Spectral methods - a quick review

For very simple functions, C^{∞}
in very simple geometries, Cartesian

Spectral methods - a quick review

For very simple functions, C^{∞}
in very simple geometries, Cartesian
Remarkably accurate

Spectral methods - a quick review

For very simple functions, C^{∞}
in very simple geometries, Cartesian
Remarkably accurate

- error decreases like $e^{-k N}$

Spectral methods - a quick review

For very simple functions, C^{∞}
in very simple geometries, Cartesian
Remarkably accurate

- error decreases like $e^{-k N}$
- only 3 modes per wave for 1% accuracy cf FD 40 pts at $O\left(\Delta x^{2}\right), 20$ pts at $O\left(\Delta x^{4}\right)$

Spectral methods - a quick review

For very simple functions, C^{∞}
in very simple geometries, Cartesian
Remarkably accurate

- error decreases like $e^{-k N}$
- only 3 modes per wave for 1% accuracy cf FD 40 pts at $O\left(\Delta x^{2}\right), 20$ pts at $O\left(\Delta x^{4}\right)$

Differentiation exact to shortest mode

Spectral methods - a quick review

For very simple functions, C^{∞}
in very simple geometries, Cartesian
Remarkably accurate

- error decreases like $e^{-k N}$
- only 3 modes per wave for 1% accuracy
cf FD 40 pts at $O\left(\Delta x^{2}\right), 20$ pts at $O\left(\Delta x^{4}\right)$
Differentiation exact to shortest mode
Trivial Poisson solver

Spectral methods - a quick review

For very simple functions, C^{∞}
in very simple geometries, Cartesian
Remarkably accurate

- error decreases like $e^{-k N}$
- only 3 modes per wave for 1% accuracy cf FD 40 pts at $O\left(\Delta x^{2}\right), 20$ pts at $O\left(\Delta x^{4}\right)$

Differentiation exact to shortest mode
Trivial Poisson solver
time consuming transform and nonlinear terms

Spectral methods - a quick review

For very simple functions, C^{∞}
in very simple geometries, Cartesian
Remarkably accurate

- error decreases like $e^{-k N}$
- only 3 modes per wave for 1% accuracy
cf FD 40 pts at $O\left(\Delta x^{2}\right), 20$ pts at $O\left(\Delta x^{4}\right)$
Differentiation exact to shortest mode
Trivial Poisson solver
time consuming transform and nonlinear terms
Sometimes FAST transform + less modes needed \rightarrow competitive

Two ideas - as in FE

Spectral representation

$$
u(x, t)=\sum^{N} \hat{u}_{n}(t) \phi_{n}(x)
$$

with amplitudes $u_{n}(t)$ and basis functions $\phi_{n}(x)$, e.g. Fourier

Two ideas - as in FE

Spectral representation

$$
u(x, t)=\sum^{N} \hat{u}_{n}(t) \phi_{n}(x)
$$

with amplitudes $u_{n}(t)$ and basis functions $\phi_{n}(x)$, e.g. Fourier
Galerkin approximation "weighted residuals". For PDE

$$
A(u)=f
$$

require residue to be orthogonal to each ϕ_{m} :

$$
\left\langle A(u)-f, \phi_{m}\right\rangle=0 \quad \text { for } \quad m=1, \ldots, N
$$

Local vs Global

E.g. for Fourier

$$
u(x)=\int e^{i k x} \hat{u}(k) d k \quad \hat{u}(k)=\frac{1}{2 \pi} \int e^{-i k x} u(x) d x
$$

Local vs Global

E.g. for Fourier

$$
u(x)=\int e^{i k x} \hat{u}(k) d k \quad \hat{u}(k)=\frac{1}{2 \pi} \int e^{-i k x} u(x) d x
$$

Differentiation - global operator in real space

$$
\frac{\widehat{d u}}{d x}=i k \hat{u}(k) \quad \text { local in Fourier space }
$$

Local vs Global

E.g. for Fourier

$$
u(x)=\int e^{i k x} \hat{u}(k) d k \quad \hat{u}(k)=\frac{1}{2 \pi} \int e^{-i k x} u(x) d x
$$

Differentiation - global operator in real space

$$
\frac{\widehat{d u}}{d x}=i k \hat{u}(k) \quad \text { local in Fourier space }
$$

Exact to shortest mode, cf FD $f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 \Delta x}=0$ for $f_{i}=(-1)^{i}$.

