Fast Poisson Solvers

- Multigrid
- Fast Fourier Transforms
- Domain Decomposition
- Fast Multipoles

Multigrid

Here for 2D, Finite Differences, $N \times N$ square, $N=2^{m}$.

- Direct inversion of $N^{2} \times N^{2}$ matrix $\rightarrow \frac{1}{3} N^{6}$ operations
- Gauss-Seidel N^{2} iterations $\rightarrow N^{4}$ operations
- Successive-Over-Relaxtion N iterations $\rightarrow N^{3}$ operations
- Multigrid $\rightarrow N^{2}$ operations.

Problem with Gauss-Seidel: slow diffusion across grid of longwave errors, shortwave errors diffuse rapidly Hence tackle longwave errors on a faster coarse grid

Coarsest grid $\Delta x=\frac{1}{2}$, one interior point
Finest grid $\Delta x=\frac{1}{2^{m}},\left(2^{m}-1\right)^{2}$ interior points

Multigrid - sequence of problems

Sequence of Poisson problems

$$
A_{k} x_{k}=b_{k}
$$

for grids $k=m$, the finest, to $k=1$, the coarsest.
Make several V-cycles
Each cycle starts at the finest, descends one level at a time to the coarsest and then ascends back to the finest.

For the first cycle, start iteration with $x_{m}=0$.
For subsequent cycles, start with x_{m} from previous V-cycle.

V-cycle, the descent

Starting with $k=m$

- Make a couple of Gauss-Seidel iterations of $A_{k} x_{k}=b_{k}$.
- Produces $x_{k}^{\text {approx }}$. Store for later use
- Calculate residue

$$
\operatorname{res}_{k}=b_{k}-A_{k} x_{k}^{\text {approx }}
$$

- Coarsen residue for forcing on the next coarser grid

$$
b_{k-1}=C_{k} \operatorname{res}_{k} \quad \text { where } \quad C_{k}=\frac{1}{16}\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right)
$$

- Store b_{k-1} for later use
- Zero x_{k-1} for starting iterations
- To courser grid: $k \rightarrow k-1$
- If $k>1$ go to the top of this list

End descent on coursest grid ($k=1$) with just one internal point, so $A_{1} x_{1}=b_{1}$ is one equation in one unknown, solved exactly.

V-cycle, the ascent

Starting with $k=2$.

- Courser solution x_{k-1} interpolated to finer grid

$$
x_{k}^{\text {correction }}=I_{k} x_{k-1} \quad \text { where } \quad I_{k}=\frac{1}{4}\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right)
$$

- Add this to stored $x_{k}^{\text {approx }}$ from descent

$$
x_{k}^{\text {better approx }}=x_{k}^{\text {approx }}+x_{k}^{\text {correction }}
$$

- Make a couple of Gauss-Seidel iterations of $A_{k} x_{k}=b_{k}$ starting from $x_{k}^{\text {better approx }}$, using stored b_{k}
- To finer grid: $k \rightarrow k+1$
- If $k<m$ go to top of this list

End ascent with x_{m}
Multigrid not: first solve coursest Poisson, then interpolate for starting finer. Coarsening residue gives different forcing

Multigrid - costs

Solve on 256×256 grid

$$
\nabla^{2} \psi=-2 \pi^{2} \sin (\pi x) \sin (\pi y)
$$

Residue vs \#V-cycles $\times \# \mathrm{GS}$ iterations

From top, GS iterations $=1,3,2$

Error reduces by 10 with 2 GS iterations at each level per V-cycle $8 N^{2}$ cost per V-cycle
Hence for 10^{-4} accuracy, cost is $32 N^{2}$ of $2 N^{3}$ by SOR

Fast Fourier Transforms

See spectral methods for details of making fast transform
Poisson problem trivial in Fourier space. Cost in transforms.
For $N \times N$ problem in 2D, there are N^{2} Fourier amplitudes.

- Simple calculation of amplitudes cost N^{4}.
- Orszag speedup gives N^{3}.
- Fast Fourier Transform reduces to $N^{2} \ln N$

For 3D channel flow, FT in 2 periodic directions, FD in 3rd Invert FD tridiagonal $\rightarrow \operatorname{cost} N^{3} \ln N$

Domain decompostion

Good for complex geometry, very large problems - reduces memory requirements, FE and FD, parallelisable

- Divide domain into many sub-domains
- For each sub-domain, identify internal points which only involve internal variables x and boundary variables y.
- Solve internal variables x in terms of boundary variables y
- Solve reduced 'Schur complement' for boundary variables y.

