## Example Sheet 1: Sound Waves ${ }^{\ddagger}$

1. Propagating \& decaying (evanescent) waves. Seek a $z$-independent solution to the wave equation of the form

$$
\phi=A \exp (i \alpha x-i \omega t) f(y),
$$

where $\phi$ is the velocity potential, $\alpha, \omega>0$, and $\alpha>\omega / c_{0}$. Hence find an acceptable solution in $y \geq 0$ if there is no disturbance as $y \rightarrow \infty$, and

$$
v=\exp (i \alpha x-i \omega t) \quad \text { on } \quad y=0 ; \quad \mathbf{u}=(u, v, 0)
$$

Indicate the approximate width of the layer (next to the surface $y=0$ ) to which the waves are confined.

From consideration of the acoustic energy flux, verify:
(a) that no energy is propagated perpendicular to the wall;
(b) that at any $y$-station, the time averaged energy flux parallel to the wall, i.e. $<I_{x}>$, satisfies

$$
<I_{x}>=<E>c
$$

where the phase velocity along $O x$ is $c=\omega / \alpha<c_{0}$ (note that the disturbance and its energy travel subsonically along the surface with respect to the sound speed in $y>0$ ).

Comment on whether evanescent waves could arise (i) in a uniform, doubly infinite, medium, $-\infty<y<\infty$, and (ii) in a bounded medium $0<y<y_{\max }$ ?
2. Spherical waves. The wave equation with spherical symmetry is

$$
\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \tilde{p})-\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}} \tilde{p}=0
$$

(a) Show that the general solution is

$$
\begin{equation*}
\tilde{p}=\frac{f\left(t-r / c_{0}\right)}{4 \pi r}+\frac{g\left(t+r / c_{0}\right)}{4 \pi r} \tag{1}
\end{equation*}
$$

where $f$ and $g$ are arbitrary functions. The first and second parts of the solution represent outgoing and incoming waves respectively: why?
(b) Calculate the radial velocity for an outgoing wave. Show by considering the volume outflow from an infinitesimally small sphere centred on $r=0$, that $f(t)=\dot{q}(t)$, where $q(t)$ is the mass outflow from $r=0$.
Definition: $\dot{q}(t)$ is the strength of the monopole field.
$(c)^{*}$ From consideration of $\lim _{V \rightarrow 0} \int_{V} \square^{2} \tilde{p} d V$ for small volumes centred on appropriate points in space, deduce that the governing equation for a monopole is in fact

$$
\square^{2} \tilde{p}=-\dot{q}(t) \delta(\mathbf{x})
$$

where $\delta$ is the Dirac delta function.

[^0]3. Harmonic series. Suppose that (1) describes a possible small acoustic disturbance of an ideal fluid in a conical tube of any cross-sectional shape. $\ddagger$ Model an oboe or saxophone (with all the finger-holes closed) as a conical tube of length $\ell$ and of small angle, at one end of which the cross-sectional area is effectively zero and $\tilde{p}$ finite, and at the other end of which $\tilde{p}$ may be assumed zero. ${ }^{\dagger}$ Show that the instrument has a set of normal modes of frequencies
\[

$$
\begin{equation*}
\omega \ell / c_{0}=n \pi \quad(n \text { an integer }) \tag{2}
\end{equation*}
$$

\]

If, instead, the larger end is closed, so that the particle velocity or displacement is zero there, show that the corresponding normal-mode frequencies are the solutions of

$$
\begin{equation*}
\omega \ell / c_{0}=\tan \left(\omega \ell / c_{0}\right) \tag{3}
\end{equation*}
$$

and find their high-frequency limit. [The set of frequencies (2) forms a musical 'harmonic series', while the set (3) does not.]
4. Radiated power. (a) A simple source at the origin 0 creates mass at a rate $q(t)$ per unit time (see question 2). Show that in the far-field, $r \gg c_{0} / \omega$, (i) the kinetic energy density, $E_{k}$, (ii) the potential energy density, $E_{p}$, and (iii) the wave-energy flux, $\mathbf{I}=\tilde{p} \mathbf{u}$, of the outgoing spherical wave approximately satisfy plane-wave relations (assume that the 'source strength', i.e. the time derivative $\dot{q}(t)$, is of order $\omega q$ for some constant $\omega$ ). Hence show that the total power radiated across a large sphere of radius $R$ is

$$
\begin{equation*}
\left(\dot{q}\left(t-c_{0}^{-1} R\right)\right)^{2} / 4 \pi \rho_{0} c_{0} \tag{4}
\end{equation*}
$$

