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Abstract. An asymptotic analysis is made to find the penetration depth and the
stopping time for a particle impacting a granular bed. Newton’s equation is solved
with a drag force with two terms, one term proportional to the square of the velocity
and one term linear in the depth. The penetration depth is found to increase with
the logarithm of the impact velocity, while the stopping time is found to decrease
with the inverse of the square root of the logarithm of the impact velocity.

1. Introduction

When a particle impacts a granular bed, how deep does it penetrate the
bed, and how quickly does it stop? Answering these questions may help
understand the formation of crater when asteroids and military objects
impact the Earth. In the last 10 years, there have been a number of
laboratory studies of particles impacting granular beds, along with a
few simplified numerical simulations. For spheres of diameter D and
density p, falling freely a height H and then impacting a granular bed
of density pp, the depth of penetration § has been found to scale as
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with various values of the indices a and g reported :— (Uehara et. al.,

2003), (de Bruyn & Walsh, 2004) and (Ambroso et. al., 2005) found in
experiments a = % and 8 = %, (Tsimring & Volfson, 2005) found in

two-dimensional simulations o = 8 = % which they suggested in three
dimensions should be a = § = %, and (Goldman & Umbanhowar,

2008) found in experiments o = 3 = % The stopping time exhibits
a curious behaviour of faster impacting particles stopping in a shorter
time, tending to non-zero plateau value at high impacting velocities,
H Z Dps/pp. (Ciammara et. al., 2004) saw only the plateau value in
their experiments and two-dimensional simulations, whereas (Goldman
& Umbanhowar, 2008) suggest from experiments a plateau value scaling
with (ps/ps)/4(D/g)'/? and (Seguin et. al., 2009) suggest from simu-
lations 1.7(ps/ps)'/?(D/g)"/?. The precise scalings of the penetration
depth and the stopping time thus remain unclear.

';‘.‘ © 2013 Kluwer Academic Publishers. Printed in the Netherlands.
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On the other hand, a consensus has emerged on the form of the
resistive force that a granular bed exerts on a moving particle. The
force is the sum of two parts, and a fluid-like inertial part proportional
to the square of the instantaneous velocity and a dry-solid friction part
proportional to the instantaneous depth z in the bed, i.e.

F = —CpppD*v* — D’ pygz, (1)

where ¢ is the acceleration due to gravity and C'p and p are dimension-
less constants. The two parts resist the motion and so would change sign
if the velocity became negative. Moreover for a stationary particle, the
dry-solid friction term may be less that ;.D?pygz. The inertial part, first
suggested from two-dimensional simulations by (Tsimring & Volfson,
2005), is the force required to accelerate from rest to the velocity v a
mass ppD?v per unit time. The quadratic variation with velocity was
confirmed in experiment by (Katsuragi & Durian, 2007) with a single
granular bed and a single sphere, who also found that the dependence
on depth of the dry-solid part was best approximated by a linear vari-
ation in depth, corresponding to a Coulombic coefficient of friction
multiplied by the normal pressure force which itself is proportional to
depth. They gave values for the dimensionless coefficients in the force
law (1) as Cp = 0.8 and p = 9. (Goldman & Umbanhowar, 2008) found
in experiments with four different granular beds and 15 different spheres
of various densities and radii that at high velocities and shallow-impacts
that the force varied quadratically with the velocity, quadratically with
the diameter of the sphere, and was independent of the mass of the
sphere. Deeper into the bed and at lower velocities, there would have
been a significant contribution from the dry-solid friction, which seems
not to have been examined separately. In two-dimensional simulations
of particles with zero tangential friction, (Seguin et. al., 2009) demon-
strated that the inertial part was proportional to the square of the
velocity, the density of the bed and the diameter of the particle, and
that the dry-solid friction part was proportional to the density of the
bed, the diameter of the particle, and linear in the depth in the bed.
The linear variation with the diameter in two dimensions becomes the
square of the diameter in three dimensions. Using a single bed of very
light expanded polystyrene particles and a single hollow sphere whose
mass could be varied to 18 different values, (Pacheco-Vazquez et. al.,
2011) found that the trajectories of the sphere were consistent with the
force law (1) while the sphere penetrated the bed no further than one
diameter of the container. Deeper into the bed, the dry-solid friction
part of the force tended to a constant, due to the Janssen effect making
the pressure tend to a constant deep into the bed. (Pacheco-Vazquez
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et. al., 2011) gave values for the dimensionless coefficients Cp = 2.4
and u = 12.