Local vs Global

E.g. for Fourier

$$
u(x)=\int e^{i k x} \hat{u}(k) d k \quad \hat{u}(k)=\frac{1}{2 \pi} \int e^{-i k x} u(x) d x
$$

Differentiation - global operator in real space

$$
\frac{\widehat{d u}}{d x}=i k \hat{u}(k) \quad \text { local in Fourier space }
$$

Exact to shortest mode, cf FD $f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 \Delta x}=0$ for $f_{i}=(-1)^{i}$.
Poisson problem

$$
\begin{gathered}
\frac{d^{2} u}{d x^{2}}=\rho \quad \text { expensive global problem in real space } \\
-k^{2} \hat{u}=\hat{\rho} \quad \text { local in Fourier space }
\end{gathered}
$$

Local/Global continued

Nonlinear terms and spatially vary coefficients

$$
\begin{gathered}
u(x) v(x) \quad \text { local in real space } \\
\widehat{u v}(k)=\frac{1}{2 \pi} \int_{I+m=k} \hat{u}(I) \hat{v}(m) \quad \text { global in Fourier }
\end{gathered}
$$

Local/Global continued

Nonlinear terms and spatially vary coefficients

$$
\begin{gathered}
u(x) v(x) \quad \text { local in real space } \\
\widehat{u v}(k)=\frac{1}{2 \pi} \int_{I+m=k} \hat{u}(I) \hat{v}(m) \quad \text { global in Fourier }
\end{gathered}
$$

Numerically

$$
\text { local }=\text { cheap } \quad \text { global }=\text { expensive }
$$

Local/Global continued

Nonlinear terms and spatially vary coefficients

$$
\begin{gathered}
u(x) v(x) \quad \text { local in real space } \\
\widehat{u v}(k)=\frac{1}{2 \pi} \int_{I+m=k} \hat{u}(I) \hat{v}(m) \quad \text { global in Fourier }
\end{gathered}
$$

Numerically

$$
\text { local }=\text { cheap } \quad \text { global }=\text { expensive }
$$

Navier-Stokes has both local \& global in real or Fourier - need compromise

Pseudo-spectral

combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space evaluate derivatives and invert the Poisson problem.

Pseudo-spectral

combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space evaluate derivatives and invert the Poisson problem. Needs three transforms \rightarrow

Pseudo-spectral

combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space evaluate derivatives and invert the Poisson problem. Needs three transforms \rightarrow

Choose real points optimally.

Pseudo-spectral

combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space evaluate derivatives and invert the Poisson problem. Needs three transforms \rightarrow

Choose real points optimally.
Alternative method of satisfying PDE at collocation points rather than in Galerkin projection.

Choice of spectral basis function $\phi_{n}(x)$

1. complete
2. orthogonal for some weight w

$$
\left\langle\phi_{n} \phi_{m}\right\rangle=\int \phi_{n} \phi_{m} w(x) d x=N_{n} \delta_{n m}
$$

3. smooth
4. fast convergence
5. FAST transform
6. satisfy boundary conditions

Choice of spectral basis function $\phi_{n}(x)$

1. complete
2. orthogonal for some weight w

$$
\left\langle\phi_{n} \phi_{m}\right\rangle=\int \phi_{n} \phi_{m} w(x) d x=N_{n} \delta_{n m}
$$

3. smooth
4. fast convergence
5. FAST transform
6. satisfy boundary conditions

Strongly recommend

- Fully periodic \rightarrow Fourier, $e^{i n \theta}$
- Finite interval \rightarrow Chebyshev $T_{n}(\cos \theta)=\cos n \theta$

Chebyshev polynomials

$$
T_{n}(\cos \theta)=\cos n \theta
$$

Chebyshev polynomials

$$
T_{n}(\cos \theta)=\cos n \theta
$$

Orthogonal with weight $w(x)=1 / \sqrt{1-x^{2}}$

$$
\int_{-1}^{1} T_{m}(x) T_{n}(x) w(x) d x= \begin{cases}0 & \text { if } n \neq m \\ \pi & \text { if } n=m=0 \\ \frac{\pi}{2} & \text { if } n=m \neq 0\end{cases}
$$

Chebyshev polynomials

$$
T_{n}(\cos \theta)=\cos n \theta
$$

Orthogonal with weight $w(x)=1 / \sqrt{1-x^{2}}$

$$
\begin{aligned}
& \int_{-1}^{1} T_{m}(x) T_{n}(x) w(x) d x= \begin{cases}0 & \text { if } n \neq m \\
\pi & \text { if } n=m=0 \\
\frac{\pi}{2} & \text { if } n=m \neq 0\end{cases} \\
& T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{2}(x)=2 x^{2}-1 \\
& T_{3}(x)=4 x^{3}-3 x, \quad T_{4}(x)=8 x^{4}-8 x^{2}+1
\end{aligned}
$$

Chebyshev polynomials

$$
T_{n}(\cos \theta)=\cos n \theta
$$

Orthogonal with weight $w(x)=1 / \sqrt{1-x^{2}}$

$$
\begin{aligned}
& \int_{-1}^{1} T_{m}(x) T_{n}(x) w(x) d x= \begin{cases}0 & \text { if } n \neq m \\
\pi & \text { if } n=m=0 \\
\frac{\pi}{2} & \text { if } n=m \neq 0\end{cases} \\
& T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{2}(x)=2 x^{2}-1 \\
& T_{3}(x)=4 x^{3}-3 x, \quad T_{4}(x)=8 x^{4}-8 x^{2}+1
\end{aligned}
$$

$$
\begin{gathered}
\left(1-x^{2}\right) T_{n}^{\prime \prime}-x T_{n}^{\prime}+n^{2} T_{n}=0 \\
T_{n+1}=2 x T_{n}-T_{n-1} \\
2 T_{n}=\frac{1}{n+1} T_{n+1}^{\prime}-\frac{1}{n-1} T_{n-1}^{\prime}
\end{gathered}
$$

