Part II continued - more details on general issues

Last time - Finite Differences
Higher orders - central, 1-sided, non-equispaced
Compact 4th order Poisson solver
Upwinding
Grids - non-Cartesian, stretched, staggered
Conservative

Part II continued - more details on general issues

Last time - Finite Differences
Higher orders - central, 1-sided, non-equispaced
Compact 4th order Poisson solver
Upwinding
Grids - non-Cartesian, stretched, staggered
Conservative

This time - Finite Elements

Finite Elements

Good for engineering problems with complex geometries

- 'just' need to triangulate domain

Good for elliptic, OK for parabolic, poor for hyperbolic
Good for accuracy \& conservative

Finite Elements

Good for engineering problems with complex geometries

- 'just' need to triangulate domain

Good for elliptic, OK for parabolic, poor for hyperbolic
Good for accuracy \& conservative

Poor difficult programming on unstructured grid
Poor no efficient Poisson solver on unstructured grid
Poor difficult presenting results on unstructured grid
Use packages, do not program yourself

Finite Elements $=$ Two ideas

1. Simple representation for unknown function over the finite element

- not point data of FD

Finite Elements = Two ideas

1. Simple representation for unknown function over the finite element

- not point data of FD

2. Weak formulation of the governing equations

- variational statement

Representations in 1D

a. Constant elements

$$
f(x)=f_{i}
$$

in $x_{i-1} \leq x<x_{i}$

Representations in 1D

a. Constant elements

$$
f(x)=f_{i}
$$

in $x_{i-1} \leq x<x_{i}$

b. Linear elements

$$
f(x)=f_{i-1} \frac{x_{i}-x}{x_{i}-x_{i-1}}+f_{i} \frac{x-x_{i-1}}{x_{i}-x_{i-1}}
$$

in $x_{i-1} \leq x<x_{i}$

More representations in 1D

First map element to unit interval

$$
x(\xi)=x_{i-1}+\left(x_{i}-x_{i-1}\right) \xi \quad \text { for } 0 \leq \xi \leq 1
$$

More representations in 1D

First map element to unit interval

$$
x(\xi)=x_{i-1}+\left(x_{i}-x_{i-1}\right) \xi \quad \text { for } 0 \leq \xi \leq 1
$$

c. Quadratic elements

$$
f(x)=f_{i-1}(1-\xi)(1-2 \xi)+f_{i-\frac{1}{2}} 4 \xi(1-\xi)+f_{i} \xi(2 \xi-1)
$$

NB: f^{\prime} discontinuous at boundaries

More representations in 1D

First map element to unit interval

$$
x(\xi)=x_{i-1}+\left(x_{i}-x_{i-1}\right) \xi \quad \text { for } 0 \leq \xi \leq 1
$$

c. Quadratic elements

$$
f(x)=f_{i-1}(1-\xi)(1-2 \xi)+f_{i-\frac{1}{2}} 4 \xi(1-\xi)+f_{i} \xi(2 \xi-1)
$$

NB: f^{\prime} discontinuous at boundaries
d. Cubic elements

Obvious generalisation, but better:

$$
\begin{aligned}
f(x)= & f_{i-1}(1-\xi)^{2}(1+2 \xi)+f_{i-1}^{\prime}(1-\xi)^{2} \xi \\
& +f_{i} \xi^{2}(3-2 \xi)+f_{i}^{\prime} \xi^{2}(1-\xi)
\end{aligned}
$$

Now only $f^{\prime \prime}$ discontinuous at boundaries - see splines later

basis functions

In all cases, write:

$$
f(x)=\sum f_{i} \phi_{i}(x)
$$

f_{i} amplitudes $\phi_{i}(x)$ basis functions, nonzero only in a few elements

basis functions

In all cases, write:

$$
f(x)=\sum f_{i} \phi_{i}(x)
$$

f_{i} amplitudes $\phi_{i}(x)$ basis functions, nonzero only in a few elements
For the constant elements, the basis functions are

$$
\phi_{i}(x)= \begin{cases}1 & \text { in } \quad x_{i-1} \leq x<x_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Basis functions for linear elements

$$
\phi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}} & \text { in } \quad x_{i-1} \leq x \leq x_{i} \\ \frac{x_{i+1}-x}{x_{i+1}-x_{i}} & \text { in } \quad x_{i} \leq x \leq x_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

with obvious modifications for the end elements.

