Example Sheet 4: Ray Theory

1. The governing equation of sound waves in a stratified fluid. A gas exactly satisfies the equation of state

$$
p(\rho, T)=\lambda \rho^{\frac{1}{2}}
$$

where λ is a constant independent of the temperature T. The gas fills $z \geq 0$ and is at rest in a gravity field $\mathbf{g}=(0,0,-g)$. Show that the density is given by

$$
\rho=\frac{\lambda^{2}}{g^{2}\left(z-z_{0}\right)^{2}},
$$

where $z_{0}<0$ is a constant.
Show that linear sound waves propagating in the above gas satisfy

$$
\frac{\partial^{2} \tilde{\rho}}{\partial t^{2}}-\nabla \cdot\left(c_{0}^{2} \nabla \tilde{\rho}-\frac{3}{2} \tilde{\rho} \mathbf{g}\right)=\frac{\partial^{2} \tilde{\rho}}{\partial t^{2}}-\nabla \cdot\left(\rho_{0}^{3 / 2} c_{0}^{2} \nabla\left(\rho_{0}^{-3 / 2} \tilde{\rho}\right)\right)=0
$$

where $\tilde{\rho}(\mathbf{x}, t)$ is the density perturbation, $\rho_{0}(z)$ is the unperturbed density, and $c_{0}(z)$ is the local speed of sound. Deduce that a slowly varying approximation for sound waves with wavenumber k is valid in $z \geq 0$ if $\left|k z_{0}\right| \gg 1$.
2. The wave-crest pattern near a shore line. (Old Tripos: 87327). Surface waves on water have a dispersion relation $\omega=\Omega(\kappa ; x, z)$ where $\kappa^{2}=k_{1}^{2}+k_{3}^{2},(x, z)$ are coordinates in the plane of the surface, and the medium is 'slowly varying' in the (x, z) coordinates. Assume the relation

$$
\omega_{t}+\left(\mathbf{c}_{g} . \nabla\right) \omega=0
$$

where \mathbf{c}_{g} is the group velocity, and deduce
(a) that ω is constant on rays, $d z / d x=k_{3} / k_{1}$,
(b) that the wave crests at any instant are given by $d z / d x=-k_{1} / k_{3}$.

Surface tension effects are negligible, and the wave motion takes place over a sloping beach of depth $h(x)=\alpha x^{1 / 2}$, with α a small positive constant. The dispersion relation for such waves may be assumed to be given by $\Omega^{2}=g \kappa \tanh \kappa h$. Far from the shore-line $x=0$, the waves are plane, have frequency ω, and have angle Φ between the crests and the shore-line. As the waves propagate towards the shore they become non-planar. Obtain the parametric equations

$$
\begin{gathered}
x=\frac{\lambda^{2} g^{2}}{\alpha^{2} \omega^{4}} \tanh ^{2} \lambda \\
z-z_{0}=\frac{g^{2}}{\alpha^{2} \omega^{4}} \int_{0}^{\lambda} \frac{\left(1-\tanh ^{2} p \sin ^{2} \Phi\right)^{1 / 2}}{\tanh p \sin \Phi} \frac{d}{d p}\left(p^{2} \tanh ^{2} p\right) d p
\end{gathered}
$$

for the wave crest which passes through the shore-line at $z=z_{0}$. Show that near the shore-line the equation of the wave crest can be written explicitly as

$$
\left(z-z_{0}\right)^{4} \approx\left(\frac{4}{3 \sin \Phi}\right)^{4} \frac{g^{2}}{\alpha^{2} \omega^{4}} x^{3}
$$

3.* Wave breaking. Ocean surface waves propagate obliquely from $x=-\infty$ on water of depth $h(x, z)=-\beta x$ towards a straight beach at $x=0$ where they break and are dissipated. For a slowly varying depth, $\beta \ll 1$, you may assume that the dispersion relation is

$$
\Omega^{2}=g \kappa \tanh \kappa h,
$$

where $\kappa^{2}=k_{1}^{2}+k_{3}^{2}$ for the surface wavenumber $\left(k_{1}, k_{3}\right)$. As in question 2 the frequency ω, and the component k_{3} of the wavenumber along the beach, remain constant. Deduce that the shorewards component of the wavenumber, k_{1}, increases, and $k_{1} \sim \omega(-g \beta x)^{-1 / 2}$ as $x \rightarrow 0$.
Find how the amplitude a of the waves varies, where $2 a$ is the difference in height between the crests and the troughs of the waves. Show that if the waves break when $a \kappa=0.1$ in a region where $\kappa h<1$, then the point x_{b} at which they break is given by

$$
a^{2}(\infty) \frac{k_{1}(\infty)}{\kappa(\infty)} \frac{\omega}{\left(-g \beta^{3} x_{b}^{3}\right)^{1 / 2}}=0.02
$$