Fourier series

Fully periodic (really defined on a circle):

$$
f^{(k)}(0+)=f^{(k)}(2 \pi-) \quad \text { for all } k
$$

Fourier series

Fully periodic (really defined on a circle):

$$
f^{(k)}(0+)=f^{(k)}(2 \pi-) \quad \text { for all } k
$$

Then Fourier series

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}_{n} e^{i n \theta}
$$

with

$$
\hat{f}_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-i n \theta} d \theta
$$

Fourier series

Fully periodic (really defined on a circle):

$$
f^{(k)}(0+)=f^{(k)}(2 \pi-) \quad \text { for all } k
$$

Then Fourier series

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}_{n} e^{i n \theta}
$$

with

$$
\hat{f}_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-i n \theta} d \theta
$$

- awkward $\frac{1}{2} a_{0}$ if use sines and cosines.

Rates of convergence

If $f(\theta)$ has k-derivatives,

Rates of convergence

If $f(\theta)$ has k-derivatives, integrate by parts k times

$$
\hat{f}_{n}=\frac{1}{2 \pi} \frac{i^{k}}{n^{k}} \int_{0}^{2 \pi} f^{(k)}(\theta) e^{-i n \theta} d \theta
$$

Rates of convergence

If $f(\theta)$ has k-derivatives, integrate by parts k times

$$
\hat{f}_{n}=\frac{1}{2 \pi} \frac{i^{k}}{n^{k}} \int_{0}^{2 \pi} f^{(k)}(\theta) e^{-i n \theta} d \theta
$$

Thus series converges rapidly with $\hat{f}_{n}=o\left(n^{-k}\right)(R L L)$.

Rates of convergence

If $f(\theta)$ has k-derivatives, integrate by parts k times

$$
\hat{f}_{n}=\frac{1}{2 \pi} \frac{i^{k}}{n^{k}} \int_{0}^{2 \pi} f^{(k)}(\theta) e^{-i n \theta} d \theta
$$

Thus series converges rapidly with $\hat{f}_{n}=o\left(n^{-k}\right)(R L L)$.
If $f^{(k)}$ has one discontinuity, $\hat{f}_{n}=O\left(n^{-k-1}\right)$

Rates of convergence

If $f(\theta)$ has k-derivatives, integrate by parts k times

$$
\hat{f}_{n}=\frac{1}{2 \pi} \frac{i^{k}}{n^{k}} \int_{0}^{2 \pi} f^{(k)}(\theta) e^{-i n \theta} d \theta
$$

Thus series converges rapidly with $\hat{f}_{n}=o\left(n^{-k}\right)(R L L)$.
If $f^{(k)}$ has one discontinuity, $\hat{f}_{n}=O\left(n^{-k-1}\right)$
If $f \in C^{\infty}, \hat{f}_{n}=e^{-k n} \quad-$ exponential convergence

Rates of convergence

If $f(\theta)$ has k-derivatives, integrate by parts k times

$$
\hat{f}_{n}=\frac{1}{2 \pi} \frac{i^{k}}{n^{k}} \int_{0}^{2 \pi} f^{(k)}(\theta) e^{-i n \theta} d \theta
$$

Thus series converges rapidly with $\hat{f}_{n}=o\left(n^{-k}\right)(R L L)$.
If $f^{(k)}$ has one discontinuity, $\hat{f}_{n}=O\left(n^{-k-1}\right)$
If $f \in C^{\infty}, \hat{f}_{n}=e^{-k n} \quad$ - exponential convergence
E.g.

$$
f(\theta)=\sum_{m=-\infty}^{\infty} \frac{1}{(\theta-2 \pi m)^{2}+a^{2}} \quad \rightarrow \quad \hat{f}_{n}=\frac{\pi}{a} e^{-|n| a}
$$

Rates of convergence

If $f(\theta)$ has k-derivatives, integrate by parts k times

$$
\hat{f}_{n}=\frac{1}{2 \pi} \frac{i^{k}}{n^{k}} \int_{0}^{2 \pi} f^{(k)}(\theta) e^{-i n \theta} d \theta
$$

Thus series converges rapidly with $\hat{f}_{n}=o\left(n^{-k}\right)(R L L)$.
If $f^{(k)}$ has one discontinuity, $\hat{f}_{n}=O\left(n^{-k-1}\right)$
If $f \in C^{\infty}, \hat{f}_{n}=e^{-k n} \quad$ - exponential convergence
E.g.