Not withstanding the difference in the values of the dimensionless
coefficients, force law (1) seems well established. In each of the studies,
it predicts well the trajectories of the particles, and so predicts well the
penetration depth and the stopping time. This opens the possibility
of settling what are the correct scaling laws for the penetration depth
and stopping times by an asymptotic analysis of the equation of motion
using the the established force law. That possibility is the subject of
this article.

2. Governing equations

The motion of the impacting sphere is governed by Newton’s law with
the weight of the sphere and the resistive force (1). Let z be the distance
downwards from the free surface of the bed. The mass of the sphere is
ps%D?’. It is convenient to non-dimensionalise the problem so that the
coefficients of the two friction terms are unity. To make the coefficient
of the inertial term unity, length is non-dimensionalised by

T Ps
L=—"tsp
6Cp pp

To make the coefficient of the dry-solid friction term unity, time is

non-dimensionalised by
o |TpsD
610 pb g

The governing equation then becomes
F=k—z— 2% (2)

where k = Cp/p in the term which represents the weight of the particle,
having made the two coefficients in the friction law equal to unity.
The experiments of (Katsuragi & Durian, 2007) give k& = 0.09, while
the more recent experiments by (Pacheco-Vézquez et. al., 2011) give
k = 0.2. For the purpose of plotting results in this article, the value
k = 0.2 will be used.

The initial conditions are that the sphere starts at the surface with a
velocity from falling freely through the height H, which with the above
non-dimensionalisation become

. [ 12 pp H

Impact10.tex; 4/06/2013; 16:56; p.3



4 John Hinch

We shall be interested in the asymptotic behaviour for large impact
velocities V > 1. The largest value in experiments is around Vy = 10,
corresponding to dropping a 2.5cm sphere 1 m and the density of the
sphere being twice that of the bed.

3. Direct integration

It is possible to integrate the governing equation twice to obtain expres-
sions for the penetration distance and stopping time. The expressions
can then be evaluated asymptotically in the limit of large impact veloc-
ities. The nonlinear governing equation (2) can be simplified by making
a Riccati inspired transformation. Introducing

. . . 2
z=lInz, SO sz and 225—%,
x T T
the governing equation becomes
Z=uz(k—Inx).
This has a first integral
i’ =V§+ (k+3)(2* - 1) — 2% Ina, (4)

using initial conditions x = 1 and & = V{ from (3).
The velocity vanishes at z,, given by

w2 (nze —k—3)=Vi—k—3.

For Vp > 1, one can solve this iteratively for

Yo [1+ ! (mﬂww%)] (5)

oo ™ vIn Vg 2InVy

Thus the penetration depth is

2o ~In Vo —1In 1nvo+#(1n\/1nvo+k+%). (6)
2In 'V}

We shall treat In+/In Vf, which occurs in this expression and in many

subsequent expressions, as an O(1) quantity.

Figure 1 plots the penetration depth z,, as a function of impact
velocity Vp, comparing the asymptotic approximation (6) with results
of numerical solution of equation (2). Typical of expansions involving
logarithms, the first approximation zo, ~ In Vj is vaguely nearby when
the small expansion parameter 1/InVy = 0.9 (Vo = 3) is quite large,

Impact10.tex; 4/06/2013; 16:56; p.4



Particles impacting on a granular bed 5

0 5 10 15 20
Vo

Figure 1. Penetration depth z. as a function of impact velocity V. The continuous
curve is the result of a numerical integration of equation (2). The long dashed curve
is the first term of the asymptotic result (6), while the short dashed curve is the
first two terms and the dotted curve is all three terms.

but has a relative error around 15% at least to Vj = 1000. Adding the
second term, —In+/InVjp, leaves the relative error at 8% for V5 = 20
but the error does now decrease if only very slowly, becoming 4% by
Vo = 100 and 2% by Vp = 1000. Adding the final term dramatically
improves the accuracy to around 0.2% through this range.

