tensor has 5 non-zero components, the tangential viscous stresses
σxy = σyx, and the non-dissipative normal stresses σxx, σyy, and σzz. In a
Newtonian fluid, the normal stress components are all equal, to minus the
pressure, but in a visco-elastic fluid, the components are not equal. The
first normal stress difference is N1 = σxx − σyy, which when positive can be
thought of as a tension in the streamlines in the x-direction, or alternatively
a pressure in the flow-gradient y-direction. I shall take the second normal
stress difference as N2 = σyy − σzz, which when negative can be thought of
as a tension in the vortex lines in the z-direction, or alternatively a pressure
again the flow-gradient y-direction.

When I learnt about rheology fifty years ago, the important visco-elastic
fluids were polymer melts in industry and polymer solutions in university
laboratories. These have a positive N1, and an N2 so small that it was
difficult to measure, and hence was nearly always neglected. Thinking of
N1 as a tension in the streamlines explains simply many phenomena:– the
Weissenberg rod-climbing effect, the migration of particles to the centre line
of pipe flows, the stabilisation of jets in air, the purely-elastic instability of
Taylor-Couette flow, an instability in co-extrusion, and more. It is useful
to think about the origin of N1 for polymers, and other microstructures
composed of fibres. In a simple shear flow, the fibres are first stretched by
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the flow and then aligned with the flow. Thus a tension is generated in the
streamlines. Further, this mechanism does not generate any N2.

To have a non-zero N2, one needs a thick microstructure that can be
compressed, e.g. droplets in an emulsion. Simple shear flow first stretches
the microstructure in the first and third quadrants (xy > 0) and compresses it
in the second and fourth quadrants (with xy < 0). The vorticity then rotates
the microstructure to give stretching in the flow direction, i.e. N1 > 0, and
compression in the flow-gradient direction, i.e. N2 < 0.

While thick microstructures unavoidably rotate fully with the vorticity,
they do not strain fully with the strain-rate, because of their internal resis-
tance to deformation. This leads to non-affine deformations. If the straining
is reduced to an efficiency of θ < 1, then the appropriate time derivative
is a mix of 1

2
(1 + θ) of the upper-convected derivative and 1

2
(1 − θ) of the

lower-convected derivative. This change to non-affine deformation produces
a shear-thinning rheology along with N2 < 0.

Another origin of N2 occurs in non-Brownian suspensions. In a simple
shear flow, the particles impact one another in the flow x-direction, producing
a pushing σxx < 0. When the concentration exceeds 20%, they also impact
particles in the layers above and below them, leading to a similar pushing
in the flow-gradient y-direction, σyy < 0. Force-chains are found at 45◦ to
the flow, i.e. σyy ≈ σxx, so N1 ≈ 0. Instead of passing under and over one
another, the particles can pass more easily in the vorticity z-direction, so
σzz ≈ 0, so N2 = σyy − σzz < 0, see Boyer, Pouliquen & Guazzelli (2017).

A negative N2 should be thought of as a tension in the vortex lines.
This idea allows one to give simple explanations of several non-Newtonian
phenomena:– the bowing of the interface in Tanner’s tilted channel, longitu-
dinal vortices in the flow of grains down a chute, negative rod-climbing, an
edge instability in rheometers, and lopsided de-wetting on a vertical fibre.

In 1974 Kuo & Tanner studied flow down an inclined open channel with
a circular cross-section. I think that it is easier to analyse a shallow cross-
section. In the centre of the channel, the flow is faster, and in fact the shear-
rate is higher. This higher shear-rate means higher tension in the vortex lines
in the centre. This higher tension pulls fluid into the centre. The surface
therefore bows up, due only to N2. I speculate that the same mechanism
would explain the longitudinal vortices observed in granular chute flow by
Forterre & Pouliquen (2017), who provided an alternative explanation.

The standard Beavers & Joseph (1975) analysis of the Weissenberg rod-
climbing finds that the liquid surface will climb the rotating rod if N1+4N2 >
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0. For polymers, N1 > 0 and N2 ≈ 0, so there is rod-climbing through the
squeezing of the hoop-stress from the tension in the streamlines. On the
other hand for concentrated non-Brownian suspensions, N1 ≈ 0 and N2 < 0
so the free surfaces dips near the rotating rod, through tension in the vertical
vortex lines, see Boyer, Pouliquen & Guazzelli (2017).

Sometimes visco-elastic fluids are ejected from a cone-and-plate rheome-
ter, not through inertia, but through a purely elastic instability associated
with N2. This so-called ‘edge instability’ was first investigated by Tanner
in 1993, and recently more thoroughly by Hemmingway & Fielding in 2017.
Consider the figure looking at the cross-section of the edge of the rheometer,
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with the top plate moving out of the paper in the x-direction and the bottom
plate stationary. The horizontal lines between the two plates are contours of
constant u velocity in the x-direction. They are also vortex lines. Consider a
perturbation of the free surface between the air and the liquid, with a dimple
A into the liquid in the middle between the plates. To avoid a shear stress
exerted across the free surface, the contours of u must meet the free surface
at right angles. This concentrates the contours near the dimple A. This
increases the shear-rate near A. This creates a higher tension in the vortex
lines at A. This pulls the perturbation A further into the liquid, i.e. there is
an instability.

My final example of a flow behaviour resulting from N2 concerns the
draining under gravity of a thin film on a circular vertical fibre. First re-
ported by Boulogne in his 2013 Paris thesis, a visco-elastic liquid can move
to one side of the fibre de-wetting the other side. I looked at this with Claire
McIlroy in 2015. Consider starting with a film of uniform thickness around
the fibre. Now add a perturbation in the thickness which makes one side
slightly thicker. The liquid will drain faster on the thicker side. In fact,
the shear-rate is higher on the thicker side. So on the thicker side there is
a higher tension in the vortex lines, which are circular lines around the fi-
bre. The higher tension acts to pull more liquid round to the thicker side,
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i.e. there is a de-wetting instability. In the final stages of de-wetting, there
is an interesting t−1/4 slow drainage.

To conclude, the early days of visco-elastic fluids were dominated by
polymeric liquids, for which the second normal stress was negligibly small
and hence often appropriately neglected. Today there is more interest and
more applications in non-polymeric liquids, such as emulsions and complex
suspensions. These have significant second normal stresses. And these second
normal stresses lead to interesting and curious flow behaviours. The second
normal stress difference should no longer be neglected.
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