$$
f(\theta)=\sum_{m=-\infty}^{\infty} \frac{1}{(\theta-2 \pi m)^{2}+a^{2}} \quad \rightarrow \quad \hat{f}_{n}=\frac{\pi}{a} e^{-|n| a}
$$

- convergence controlled by singularity of $f(\theta)$ in complex θ-plane

Gibbs phenomenon

Discontinuity \rightarrow poor $\sum \frac{ \pm 1}{n}$ convergence

Gibbs phenomenon

Discontinuity \rightarrow poor $\sum \frac{ \pm 1}{n}$ convergence

with point-wise convergence but 14% overshoot within $\frac{1}{N}$ of discontinuity

Finite interval

If $f^{(k)}(0+) \neq f^{(k)}(2 \pi-)$, then hidden discontinuity at boundary \rightarrow Gibbs problem, with slow convergence.

Finite interval

If $f^{(k)}(0+) \neq f^{(k)}(2 \pi-)$, then hidden discontinuity at boundary \rightarrow Gibbs problem, with slow convergence.

Use Chebyshev $T_{n}(x)=\cos n \theta$

Finite interval

If $f^{(k)}(0+) \neq f^{(k)}(2 \pi-)$, then hidden discontinuity at boundary \rightarrow Gibbs problem, with slow convergence.

Use Chebyshev $T_{n}(x)=\cos n \theta$
Stretch $x=\cos \theta$ makes odd derivatives vanish

$$
\tilde{f}(\theta)=f(\cos \theta) \quad \rightarrow \quad \frac{d \tilde{f}}{d \theta}=\sin f^{\prime}
$$

Finite interval

If $f^{(k)}(0+) \neq f^{(k)}(2 \pi-)$, then hidden discontinuity at boundary \rightarrow Gibbs problem, with slow convergence.

Use Chebyshev $T_{n}(x)=\cos n \theta$
Stretch $x=\cos \theta$ makes odd derivatives vanish

$$
\tilde{f}(\theta)=f(\cos \theta) \quad \rightarrow \quad \frac{d \tilde{f}}{d \theta}=\sin f^{\prime}
$$

Hence function $|x|$ on $-1<x<1$
becomes fully 2π periodic in $-\pi<\theta<0$

Discrete Fourier Transform (DFT)

Odd $N=2 M+1$.
Equi-spaced collocation points $\theta_{j}=\frac{2 \pi j}{N}$ for $j=1, \ldots, N$

Discrete Fourier Transform (DFT)

Odd $N=2 M+1$.
Equi-spaced collocation points $\theta_{j}=\frac{2 \pi j}{N}$ for $j=1, \ldots, N$
Discrete approximation \tilde{f}_{n} to Fourier \hat{f}_{n}

$$
\tilde{f}_{n}=\frac{1}{N} \sum_{j=1}^{N} f\left(\theta_{j}\right) e^{-i n \theta_{j}} \quad n=-M, \ldots, M
$$

Discrete Fourier Transform (DFT)

Odd $N=2 M+1$.
Equi-spaced collocation points $\theta_{j}=\frac{2 \pi j}{N}$ for $j=1, \ldots, N$
Discrete approximation \tilde{f}_{n} to Fourier \hat{f}_{n}

$$
\tilde{f}_{n}=\frac{1}{N} \sum_{j=1}^{N} f\left(\theta_{j}\right) e^{-i n \theta_{j}} \quad n=-M, \ldots, M
$$

Note for later: $e^{\left.-i(N+k) \theta_{j}\right)} \equiv e^{-i k \theta_{j}}$, so $f_{N+k}=f_{k}$

Discrete Fourier Transform (DFT)

Odd $N=2 M+1$.
Equi-spaced collocation points $\theta_{j}=\frac{2 \pi j}{N}$ for $j=1, \ldots, N$
Discrete approximation \tilde{f}_{n} to Fourier \hat{f}_{n}

$$
\tilde{f}_{n}=\frac{1}{N} \sum_{j=1}^{N} f\left(\theta_{j}\right) e^{-i n \theta_{j}} \quad n=-M, \ldots, M
$$

Note for later: $e^{\left.-i(N+k) \theta_{j}\right)} \equiv e^{-i k \theta_{j}}$, so $f_{N+k}=f_{k}$
Let $\omega=e^{i 2 \pi / N}$ the N-th root of 1 , so $\sum_{-M}^{M} \omega^{n}=0$

Discrete Fourier Transform (DFT)

Odd $N=2 M+1$.
Equi-spaced collocation points $\theta_{j}=\frac{2 \pi j}{N}$ for $j=1, \ldots, N$
Discrete approximation \tilde{f}_{n} to Fourier \hat{f}_{n}

$$
\tilde{f}_{n}=\frac{1}{N} \sum_{j=1}^{N} f\left(\theta_{j}\right) e^{-i n \theta_{j}} \quad n=-M, \ldots, M
$$