Domain decomposition

For Poisson problem $A x=b$, and K subdomains, internal variables $x_{1}, x_{2}, \ldots, x_{K}$ boundary variables y

Internal problems

$$
A_{k} x_{k}+B_{k} y=b_{k}
$$

Boundary problem

$$
C_{1} x_{1}+C_{2} x_{2}+\ldots+C_{K} x_{K}+D y=b_{0}
$$

i.e.

$$
\left(\begin{array}{ccccc}
A_{1} & & & & B_{1} \\
& A_{2} & & & B_{2} \\
\vdots & \vdots & \ddots & & \vdots \\
& & & A_{K} & B_{K} \\
C_{1} & C_{2} & \cdots & C_{K} & D
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{K} \\
y
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{K} \\
b_{0}
\end{array}\right)
$$

Domain decomposition

Solution of internal problems, parallelisable, small memory each

$$
x_{k}=A_{k}^{-1}\left(b_{k}-B_{k} y\right)
$$

Hence problem for boundary variables
$\left(D-C_{1} A_{1}^{-1} B_{1}-\cdots-C_{K} A_{K}^{-1} B_{K}\right) y=b_{0}-C_{1} A_{1}^{-1} b_{1}-\cdots-C_{K} A_{K}^{-1} b_{K}$.
If using direct LU inversion

- $N \times N$, full domain costs N^{6}
- K subdomains, cost N^{6} / K^{3} per subdomain $+N^{3} K^{3 / 2}$ boundary
- e.g. $N=100, K=25$: full 10^{12}, DD parallel 10^{9} operations
- $N \times N \times N$, full domain costs N^{9}
- K subdomains, cost N^{9} / K^{3} per subdomain $+N^{6} K$ boundary
- e.g. $N=100, K=27$: full 10^{18}, DD parallel 10^{14} operations

Fast Multipole Method

For long range interations (potential flow or Stokes flow) between N point-particles seems N^{2} problem

Clustering effect of far particles (Barnes-Hut) gives $N \ln N$
Making clusters multipoles + polynomial local effects (Greengard-Rokhlin) gives N

Here in 2D for

$$
w\left(z_{i}\right)=\sum_{j \neq i}^{N} q_{j} \ln \left(z_{i}-z_{j}\right)
$$

Trees, roots and leaves

Hierarchy of domains: divide initial square box into 4 equal squares; divide each sub-square into 4;
continue through $\operatorname{In}_{4} N$ levels, so on average only one in smallest.
Some smallest will be empty, some contain more than one.
Tree structure: at any level, smaller box within is a 'child', larger box which contains it is the 'parent'.
Top of tree is 'root'.
Once branch contains no particle stop subdivision, Smallest non-empty box down a branch is a 'leaf'.

Barnes-Hut algorithm

Upward pass from leaves to root, one level at a time

- Sum charges q_{c} to charge of parent $q_{p}=\sum q_{c}$.
- Find center of mass of charges $z_{p}=\sum z_{c} q_{c} / \sum q_{c}$.

Downward pass for each particle, starting one below root

- If box is far, then contribution from cluster
- If box is not far and not end, go down a level
- If box is not far and end, sum contributions of individual particles

A box which is not adjacent is far.
Cost in 2D is $27 N \ln _{4} N$, beats N^{2} if $N>200$
Cost in 3 D is $189 N \ln _{8} N$, beats N^{2} if $N>2000$

Fast Multipoles - upward pass

Far shifts of point charge at z_{i} to multipoles about center z_{c}

$$
\ln \left(z-z_{i}\right)=\ln \left(z-z_{c}\right)+\sum_{r=1} \frac{\left(z_{c}-z_{i}\right)^{r}}{r\left(z-z_{c}\right)^{r}}
$$

Similary shift multipole at z_{i}

$$
\frac{1}{\left(z-z_{i}\right)^{m}}=\sum_{r=0} b_{r}^{m} \frac{\left(z_{c}-z_{i}\right)^{r}}{\left(z-z_{c}\right)^{m+r}}
$$

where b_{r}^{m} is a binomial coefficient.
Upward pass from leaves to root

- Use far shifts to move multipoles of children to centre of parent

Fast Multipoles - downward pass

Local shift of polynomial variation centred on parent z_{p} to centred on child z_{c}

$$
\left(z-z_{p}\right)^{m}=\sum_{r=0}^{m} c_{r}^{m}\left(z-z_{c}\right)^{r}\left(z_{c}-z_{p}\right)^{m-r}
$$

where c_{r}^{m} is a binomial coefficient.
Local expansion about centre of child at z_{c} of multipole at z_{b}

$$
\frac{1}{\left(z-z_{b}\right)^{m}}=\sum_{r=0}^{\infty} b_{r}^{m} \frac{\left(z-z_{c}\right)^{r}}{\left(z_{c}-z_{b}\right)^{m+r}}
$$

Fast Multipoles - downward pass

Downward pass starting at root-2

- Box inherits from parent via local shift
- Plus local expansion input from 27 newly far boxes with parent-boxes adjacent to own parent
At lowest level
- Evaluate resulting field at each particle
- Add direct particle-particle from particle within own box and 8 adjacent boxes

Fast Multipoles

Errors from first multipole order not included $m_{\max }$, in 2D

$$
\text { Error } \leq\left(\frac{1}{2 \sqrt{2}}\right)^{m_{\max }+1}
$$

Need $m_{\max }=6$ for 10^{-3} accuracy $\left(m_{\max }=8\right.$ in 3 D$)$
Costs in 2D

$$
8 N+\frac{4}{3}\left(m_{\max }+1\right) N+36\left(m_{\max }+1\right)^{2} N
$$

So for 10^{-3} accuracy, need $N>10^{4}$ before faster than N^{2} direct particle-particle interactions

Costs in 3D

$$
26 N+m_{\max }^{2} N+189 m_{\max }^{4} N
$$

So for 10^{-3} accuracy, need $N>10^{6}$ before faster than N^{2} direct particle-particle interactions

