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MATHEMATICAL TRIPOS PART IIB Prof. E.J. Hinch
‘Waves in Fluid and Solid Media’ January 2003

Example Sheet 1: Sound Waves‡

1. Propagating & decaying (evanescent) waves. Seek a z-independent solution to the
wave equation of the form

φ = A exp(iαx − iωt)f(y) ,

where φ is the velocity potential, α, ω > 0, and α > ω/c0. Hence find an acceptable
solution in y ≥ 0 if there is no disturbance as y → ∞, and

v = exp(iαx − iωt) on y = 0 ; u = (u, v, 0) .

Indicate the approximate width of the layer (next to the surface y = 0) to which the waves
are confined.

From consideration of the acoustic energy flux, verify:
(a) that no energy is propagated perpendicular to the wall;

(b) that at any y-station, the time averaged energy flux parallel to the wall, i.e. < Ix >,
satisfies

< Ix >=< E > c ,

where the phase velocity along Ox is c = ω/α < c0 (note that the disturbance and its
energy travel subsonically along the surface with respect to the sound speed in y > 0).

Comment on whether evanescent waves could arise (i) in a uniform, doubly infinite,
medium, −∞ < y < ∞, and (ii) in a bounded medium 0 < y < ymax?

2. Spherical waves. The wave equation with spherical symmetry is

1

r

∂2

∂r2
(rp̃) −

1

c2
0

∂2

∂t2
p̃ = 0 .

(a) Show that the general solution is

p̃ =
f(t − r/c0)

4πr
+

g(t + r/c0)

4πr
, (1)

where f and g are arbitrary functions. The first and second parts of the solution represent
outgoing and incoming waves respectively: why?

(b) Calculate the radial velocity for an outgoing wave. Show by considering the volume
outflow from an infinitesimally small sphere centred on r = 0, that f(t) = q̇(t), where q(t)
is the mass outflow from r = 0.

Definition: q̇(t) is the strength of the monopole field.

(c)∗ From consideration of lim

V →0

∫

V
2p̃ dV for small volumes centred on appropriate points

in space, deduce that the governing equation for a monopole is in fact

2p̃ = −q̇(t)δ(x) ,

where δ is the Dirac delta function.

‡ Corrections and suggestions should be emailed to E.J.Hinch@damtp.cam.ac.uk.
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3. Harmonic series. Suppose that (1) describes a possible small acoustic disturbance of

an ideal fluid in a conical tube of any cross-sectional shape.‡ Model an oboe or saxophone
(with all the finger-holes closed) as a conical tube of length ` and of small angle, at one
end of which the cross-sectional area is effectively zero and p̃ finite, and at the other end

of which p̃ may be assumed zero.† Show that the instrument has a set of normal modes
of frequencies

ω`/c0 = nπ (n an integer) . (2)

If, instead, the larger end is closed, so that the particle velocity or displacement is zero
there, show that the corresponding normal-mode frequencies are the solutions of

ω`/c0 = tan(ω`/c0) , (3)

and find their high-frequency limit. [The set of frequencies (2) forms a musical ‘harmonic
series’, while the set (3) does not.]

4. Radiated power. (a) A simple source at the origin 0 creates mass at a rate q(t) per
unit time (see question 2). Show that in the far-field, r � c0/ω, (i) the kinetic energy
density, Ek, (ii) the potential energy density, Ep, and (iii) the wave-energy flux, I = p̃u, of
the outgoing spherical wave approximately satisfy plane-wave relations (assume that the
‘source strength’, i.e. the time derivative q̇(t), is of order ωq for some constant ω). Hence
show that the total power radiated across a large sphere of radius R is

(

q̇(t − c−1

0
R)

)2

/4πρ0c0 . (4)

(b) Show that as r → 0,

Ek/Ep → (c0q/q̇r)2 = O(c0/rω)2 → ∞ as r → 0 ,

and comment on this result.

(c) Suppose now that plane sound waves are generated in the half-space x > 0 by a piston
which causes mass to flow back and forth across the plane x = 0 at a rate Q(t) per unit
area. Show that the power radiated across area A of a plane x = X(> 0) is

(

q(t − c−1

0
X)

)2

c0/ρ0A , (5)

where q = AQ.

(d) If q(t) = Re(q̄e−iωt), deduce from (4) and (5) that if the same mass source were placed
at the closed end of a semi-infinite narrow tube of cross-sectional area A � 4π2c2

0
/ω2, then

the time-averaged power radiated would increase by a large factor approximately equal
to 4πc2

0
/Aω2 (assume one-dimensional motion in the tube, and ignore details of the flow

very near the source). This is one of the principles behind the ‘horn loudspeaker’.

(e)∗ Using the method of images, calculate the time-averaged power radiated by a point
source placed well within a wavelength (i) of a plane rigid boundary, and (ii) of the corner
between two plane rigid boundaries at right-angles. Will a whistle sound louder if blown
near a wall?

‡ Since sound waves are longitudinal waves, the boundary condition, that the velocity
component normal to the wall vanishes, is satisfied.

† In reality this is a good approximation only if the radius of this larger end is much
less than c0/ω.
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5. An oscillating bubble (Old Tripos: 93124). A spherical bubble makes small spherically
symmetric oscillations in an ideal fluid. You may assume that the internal dynamics of the
bubble produces a pressure in the fluid on the bubble surface −κ(a−a0), where the radius
a(t) makes small oscillations about the mean value a0. By applying linearised velocity and
pressure boundary conditions at a = a0, derive the equation of motion for the oscillations

ρ0a0ä +
κa0

c0

ȧ + κ(a − a0) = 0 ,

where ρ0 is the undisturbed density of the fluid and c0 is the sound speed (you may
quote results from question 2). What is the mechanism of energy loss represented by the
‘damping’ (ȧ term) in the equation?

6. Traffic flow. Let ρ(x, t) denote the density of cars per unit length of road, and let q(x, t)
denote the numbers of cars passing position x per unit time (in our ideal world there are
no lorries or vans). Postulate that q = Q(ρ), i.e. that the traffic flow is a known function
of the local density of traffic. From conservation of cars deduce that

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0 ,

where c(ρ) = Q′(ρ). Let V (x, t) = Q/ρ be the local car velocity. If V is assumed to
be a monotonic decreasing function of ρ, comment on the relative magnitudes of the
propagation velocity and car velocity (does this agree with your experience?).

7. Shock formation.. At a certain instant the velocity u in a one-dimensional ‘simple wave’
of finite amplitude, propagating through a perfect gas, has the x-dependence

u = um sin kx ,

where um and k are constants. The wave subsequently propagates in the positive x
direction. Show that a single wavecrest (i.e. a local maximum of u(x, t)) travels a distance

1

k

(

2c0

(γ + 1)um

+ 1

)

(6)

before shock waves form.

Comment: When k = 2π × (1kHz)/c0, c0 = 340ms−1, γ = 1.4, and um = 0.05ms−1

(equivalent to 120dB, i.e. the threshold of pain for the ear), the distance (6) is about
320m. At 100dB we get 3200m — but dissipation then becomes enough, under ordinary
conditions, to invalidate the assumption of an ideal fluid.
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