[Hint: Write down the solution for the free-surface, calculate the mean potential energy, and use equipartition of energy.]
4. Sound rays in a slowly varying medium. Deduce that for a time-independent, slowly varying, medium the frequency ω is constant at a 'ray point' moving with the group velocity. If moreover the properties of the medium are independent of two Cartesian coordinates, say x and y, deduce Snell's law that

$$
\sin \alpha \propto c
$$

where α is the angle between the wavenumber \mathbf{k} and the z-axis, and c is the local phase speed for waves of wavenumber \mathbf{k}. For what type of dispersion relation is the direction of the ray parallel to \mathbf{k} ?

Consider a dispersion relation of the form $\omega=A|\mathbf{k}| z$, where A is a constant, and let $d s$ be an element of arc length along a ray. Show that in this case $d \alpha / d s$ is constant along a ray, and hence that each ray is the arc of a circle. Show that a wave packet moving towards the plane $z=0$ takes an infinite time to reach it.
5. The wave pattern generated by a duck swimming on a pseudo-fluid. For a slowly varying, two-dimensional wave pattern of the form $A(\mathbf{x}, t) \exp \left(\mathrm{i} \varepsilon^{-1} \theta(\mathbf{x}, t)\right)$, and a local dispersion relation $\omega=\Omega(\mathbf{k}, \mathbf{x}, t)$, derive the ray-tracing equations

$$
\dot{k}_{i}=-\frac{\partial \Omega}{\partial x_{i}}, \quad \dot{x}_{i}=\frac{\partial \Omega}{\partial k_{i}}, \quad \varepsilon^{-1} \dot{\theta}=-\Omega+k_{i} \frac{\partial \Omega}{\partial k_{i}}, \quad(i=1,2) .
$$

For a homogeneous, time-independent (but not necessarily isotropic) medium, show that all rays are straight lines. When the waves have zero frequency, deduce that if the point \mathbf{x} lies on a ray emanating from the origin in the direction given by a unit vector $\hat{\mathbf{c}}_{g}$, then

$$
\theta(\mathbf{x})=\theta(0)+\varepsilon \hat{\mathbf{c}}_{g} \cdot \mathbf{k}|\mathbf{x}| .
$$

Consider a duck swimming steadily with velocity V in a homogeneous pseudo-fluid. In the duck's frame, the dispersion relation is found to be

$$
\Omega\left(k_{1}, k_{2}\right)=\alpha\left(k_{1}^{2}+k_{2}^{2}\right)^{\frac{1}{3}}-V k_{1},
$$

The duck generates a steady wave pattern. By writing $\left(k_{1}, k_{2}\right)=\kappa(\cos \phi, \sin \phi)$, show that the waves satisfy

$$
\kappa=\frac{\alpha^{3}}{V^{3} \cos ^{3} \phi},
$$

and that the group velocity of these waves can be expressed as

$$
\mathbf{c}_{g}=\frac{1}{3} V\left(-\cos ^{2} \phi-3 \sin ^{2} \phi, 2 \sin \phi \cos \phi\right) .
$$

Deduce that the waves occupy a wedge of semi-angle $\frac{1}{6} \pi$ about the negative x_{1}-axis. Find equation[s] describing the wave crests, and sketch the wave-crest pattern.
6. 'Reflection' and 'absorption' of internal gravity waves. Two-dimensional internal gravity waves on a 'slowly varying' shear flow in the atmosphere satisfy the dispersion relation

$$
\omega=\gamma y k+\frac{N k}{\left(k^{2}+\ell^{2}\right)^{1 / 2}},
$$

where γ and N are positive constants, and k and ℓ are the x-and y-components of the wave number respectively. Show that as a wave packet moves, ω and k remain constant, while

$$
\ell(t)=\ell_{0}-\gamma k t
$$

where ℓ_{0} is a constant. If ℓ_{0} is positive, describe the motion in the [vertical] y-direction of a wave packet generated at the origin. Sketch the ray in the neighbourhood of

$$
\begin{equation*}
y=-\frac{N}{\gamma}\left(\frac{1}{k}-\frac{1}{\left(k^{2}+\ell_{0}^{2}\right)^{1 / 2}}\right) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{N}{\gamma\left(k^{2}+\ell_{0}^{2}\right)^{1 / 2}} . \tag{b}
\end{equation*}
$$