Basis functions for cubic elements

$$
\begin{gathered}
\phi_{i}(x)= \begin{cases}\frac{\left(x_{i+1}-x\right)^{2}\left(x_{i+1}+2 x-3 x_{i}\right)}{\left(x_{i+1}-x_{i}\right)^{3}} & \text { in } x_{i} \leq x<x_{i+1} \\
\frac{\left(x-x_{i-1}\right)^{2}\left(3 x_{i}-2 x-x_{i-1}\right)}{\left(x_{i}-x_{i-1}\right)^{3}} & \text { in } x_{i-1} \leq x<x_{i} \\
0 & \text { otherwise }\end{cases} \\
\tilde{\phi}_{i}(x)= \begin{cases}\frac{\left(x-x_{i}\right)\left(x_{i+1}-x\right)^{2}}{\left(x_{i+1}-x_{i}\right)^{2}} & \text { in } x_{i} \leq x<x_{i+1} \\
\frac{\left(x-x_{i}\right)\left(x-x_{i-1}\right)^{2}}{\left(x_{i}-x_{i-1}\right)^{2}} & \text { in } x_{i-1} \leq x<x_{i} \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

Representations in 2D

Mostly triangles, sometimes rectangles

Representations in 2D

Mostly triangles, sometimes rectangles
a. Constant elements

$$
f(x)=f_{i} \quad \text { in each triangle } i
$$

Representations in 2D

Mostly triangles, sometimes rectangles
a. Constant elements

$$
f(x)=f_{i} \quad \text { in each triangle } i
$$

b. Linear elements Need $\ell_{12}(\mathbf{x})$ vanishing on two vertices, unity on third

$$
\ell_{12}(x, y)=\frac{\left(x-x_{1}\right)\left(y_{2}-y_{1}\right)-\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)}{\left(x_{3}-x_{1}\right)\left(y_{2}-y_{1}\right)-\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)}
$$

Representations in 2D

Mostly triangles, sometimes rectangles
a. Constant elements

$$
f(x)=f_{i} \quad \text { in each triangle } i
$$

b. Linear elements Need $\ell_{12}(\mathbf{x})$ vanishing on two vertices, unity on third

$$
\ell_{12}(x, y)=\frac{\left(x-x_{1}\right)\left(y_{2}-y_{1}\right)-\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)}{\left(x_{3}-x_{1}\right)\left(y_{2}-y_{1}\right)-\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)}
$$

Then

$$
f(\mathbf{x})=f_{1} \ell_{23}(\mathbf{x})+f_{2} \ell_{31}(\mathbf{x})+f_{3} \ell_{12}(\mathbf{x})
$$

Representation continuous over domain

more representations in 2D

c. Quadratic elements Values at vertices and mid-points

$$
\begin{aligned}
f(\mathbf{x})= & f_{1} \ell_{23}(\mathbf{x})\left(2 \ell_{23}(\mathbf{x})-1\right) \\
& +f_{2} \ell_{31}(\mathbf{x})\left(2 \ell_{31}(\mathbf{x})-1\right) \\
& +f_{3} \ell_{12}(\mathbf{x})\left(2 \ell_{12}(\mathbf{x})-1\right) \\
& +f_{23} 4 \ell_{12}(\mathbf{x}) \ell_{31}(\mathbf{x})+f_{31} 4 \ell_{23}(\mathbf{x}) \ell_{12}(\mathbf{x})+f_{12} 4 \ell_{31}(\mathbf{x}) \ell_{23}(\mathbf{x})
\end{aligned}
$$

more representations in 2D

d. Cubic elements

Cubic in 2D has 10 degrees of freedom:
1 constant +2 linear +3 quadratic +4 cubic.

more representations in 2D

d. Cubic elements

Cubic in 2D has 10 degrees of freedom:
1 constant +2 linear +3 quadratic +4 cubic.
Can fit f and ∇f at vertices, plus value in centre $=$ the 'bubble'.

more representations in 2D

d. Cubic elements

Cubic in 2D has 10 degrees of freedom:
1 constant +2 linear +3 quadratic +4 cubic.
Can fit f and ∇f at vertices, plus value in centre $=$ the 'bubble'.
e. Basis functions

In all cases, write:

$$
f(x)=\sum f_{i} \phi_{i}(x)
$$

more representations in 2D

d. Cubic elements

Cubic in 2D has 10 degrees of freedom:
1 constant +2 linear +3 quadratic +4 cubic.
Can fit f and ∇f at vertices, plus value in centre $=$ the 'bubble'.
e. Basis functions