Note for later: $e^{\left.-i(N+k) \theta_{j}\right)} \equiv e^{-i k \theta_{j}}$, so $f_{N+k}=f_{k}$
Let $\omega=e^{i 2 \pi / N}$ the N-th root of 1 , so $\sum_{-M}^{M} \omega^{n}=0$
Then

$$
\begin{aligned}
\sum_{n=-M}^{M} \tilde{f}_{n} e^{i n \theta} & =\sum_{j=1}^{N} f\left(\theta_{j}\right)\left[\frac{1}{N} \sum_{n=-M}^{M} e^{i n\left(\theta-\theta_{j}\right)}=\left\{\begin{array}{ll}
1 & \text { if } \theta=\theta_{j} \\
0 & \text { if } \theta=\theta_{k} \neq \theta_{j}
\end{array}\right]\right. \\
& =f\left(\theta_{j}\right) \quad \text { if } \theta=\theta_{j}
\end{aligned}
$$

Discrete Fourier Transform (DFT)

Odd $N=2 M+1$.
Equi-spaced collocation points $\theta_{j}=\frac{2 \pi j}{N}$ for $j=1, \ldots, N$
Discrete approximation \tilde{f}_{n} to Fourier \hat{f}_{n}

$$
\tilde{f}_{n}=\frac{1}{N} \sum_{j=1}^{N} f\left(\theta_{j}\right) e^{-i n \theta_{j}} \quad n=-M, \ldots, M
$$

Note for later: $e^{\left.-i(N+k) \theta_{j}\right)} \equiv e^{-i k \theta_{j}}$, so $f_{N+k}=f_{k}$
Let $\omega=e^{i 2 \pi / N}$ the N-th root of 1 , so $\sum_{-M}^{M} \omega^{n}=0$
Then

$$
\begin{aligned}
\sum_{n=-M}^{M} \tilde{f}_{n} e^{i n \theta} & =\sum_{j=1}^{N} f\left(\theta_{j}\right)\left[\frac{1}{N} \sum_{n=-M}^{M} e^{i n\left(\theta-\theta_{j}\right)}=\left\{\begin{array}{ll}
1 & \text { if } \theta=\theta_{j} \\
0 & \text { if } \theta=\theta_{k} \neq \theta_{j}
\end{array}\right]\right. \\
& =f\left(\theta_{j}\right) \quad \text { if } \theta=\theta_{j}
\end{aligned}
$$

Runge phenomenon

Fitting polynomial through equi-spaced points can be badly wrong in between fitting points.

Runge phenomenon

Fitting polynomial through equi-spaced points can be badly wrong in between fitting points.

However DFT well behaved,

Runge phenomenon

Fitting polynomial through equi-spaced points can be badly wrong in between fitting points.

However DFT well behaved, because effectively Chebyshev polynomials fitted at points $x_{j}=\cos (\pi j / N)$ - crowed at ends.

Aliasing

- counter rotating wagon wheels in strobe light

High $(N+k)$ frequency, e.g. $g(\theta)=e^{i(N+k) \theta}$, appears in DFT to be erroneous low k frequency:

Aliasing

- counter rotating wagon wheels in strobe light

High $(N+k)$ frequency, e.g. $g(\theta)=e^{i(N+k) \theta}$, appears in DFT to be erroneous low k frequency:

$$
\tilde{g_{k}}=\frac{1}{N} \sum_{j=1}^{N} g\left(\theta_{j}\right) e^{-i k \theta_{j}}=1
$$

Aliasing

- counter rotating wagon wheels in strobe light

High $(N+k)$ frequency, e.g. $g(\theta)=e^{i(N+k) \theta}$, appears in DFT to be erroneous low k frequency:

$$
\tilde{g_{k}}=\frac{1}{N} \sum_{j=1}^{N} g\left(\theta_{j}\right) e^{-i k \theta_{j}}=1
$$

E.g. $N=10$ equispaced points cannot distinguish between $\sin \theta$ and $-\sin 9 \theta$

De-aliasing

Aliasing makes high frequency tail
of exact Fourier modes \hat{f}_{n} in $n>M$
appear to DFT \tilde{f}_{n}
as low frequency modes at $-M+n$.

De-aliasing

Aliasing makes high frequency tail
of exact Fourier modes \hat{f}_{n} in $n>M$
appear to DFT \tilde{f}_{n}
as low frequency modes at $-M+n$.

De-alias: Chop spectrum to $-\frac{2}{3} M<n<\frac{2}{3} M$,

De-aliasing

Aliasing makes high frequency tail
of exact Fourier modes \hat{f}_{n} in $n>M$
appear to DFT \tilde{f}_{n}
as low frequency modes at $-M+n$.

De-alias: Chop spectrum to $-\frac{2}{3} M<n<\frac{2}{3} M$,
so nonlinear terms can produce new $\frac{2}{3} M<n<\frac{4}{3} M$

De-aliasing

Aliasing makes high frequency tail
of exact Fourier modes \hat{f}_{n} in $n>M$
appear to DFT \tilde{f}_{n}
as low frequency modes at $-M+n$.