The stopping time t, requires an integration of the first integral (4)

tooz/ oo[VOQ—k:—%—:EQ(ln:L’—k‘—%)}_I/Z dz.
1

To evaluate this at large Vjp, it is useful to substitute x = x,.£ to give

D=

1 1 In¢ e
too = /‘ -1+ — de.
\/Inze —k — 1 /1/z 2o —k —

When 2z, > 1 this gives

/2 (1 —1n2)
too ~ 14 —=—.
1 ( +lnacoo—k—l

Inre —k—35 2

By using our asymptotic expression for zo (5), the stopping time in
terms of 1} is

T 1
oo ~ 1 InvInVp+k—2%+1n2)|. 7
2ﬁln%{+2ln%<n¢no+ 2+n>] )
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too

Figure 2. Stopping time t., as a function of impact velocity Vy. The continuous
curve is the result of a numerical integration of equation (2). The dashed curve
is the first term of the asymptotic result (7), while the dotted curve includes the
correction.

Figure 2 plots the stopping time ¢, as a function of impact velocity
Vo, comparing the asymptotic approximation (7) with results of numer-
ical solution of equation (2). As with the penetration depth, the leading
approximation to, ~ m/2+/In V} is nearby throughout the range, but the
error of around 0.1 does not decrease significantly. On the other hand,
the second approximation gradually improves with an error of 0.06 at
Vo = 20 decreasing to 0.008 at Vy = 100.

The asymptotic results for the penetration depth and the stopping
time involve logarithms. The presence of logarithms explains the dif-
ficulty experienced in previous studies when trying to fit power-law
scalings. We shall return to this issue in the discussion section.

The above direct integration yields expressions for the penetration
depth and the stopping time, but gives no insight into the form of the
expressions, and in particular fails to explain why faster particles stop
in a shorter time. To generate an understanding, we solve the problem
with matched asymptotic expansions. There is first a fast phase when
the velocity is O(Vp) and the inertial part of the resistive force is dom-
inant. The particle comes to rest in a second phase during which the
two parts of the resistive force are comparable and the position changes
little.
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4. Fast initial phase

4.1. SCALING

During the first phase, the velocity is large, 2 = O(V}), while the
displacement is modest, z = O(1), so the time scale must be short,
O(1/Vp). Hence we introduce a fast time scale

T = Vt.

The governing problem then becomes

1
Zer = —22 4+ —5(k—2) with 2(0) = 1.
Vo

In this initial phase the velocity is high, so that the inertial drag
dominates.
The above form of the equation suggests an expansion

2t Vo) ~ Gi(7) + V102<2<T>.

4.2. FIRST APPROXIMATION

The leading order term is governed by
Cirr = —Cipy with (1(0) =0, (1-(0) =1.

The solution is

ClT =

s and (3 =In(1+ 7).

4.3. CORRECTION

The correction is governed by

Grr +2CrCr =k — ¢ with ((0) =0, (2-(0) =0.

The solution is

G=t1+7)2(-In(l+7)+k+3)+3(k+3)/Q+7)— 3k —

Bl
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4.4. ASYMPTOTICITY BROKEN

The initial fast phase comes to an end when the increasing dry-solid
friction term —z in the governing equation becomes comparable with
the decreasing inertial friction term —22, i.e. when

1n<1+7>:o(V02>,

72

i.e. at the large

()

T=0 .

InVj

This large value of the initial fast time scale is the small time ¢t =
O(1/+/InVg). At this time the correction to the velocity (o, /V{? becomes
comparable to the first approximation to the velocity (1, and

z:o(ﬂ).

On the other hand the displacement is still dominated by the first
approximation (i
z=0(InVp).

5. Final stopping phase

5.1. SCALINGS

The break down of the initial fast phase sets the scalings of the final
phase. We introduce a slower fast time

T=+InVyt

and let Z be the O(1) change in the large displacement established in
the initial fast phase
2(t) = Vo + Z(T)

The governing equation then becomes

1
ZTT:—l—Z%+m(k—Z).

Impact10.tex; 4/06/2013; 16:56; p.8



Particles impacting on a granular bed 9
5.2. PREPARING TO MATCH BACKWARDS

Expressing the end of the initial phase at large 7 in terms of the new
slower fast time scale T'

1
61n V)

z~InVy—Iny/InVo+In T—317%+ (Iny/InVo—InT+k+2) as T \,0.

We are treating the In/InVj as an O(1) quantity. The governing equa-
tion and the matching both then suggest an expansion for the final
stopping phase as

Z ~ 7 7.
1+ v, 2
5.3. FIRST APPROXIMATION
The first approximation is governed by
Zirr = —1— Z%p,

with
Zy~—Iny/InVo+InT — $T% as T \,0.