In all cases, write:

$$
f(x)=\sum f_{i} \phi_{i}(x)
$$

For linear elements, ϕ_{i} is non-zero at only one vertex, vanishing on opposite sides of triangles, to form a several-sided pyramid.

more representations in 2D

d. Cubic elements

Cubic in 2D has 10 degrees of freedom:
1 constant +2 linear +3 quadratic +4 cubic.
Can fit f and ∇f at vertices, plus value in centre $=$ the 'bubble'.
e. Basis functions

In all cases, write:

$$
f(x)=\sum f_{i} \phi_{i}(x)
$$

For linear elements, ϕ_{i} is non-zero at only one vertex, vanishing on opposite sides of triangles, to form a several-sided pyramid.

Local nature \rightarrow sparse coupling matrices for PDEs

more representations in 2D

f. Rectangles

more representations in 2D

f. Rectangles

Obvious constant elements

more representations in 2D

f. Rectangles

Obvious constant elements
Bilinear, taking values at vertices

$$
f(\mathbf{x})=f_{1} \xi \eta+f_{2}(1-\xi) \eta+f_{3} \xi(1-\eta)+f_{4}(1-\xi)(1-\eta)
$$

Continuous over domain.

more representations in 2D

f. Rectangles

Obvious constant elements

Bilinear, taking values at vertices

$$
f(\mathbf{x})=f_{1} \xi \eta+f_{2}(1-\xi) \eta+f_{3} \xi(1-\eta)+f_{4}(1-\xi)(1-\eta)
$$

Continuous over domain.
Biquadratic - sum of 9 terms, each product of quadratic in separate coordinates, taking values at vertices and midpoints.

more representations in 2D

f. Rectangles

Obvious constant elements

Bilinear, taking values at vertices

$$
f(\mathbf{x})=f_{1} \xi \eta+f_{2}(1-\xi) \eta+f_{3} \xi(1-\eta)+f_{4}(1-\xi)(1-\eta)
$$

Continuous over domain.
Biquadratic - sum of 9 terms, each product of quadratic in separate coordinates, taking values at vertices and midpoints.

Continuous and continuous tangential derivative at boundaries.

Variational statement of Poisson problem

$$
\nabla^{2} f=\rho \text { in volume } V
$$

with boundary condition, say $f=g$ on surface S, with $\rho(\mathbf{x})$ and $g(\mathbf{x})$ given.

Variational statement of Poisson problem

$$
\nabla^{2} f=\rho \text { in volume } V
$$

with boundary condition, say $f=g$ on surface S, with $\rho(\mathbf{x})$ and $g(\mathbf{x})$ given.

Rayleigh-Ritz variational formulation:

Variational statement of Poisson problem

$$
\nabla^{2} f=\rho \text { in volume } V
$$

with boundary condition, say $f=g$ on surface S, with $\rho(\mathbf{x})$ and $g(\mathbf{x})$ given.

Rayleigh-Ritz variational formulation: out of all those functions $f(\mathbf{x})$ that satisfy BCs, the one that minimises

$$
I(f)=\int_{V}\left(\frac{1}{2}|\nabla f|^{2}+\rho f\right) d V
$$

also satisfies the Poisson problem.

Substitute FE representation

$$
f(\mathbf{x})=\sum f_{i} \phi_{i}(\mathbf{x})
$$

Substitute FE representation

$$
f(\mathbf{x})=\sum f_{i} \phi_{i}(\mathbf{x})
$$

Then

$$
I(f)=\frac{1}{2} \sum_{i j} f_{i} f_{j} \underbrace{\int \nabla \phi_{i} \cdot \nabla \phi_{j}}_{\text {global stiffness } K_{i j}}+\sum_{i} f_{i} \underbrace{\int \rho \phi_{i}}_{\text {forcing } r_{i}}
$$

Substitute FE representation

$$
f(\mathbf{x})=\sum f_{i} \phi_{i}(\mathbf{x})
$$

Then

$$
I(f)=\frac{1}{2} \sum_{i j} f_{i} f_{j} \underbrace{\int \nabla \phi_{i} \cdot \nabla \phi_{j}}_{\text {global stiffess } K_{i j}}+\sum_{i} f_{i} \underbrace{\int \rho \phi_{i}}_{\text {forcing } r_{i}}
$$