De-alias: Chop spectrum to $-\frac{2}{3} M<n<\frac{2}{3} M$,
so nonlinear terms can produce new $\frac{2}{3} M<n<\frac{4}{3} M$
which are then chopped so as not transfer to low frequencies.

De-aliasing

Aliasing makes high frequency tail
of exact Fourier modes \hat{f}_{n} in $n>M$
appear to DFT \tilde{f}_{n}
as low frequency modes at $-M+n$.

De-alias: Chop spectrum to $-\frac{2}{3} M<n<\frac{2}{3} M$,
so nonlinear terms can produce new $\frac{2}{3} M<n<\frac{4}{3} M$
which are then chopped so as not transfer to low frequencies.
In 3D throw away $\frac{19}{27}$ of the modes.

Fast Fourier Transform

DFT calculation for $n=-\frac{1}{2} N, \ldots, \frac{1}{2} N$

$$
\tilde{f}_{n}=\sum_{j=1}^{N} f\left(\theta_{j}\right) \omega^{n j}, \quad \text { with } \theta_{j}=\frac{2 \pi j}{N} \text { and } \omega=e^{i \theta_{1}}
$$

looks like N coefficients \times sum of N terms $=N^{2}$ operations.

Fast Fourier Transform

DFT calculation for $n=-\frac{1}{2} N, \ldots, \frac{1}{2} N$

$$
\tilde{f}_{n}=\sum_{j=1}^{N} f\left(\theta_{j}\right) \omega^{n j}, \quad \text { with } \theta_{j}=\frac{2 \pi j}{N} \text { and } \omega=e^{i \theta_{1}}
$$

looks like N coefficients \times sum of N terms $=N^{2}$ operations.
But

$$
=\sum_{k=1}^{N / 2} f\left(\theta_{2 k}\right) \omega_{2}^{n k}+\omega^{-1} \sum_{k=1}^{N / 2} f\left(\theta_{2 k-1}\right) \omega_{2}^{n k} \quad \text { with } \omega_{2}=\omega^{2}
$$

Fast Fourier Transform

DFT calculation for $n=-\frac{1}{2} N, \ldots, \frac{1}{2} N$

$$
\tilde{f}_{n}=\sum_{j=1}^{N} f\left(\theta_{j}\right) \omega^{n j}, \quad \text { with } \theta_{j}=\frac{2 \pi j}{N} \text { and } \omega=e^{i \theta_{1}}
$$

looks like N coefficients \times sum of N terms $=N^{2}$ operations.
But

$$
=\sum_{k=1}^{N / 2} f\left(\theta_{2 k}\right) \omega_{2}^{n k}+\omega^{-1} \sum_{k=1}^{N / 2} f\left(\theta_{2 k-1}\right) \omega_{2}^{n k} \quad \text { with } \omega_{2}=\omega^{2}
$$

which is 2 lots of DFT on $\frac{1}{2} N$ points $2\left(\frac{1}{2} N\right)^{2}=\frac{1}{2} N^{2}$ operations

Fast Fourier Transform

DFT calculation for $n=-\frac{1}{2} N, \ldots, \frac{1}{2} N$

$$
\tilde{f}_{n}=\sum_{j=1}^{N} f\left(\theta_{j}\right) \omega^{n j}, \quad \text { with } \theta_{j}=\frac{2 \pi j}{N} \text { and } \omega=e^{i \theta_{1}}
$$

looks like N coefficients \times sum of N terms $=N^{2}$ operations.
But

$$
=\sum_{k=1}^{N / 2} f\left(\theta_{2 k}\right) \omega_{2}^{n k}+\omega^{-1} \sum_{k=1}^{N / 2} f\left(\theta_{2 k-1}\right) \omega_{2}^{n k} \quad \text { with } \omega_{2}=\omega^{2}
$$

which is 2 lots of DFT on $\frac{1}{2} N$ points $2\left(\frac{1}{2} N\right)^{2}=\frac{1}{2} N^{2}$ operations If $N=2^{K}$, can half K times $\rightarrow N \ln _{2} N$ operations.

Fast Fourier Transform

DFT calculation for $n=-\frac{1}{2} N, \ldots, \frac{1}{2} N$

$$
\tilde{f}_{n}=\sum_{j=1}^{N} f\left(\theta_{j}\right) \omega^{n j}, \quad \text { with } \theta_{j}=\frac{2 \pi j}{N} \text { and } \omega=e^{i \theta_{1}}
$$

looks like N coefficients \times sum of N terms $=N^{2}$ operations.
But

$$
=\sum_{k=1}^{N / 2} f\left(\theta_{2 k}\right) \omega_{2}^{n k}+\omega^{-1} \sum_{k=1}^{N / 2} f\left(\theta_{2 k-1}\right) \omega_{2}^{n k} \quad \text { with } \omega_{2}=\omega^{2}
$$

which is 2 lots of DFT on $\frac{1}{2} N$ points $2\left(\frac{1}{2} N\right)^{2}=\frac{1}{2} N^{2}$ operations If $N=2^{K}$, can half K times $\rightarrow N \ln _{2} N$ operations.