(b) Show that as $r \rightarrow 0$,

$$
E_{k} / E_{p} \rightarrow\left(c_{0} q / \dot{q} r\right)^{2}=O\left(c_{0} / r \omega\right)^{2} \rightarrow \infty \quad \text { as } \quad r \rightarrow 0
$$

and comment on this result.
(c) Suppose now that plane sound waves are generated in the half-space $x>0$ by a piston which causes mass to flow back and forth across the plane $x=0$ at a rate $Q(t)$ per unit area. Show that the power radiated across area $A$ of a plane $x=X(>0)$ is

$$
\begin{equation*}
\left(q\left(t-c_{0}^{-1} X\right)\right)^{2} c_{0} / \rho_{0} A \tag{5}
\end{equation*}
$$

where $q=A Q$.
(d) If $q(t)=\operatorname{Re}\left(\bar{q} e^{-i \omega t}\right)$, deduce from (4) and (5) that if the same mass source were placed at the closed end of a semi-infinite narrow tube of cross-sectional area $A<4 \pi^{2} c_{0}^{2} / \omega^{2}$, then the time-averaged power radiated would increase by a large factor approximately equal to $4 \pi c_{0}^{2} / A \omega^{2}$ (assume one-dimensional motion in the tube, and ignore details of the flow very near the source). This is one of the principles behind the 'horn loudspeaker'.
$(e)^{*}$ Using the method of images, calculate the time-averaged power radiated by a point source placed well within a wavelength (i) of a plane rigid boundary, and (ii) of the corner between two plane rigid boundaries at right-angles. Will a whistle sound louder if blown near a wall?

[^1]5. An oscillating bubble (Old Tripos: 93124). A spherical bubble makes small spherically symmetric oscillations in an ideal fluid. You may assume that the internal dynamics of the bubble produces a pressure in the fluid on the bubble surface $-\kappa\left(a-a_{0}\right)$, where the radius $a(t)$ makes small oscillations about the mean value $a_{0}$. By applying linearised velocity and pressure boundary conditions at $a=a_{0}$, derive the equation of motion for the oscillations
$$
\rho_{0} a_{0} \ddot{a}+\frac{\kappa a_{0}}{c_{0}} \dot{a}+\kappa\left(a-a_{0}\right)=0,
$$
where $\rho_{0}$ is the undisturbed density of the fluid and $c_{0}$ is the sound speed (you may quote results from question 2). What is the mechanism of energy loss represented by the 'damping' ( $\dot{a}$ term) in the equation?
6. Traffic flow. Let $\rho(x, t)$ denote the density of cars per unit length of road, and let $q(x, t)$ denote the numbers of cars passing position $x$ per unit time (in our ideal world there are no lorries or vans). Postulate that $q=Q(\rho)$, i.e. that the traffic flow is a known function of the local density of traffic. From conservation of cars deduce that
$$
\frac{\partial \rho}{\partial t}+c(\rho) \frac{\partial \rho}{\partial x}=0
$$
where $c(\rho)=Q^{\prime}(\rho)$. Let $V(x, t)=Q / \rho$ be the local car velocity. If $V$ is assumed to be a monotonic decreasing function of $\rho$, comment on the relative magnitudes of the propagation velocity and car velocity (does this agree with your experience?).
7. Shock formation.. At a certain instant the velocity $u$ in a one-dimensional 'simple wave' of finite amplitude, propagating through a perfect gas, has the $x$-dependence
$$
u=u_{m} \sin k x
$$
where $u_{m}$ and $k$ are constants. The wave subsequently propagates in the positive $x$ direction. Show that a single wavecrest (i.e. a local maximum of $u(x, t))$ travels a distance
\[

$$
\begin{equation*}
\frac{1}{k}\left(\frac{2 c_{0}}{(\gamma+1) u_{m}}+1\right) \tag{6}
\end{equation*}
$$

\]

before shock waves form.
Comment: When $k=2 \pi \times(1 \mathrm{kHz}) / c_{0}, c_{0}=340 \mathrm{~ms}^{-1}, \gamma=1.4$, and $u_{m}=0.05 \mathrm{~ms}^{-1}$ (equivalent to 120 dB , i.e. the threshold of pain for the ear), the distance (6) is about 320 m . At 100 dB we get 3200 m - but dissipation then becomes enough, under ordinary conditions, to invalidate the assumption of an ideal fluid.


[^0]:    $\ddagger$ Corrections and suggestions should be emailed to E.J.Hinch@damtp.cam.ac.uk.

[^1]:    $\ddagger$ Since sound waves are longitudinal waves, the boundary condition, that the velocity component normal to the wall vanishes, is satisfied.
    $\dagger$ In reality this is a good approximation only if the radius of this larger end is much less than $c_{0} / \omega$.