The solution is
Zip =cotT and Z; = —In\/InV + In(sin T),
with constants of integration set by the matching.
5.4. CORRECTION
The correction is governed by
Zorr + 2217297 =k — Z)

with
Zy~ T?(Iny/InVog—InT +k+2) as T\0

The solution for Zyr is

T
Zor = csc? T/ sin? s (ln vInVp + k — In(sin 5)) ds

0

with a constant of integration set by matching. Integrating,

T
Zy = / (cot s —cot T) sin® s <ln \/m + k — In(sin 3)) ds
0
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again with a constant of integration set by matching.

5.5. STOPPING TIME

The velocity will vanish at the slow fast time
b 1
VIR

Now for a first approximation for T,,, we note

To where Zp(Ts) =0.

Z1ir =0 at T:E_

2
Hence for a better approximation, we pose
Too + ! AT.
InV
Then
1
ZT(Too) ~ ZlT(%) + v (ZlTT(%)AT + ZQT(%)) .
Now Ziypr = —1 — Z%T and Z17(5) =0, so
AT = Zyr(5) = § (InV/InVo+k— } +1n2).
Hence

1 =« 1 T
fog il —(1 VInVo+k—1 12).
V2 T mvpypz g MVt E s

This agrees with expression (7) obtained in section 3.

5.6. PENETRATION DEPTH

Evaluating the depth at the stopping time

2(tos) ~ In Vo + Z1(5) + (Z17(5)AT + Z(5)) -

b
InVj
Now Z1(5) = —Inv/InVp and Z;7(5) = 0 and Z(%) can be evaluated
simply, giving

(to) ~InVp — In 1nvo+1 7 (S0nvinVo+k+1)).

This agrees with expression (6) obtained in section 3.
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6. Discussion

The asymptotic analysis of §§4 & 5 reveals how the particle stops. While
the velocity is large, the inertial part of the resistive force dominates,
SO

3 =32

with solution

Vo
1+ Vot

z and z ~ In(1+ Vyt).

The two terms in the resistive force eventually become comparable,

when )
Vo
~ In(1+ Vyt
<1+Vot> n(l+Vot),

i.e. at a time

tN\/lrllivo’ when 2=0(y/Inlp) and z~InVj.

Thereafter the inertial term drops to zero as the particle stops while
the dry-solid friction term stays asymptotically constant, producing
a deceleration — In Vj. This deceleration will finally stop the particle
moving at a speed O(v/InVp) in a time 7/2/In Vp, with the particle
advancing only a O(1) distance during this time. Hence the penetra-
tion depth increases logarithmically with impact velocity Vj, while the
stopping time decreases as 7/2+/In Vj.

This behaviour is special to the combination of the two terms in the
resistive force: with just one of the two terms the outcome is different.
If there were only the quadratic inertial term, then the particle would
never stop while the penetration would increase indefinitely in time. If
there were only the dry-solid friction term, the motion would be a sim-
ple harmonic motion. Thus at low impact speeds, the penetration depth
would be 2k while the stopping time is m, and at high impact speeds
the penetration depth increases linearly with V and the stopping time
tends down to the plateau value 7/2. It is only with the combination of
the two terms does the stopping time continue to decrease as the impact
velocity increases, albeit very slowing as the inverse of the square root
of the logarithm.

Translating the results of the asymptotic analysis into the original
dimensional variables of the problem, the penetration depth is predicted

at leading order to be
9 P (ﬂbH>
D Pb ps D)’
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while the stopping time is predicted to be

o)L e (2N (e HY
“VD ? Pb ps D ’

with two constants ¢; and co.

The existence of the logarithms explains the variability in the previ-
ous results for the exponents when fitting power-laws to the experimen-
tal observations. Indeed if a power-law is fitted to the the numerical
results for the penetration depth in figure 1, then one finds different ex-
ponents if different ranges are used. Fitting over the range 1 < V) < 2,
one finds a@ = 0.75 and 8 = 0.25. On the other hand, if one fits over the
range 5 < Vp < 20 one finds @ = 0.83 and g = 0.17. The same ranges
fitted to the stopping times in figure 2 produces very similar exponents,
80 too X (ps/pg)*12(D/H)®" %8, close to the scaling suggested by (Seguin
et. al., 2009). The power-laws for the penetration depth are different
to those found by fitting experimental observations. It may be that the
force law needs refinement.
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