Program: identify even/odd at each 2^{n}-level $n=1, \ldots, K$, i.e. binary representation of j

Orzsag speed up in two dimensions

$$
\sum_{m=1}^{M} \sum_{n=1}^{N} a_{m n} \phi_{m}\left(x_{i}\right) \phi_{n}\left(y_{j}\right)
$$

looks line $M N$ terms to sum at $M N$ points $\left(x_{i}, y_{j}\right)$

Orzsag speed up in two dimensions

$$
\sum_{m=1}^{M} \sum_{n=1}^{N} a_{m n} \phi_{m}\left(x_{i}\right) \phi_{n}\left(y_{j}\right)
$$

looks line $M N$ terms to sum at $M N$ points $\left(x_{i}, y_{j}\right)$
But

$$
\sum_{m=1}^{M} a_{m n} \phi_{m}\left(x_{i}\right)
$$

is common to each $\left(x_{i}, *\right)$ point, \rightarrow save factor of M operations.

Orzsag speed up in two dimensions

$$
\sum_{m=1}^{M} \sum_{n=1}^{N} a_{m n} \phi_{m}\left(x_{i}\right) \phi_{n}\left(y_{j}\right)
$$

looks line $M N$ terms to sum at $M N$ points $\left(x_{i}, y_{j}\right)$
But

$$
\sum_{m=1}^{M} a_{m n} \phi_{m}\left(x_{i}\right)
$$

is common to each $\left(x_{i}, *\right)$ point, \rightarrow save factor of M operations.
Also FFT speed up

Differential Matrix

To differentiate data with exponential accuracy

$$
f\left(\theta_{j}\right) \xrightarrow{\text { transform }} \tilde{f}_{n} \xrightarrow{\text { differentiate }} n \tilde{f}_{n} \stackrel{\text { transform }}{\longrightarrow} f^{\prime}\left(\theta_{j}\right)
$$

Differential Matrix

To differentiate data with exponential accuracy

$$
f\left(\theta_{j}\right) \stackrel{\text { transform }}{\longrightarrow} \tilde{f}_{n} \stackrel{\text { differentiate }}{\longrightarrow} n \tilde{f}_{n} \xrightarrow{\text { transform }} f^{\prime}\left(\theta_{j}\right)
$$

But transforming is a linear sum, so

$$
f^{\prime}\left(\theta_{i}\right)=D_{i j} f\left(\theta_{i}\right) \quad \text { with differentiation matrix } D
$$

Differential Matrix

To differentiate data with exponential accuracy

$$
f\left(\theta_{j}\right) \stackrel{\text { transform }}{\longrightarrow} \tilde{f}_{n} \stackrel{\text { differentiate }}{\longrightarrow} n \tilde{f}_{n} \xrightarrow{\text { transform }} f^{\prime}\left(\theta_{j}\right)
$$

But transforming is a linear sum, so
$f^{\prime}\left(\theta_{i}\right)=D_{i j} f\left(\theta_{i}\right) \quad$ with differentiation matrix D
FFT factorisation can make $N \ln N$ instead of N^{2}

Differential Matrix

To differentiate data with exponential accuracy

$$
f\left(\theta_{j}\right) \xrightarrow{\text { transform }} \tilde{f}_{n} \xrightarrow{\text { differentiate }} n \tilde{f}_{n} \xrightarrow{\text { transform }} f^{\prime}\left(\theta_{j}\right)
$$

But transforming is a linear sum, so

$$
f^{\prime}\left(\theta_{i}\right)=D_{i j} f\left(\theta_{i}\right) \quad \text { with differentiation matrix } D
$$

FFT factorisation can make $N \ln N$ instead of N^{2}

$$
\begin{aligned}
2 \text { pts } \rightarrow 2 \text { nd order in FD } \rightarrow \text { error } & N^{-2} \\
4 \text { pts } \rightarrow 4 \text { th order in FD } \rightarrow \text { error } & N^{-4} \\
\text { Npts } \rightarrow & \rightarrow \text { error }
\end{aligned} N^{-N}
$$

Differential Matrix

To differentiate data with exponential accuracy

$$
f\left(\theta_{j}\right) \xrightarrow{\text { transform }} \tilde{f}_{n} \xrightarrow{\text { differentiate }} n \tilde{f}_{n} \xrightarrow{\text { transform }} f^{\prime}\left(\theta_{j}\right)
$$

But transforming is a linear sum, so

$$
f^{\prime}\left(\theta_{i}\right)=D_{i j} f\left(\theta_{i}\right) \quad \text { with differentiation matrix } D
$$