Minimise over f_{i}

$$
K_{i j} f_{j}+r_{i}=0 .
$$

Substitute FE representation

$$
f(\mathbf{x})=\sum f_{i} \phi_{i}(\mathbf{x})
$$

Then

$$
I(f)=\frac{1}{2} \sum_{i j} f_{i} f_{j} \underbrace{\int \nabla \phi_{i} \cdot \nabla \phi_{j}}_{\text {global stiffness } K_{i j}}+\sum_{i} f_{i} \underbrace{\int \rho \phi_{i}}_{\text {forcing } r_{i}}
$$

Minimise over f_{i}

$$
K_{i j} f_{j}+r_{i}=0
$$

With these f_{j}, the f satisfies

$$
-\int \nabla f \cdot \nabla \phi_{i}=\int \rho \phi_{i} \quad \text { for all } i
$$

Substitute FE representation

$$
f(\mathbf{x})=\sum f_{i} \phi_{i}(\mathbf{x})
$$

Then

$$
I(f)=\frac{1}{2} \sum_{i j} f_{i} f_{j} \underbrace{\int \nabla \phi_{i} \cdot \nabla \phi_{j}}_{\text {global stiffess } K_{i j}}+\sum_{i} f_{i} \underbrace{\int \rho \phi_{i}}_{\text {forcing } r_{i}}
$$

Minimise over f_{i}

$$
K_{i j} f_{j}+r_{i}=0 .
$$

With these f_{j}, the f satisfies

$$
-\int \nabla f \cdot \nabla \phi_{i}=\int \rho \phi_{i} \quad \text { for all } i,
$$

i.e. satisfy PDE in all (finite) ϕ_{i} directions.

Substitute FE representation

$$
f(\mathbf{x})=\sum f_{i} \phi_{i}(\mathbf{x})
$$

Then

$$
I(f)=\frac{1}{2} \sum_{i j} f_{i} f_{j} \underbrace{\int \nabla \phi_{i} \cdot \nabla \phi_{j}}_{\text {global stiffness } K_{i j}}+\sum_{i} f_{i} \underbrace{\int \rho \phi_{i}}_{\text {forcing } r_{i}}
$$

Minimise over f_{i}

$$
K_{i j} f_{j}+r_{i}=0 .
$$

With these f_{j}, the f satisfies

$$
-\int \nabla f \cdot \nabla \phi_{i}=\int \rho \phi_{i} \quad \text { for all } i,
$$

i.e. satisfy PDE in all (finite) ϕ_{i} directions.

The weak formulation of the PDE (f can be non- C^{2})

Details in 1D

$$
\frac{d^{2} f}{d x^{2}}=\rho \quad \text { in } a<x<b, \quad \text { with } f(a)=A \text { and } f(b)=B
$$ where $\rho(x), A$ and B given.

Details in 1D

$$
\frac{d^{2} f}{d x^{2}}=\rho \quad \text { in } a<x<b, \quad \text { with } f(a)=A \text { and } f(b)=B
$$

where $\rho(x), A$ and B given.
Divide $[a, b]$ into N equal segments $h=(b-a) / N$.

Details in 1D

$$
\frac{d^{2} f}{d x^{2}}=\rho \quad \text { in } a<x<b, \quad \text { with } f(a)=A \text { and } f(b)=B
$$

where $\rho(x), A$ and B given.
Divide $[a, b]$ into N equal segments $h=(b-a) / N$.
Use linear finite elements with basis functions

Details in 1D

$$
\frac{d^{2} f}{d x^{2}}=\rho \quad \text { in } a<x<b, \quad \text { with } f(a)=A \text { and } f(b)=B
$$

where $\rho(x), A$ and B given.
Divide $[a, b]$ into N equal segments $h=(b-a) / N$.
Use linear finite elements with basis functions