FFT factorisation can make $N \ln N$ instead of N^{2}

$$
\begin{aligned}
2 \text { pts } \rightarrow 2 \text { nd order in FD } \rightarrow \text { error } & N^{-2} \\
4 \text { pts } \rightarrow 4 \text { th order in FD } \rightarrow \text { error } & N^{-4} \\
\text { Npts } \rightarrow & \rightarrow \text { error }
\end{aligned} N^{-N}
$$

$N B D^{(2)} \neq D D$

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Fourier transform

$$
\begin{gathered}
i \mathbf{k} \cdot \hat{\mathbf{u}}=0 \\
\frac{\partial \hat{\mathbf{u}}}{\partial t}+\widehat{\mathbf{u} \cdot \nabla \mathbf{u}}=-i \mathbf{k} \hat{p}-\nu k^{2} \hat{\mathbf{u}}
\end{gathered}
$$

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Fourier transform

$$
\begin{gathered}
i \mathbf{k} \cdot \hat{\mathbf{u}}=0 \\
\frac{\partial \hat{\mathbf{u}}}{\partial t}+\widehat{\mathbf{u} \cdot \nabla \mathbf{u}}=-i \mathbf{k} \hat{p}-\nu k^{2} \hat{\mathbf{u}}
\end{gathered}
$$

Eliminate pressure

$$
\frac{\partial \hat{\mathbf{u}}}{\partial t}=-\left(\mathbf{I}-\frac{\mathbf{k k}}{k^{2}}\right) \cdot \widehat{\mathbf{u} \cdot \nabla \mathbf{u}}-\nu k^{2} \hat{\mathbf{u}}
$$

Navier-Stokes

$$
\begin{gathered}
\nabla \cdot \mathbf{u}=0 \\
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nu \nabla^{2} \mathbf{u}
\end{gathered}
$$

Fourier transform

$$
\begin{gathered}
i \mathbf{k} \cdot \hat{\mathbf{u}}=0 \\
\frac{\partial \hat{\mathbf{u}}}{\partial t}+\widehat{\mathbf{u} \cdot \nabla \mathbf{u}}=-i \mathbf{k} \hat{p}-\nu k^{2} \hat{\mathbf{u}}
\end{gathered}
$$

Eliminate pressure

$$
\frac{\partial \hat{\mathbf{u}}}{\partial t}=-\left(\mathbf{I}-\frac{\mathbf{k k}}{k^{2}}\right) \cdot \widehat{\mathbf{u} \cdot \nabla \mathbf{u}}-\nu k^{2} \hat{\mathbf{u}}
$$

with $\widehat{\mathbf{u} \cdot \nabla \mathbf{u}}$ by pseudo-spectral real space evaluation

Boundary conditions

If homogeneous $B C s$, recombine to satisfy $B C s$

$$
\phi_{2 n}=T_{2 n}-T_{0} \quad \text { and } \quad \phi_{2 n-1}=T_{2 n-1}-T_{1}
$$

Boundary conditions

If homogeneous $B C s$, recombine to satisfy $B C s$

$$
\phi_{2 n}=T_{2 n}-T_{0} \quad \text { and } \quad \phi_{2 n-1}=T_{2 n-1}-T_{1}
$$

OR impose BC ("tau" method)

$$
\sum_{n-1}^{N} \tilde{f}_{n} T_{n}(\pm 1)=\mathrm{BC}
$$

Boundary conditions

If homogeneous $B C s$, recombine to satisfy $B C s$

$$
\phi_{2 n}=T_{2 n}-T_{0} \quad \text { and } \quad \phi_{2 n-1}=T_{2 n-1}-T_{1}
$$

OR impose BC ("tau" method)

$$
\sum_{n-1}^{N} \tilde{f}_{n} T_{n}(\pm 1)=\mathrm{BC}
$$

Crowding of points \rightarrow time-step limitation

$$
\text { For } \quad u_{t}=D u_{x x} \quad \text { on }[-1,1]
$$

Boundary conditions

If homogeneous $B C s$, recombine to satisfy $B C s$

$$
\phi_{2 n}=T_{2 n}-T_{0} \quad \text { and } \quad \phi_{2 n-1}=T_{2 n-1}-T_{1}
$$

OR impose BC ("tau" method)

$$
\sum_{n-1}^{N} \tilde{f}_{n} T_{n}(\pm 1)=\mathrm{BC}
$$

Crowding of points \rightarrow time-step limitation

$$
\text { For } \quad u_{t}=D u_{x x} \quad \text { on }[-1,1]
$$

$1 / N^{2}$ crowding of $x_{j}=\cos \theta_{j}$ near ± 1
\rightarrow stability if $\Delta t<D / N^{4}$

Bridging the gap

Local
Global

Finite Elements FE h^{p}
Finite Differences
point data

Spectral
whole interval

Bridging the gap

Local
Global

Finite Elements FE h^{p}
Finite Differences
point data

Spectral
whole interval

Splines Wavelets
global points local waves