Unknown $f(x)$ represented (BCs built in)

$$
f(x)=A \phi_{0}(x)+B \phi_{N}(x)+\sum_{i=1}^{N-1} f_{i} \phi_{i}(x)
$$

more details in 1D

At interior pts

$$
K_{i j}=\int \nabla \phi_{i} \cdot \nabla \phi_{j}= \begin{cases}2 / h & \text { if } i=j \\ -1 / h & \text { if } i=j \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\text { by } \nabla \phi_{i}=0,+1 / h,-1 / h, 0
$$

more details in 1D

At interior pts

$$
K_{i j}=\int \nabla \phi_{i} \cdot \nabla \phi_{j}= \begin{cases}2 / h & \text { if } i=j \\ -1 / h & \text { if } i=j \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

by $\nabla \phi_{i}=0,+1 / h,-1 / h, 0$
Take given $\rho(x)$ to be piecewise constant, then forcing

$$
r_{i}=\int \rho(x) \phi_{i}=h \rho_{i}
$$

more details in 1D

At interior pts

$$
K_{i j}=\int \nabla \phi_{i} \cdot \nabla \phi_{j}= \begin{cases}2 / h & \text { if } i=j \\ -1 / h & \text { if } i=j \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

by $\nabla \phi_{i}=0,+1 / h,-1 / h, 0$
Take given $\rho(x)$ to be piecewise constant, then forcing

$$
r_{i}=\int \rho(x) \phi_{i}=h \rho_{i}
$$

So equation governing unknown amplitudes f_{i} becomes

$$
\frac{1}{h}\left(-f_{i-1}+2 f_{i}-f_{i+1}\right)+h \rho_{i}=0 \quad \text { for } i=1,2, \ldots, N-1
$$

more details in 1D

At interior pts

$$
K_{i j}=\int \nabla \phi_{i} \cdot \nabla \phi_{j}= \begin{cases}2 / h & \text { if } i=j \\ -1 / h & \text { if } i=j \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

by $\nabla \phi_{i}=0,+1 / h,-1 / h, 0$
Take given $\rho(x)$ to be piecewise constant, then forcing

$$
r_{i}=\int \rho(x) \phi_{i}=h \rho_{i}
$$

So equation governing unknown amplitudes f_{i} becomes

$$
\frac{1}{h}\left(-f_{i-1}+2 f_{i}-f_{i+1}\right)+h \rho_{i}=0 \quad \text { for } i=1,2, \ldots, N-1
$$

- same for the point values in the finite difference approach.

more details in 1D

Remark If evaluate r_{i} more accurately

$$
r_{i}=\int \rho(x) \phi_{i}(x)=\rho_{i}+\frac{h^{3}}{12} \rho_{i}^{\prime \prime}+O\left(h^{5}\right)
$$

So obtain f_{i} to $O\left(h^{4}\right)$.

more details in 1D

Remark If evaluate r_{i} more accurately

$$
r_{i}=\int \rho(x) \phi_{i}(x)=\rho_{i}+\frac{h^{3}}{12} \rho_{i}^{\prime \prime}+O\left(h^{5}\right)
$$

So obtain f_{i} to $O\left(h^{4}\right)$.
Yet $f(x)$ still only $O\left(h^{2}\right)$ in interior of elements.

more details in 1D

Remark If evaluate r_{i} more accurately

$$
r_{i}=\int \rho(x) \phi_{i}(x)=\rho_{i}+\frac{h^{3}}{12} \rho_{i}^{\prime \prime}+O\left(h^{5}\right)
$$

So obtain f_{i} to $O\left(h^{4}\right)$.
Yet $f(x)$ still only $O\left(h^{2}\right)$ in interior of elements.
Remark For non-equispaced intervals, obtain

$$
\frac{1}{h_{i-\frac{1}{2}}}\left(-f_{i-1}+f_{i}\right)+\frac{1}{h_{i+\frac{1}{2}}}\left(f_{i}-f_{i+1}\right)+\frac{h_{i-\frac{1}{2}}+h_{i+\frac{1}{2}}}{2} \rho_{i}=0 .
$$

more details in 1D

Remark If evaluate r_{i} more accurately

$$
r_{i}=\int \rho(x) \phi_{i}(x)=\rho_{i}+\frac{h^{3}}{12} \rho_{i}^{\prime \prime}+O\left(h^{5}\right)
$$

So obtain f_{i} to $O\left(h^{4}\right)$.
Yet $f(x)$ still only $O\left(h^{2}\right)$ in interior of elements.
Remark For non-equispaced intervals, obtain

$$
\frac{1}{h_{i-\frac{1}{2}}}\left(-f_{i-1}+f_{i}\right)+\frac{1}{h_{i+\frac{1}{2}}}\left(f_{i}-f_{i+1}\right)+\frac{h_{i-\frac{1}{2}}+h_{i+\frac{1}{2}}}{2} \rho_{i}=0 .
$$

i.e. FE approach naturally conservative.

