Time integration

Issues

- Accuracy
- Cost
- CPU $=$ cost $/$ step $\times \#$ steps,
- storage,
- programmer's time
- Stability

Spatial discretisation (typically FE or Spectral)

$$
\rightarrow \quad u_{t}=F(u, t)
$$

- Treat by black-box time-integrator
- OR recognise spatial structure (typically only for FD)

Stability in time

1. Unstable algorithm - bad!

- numerics blow up all Δt, usually rapidly, often oscillates

2. Conditionally stable - normal

- stable if Δt not too big

3. Unconditionally stable - slightly dangerous

- stable all Δt, inaccurate large Δt
'Stable' = ?
(i) numerics decays, even if physics does not
(ii) numerics do not blow up for all t
(iii) numerics do not blow up much, i.e. converge fixed t e.g. need $\Delta t<a+b / t$

Lax equivalence theorem

For a well-posed linear problem,
a consistent approximation (local error $\rightarrow 0$ as $\Delta t \rightarrow 0$) converges to the correct solution
if and only if the algorithm is stable

Stiffness, \quad for $u_{t}=F(u, t)$

How do small disturbances grow/decay?
Linearise + freeze coefficients - occasionally wrong

$$
\delta u_{t}=F^{\prime}\left(u_{0}, t_{0}\right) \delta u
$$

Find eigenvalues λ of $F^{\prime}\left(u_{0}, t_{0}\right)$
Stiff if $\lambda_{\max } \gg \lambda_{\min }, \quad$ typically by 10^{4}
Stability controlled by largest $|\lambda|$, need

$$
\Delta t<\frac{\text { const }}{|\lambda|_{\max }}
$$

- may represent boring time behaviour on fine scales

If so, use unconditionally stable algorithm with big Δt and inaccurate rending of boring fine details

Forward Euler - 1st order, explicit

For $u_{t}=\lambda u$

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=\lambda u^{n}
$$

Hence

$$
\begin{aligned}
u^{n+1} & =(1+\lambda \Delta t)^{n=t / \Delta t} u^{1} \\
& \rightarrow e^{\lambda t} u^{1} \quad \text { as } \Delta t \rightarrow 0
\end{aligned}
$$

Case λ real and negative: stable if $\Delta t<\frac{2}{|\lambda|}$

Forward Euler - 1st order, explicit

Case λ purely imaginary

$$
|1+\lambda \Delta t|=\left(1+|\lambda|^{2} \Delta t^{2}\right)^{1 / 2}>1 \quad \text { all } \Delta t
$$

so "unstable"

Now

$$
\left(1+|\lambda|^{2} \Delta t^{2}\right)^{t / 2 \Delta t} \quad \xrightarrow{\Delta t \rightarrow 0} \quad e^{\frac{1}{2}|\lambda|^{2} \Delta t t}
$$

i.e. does not blow up much (ϵ) if

$$
\Delta t<\frac{2 \ln \epsilon}{\left.\lambda\right|^{2} t}
$$

Backward Euler - 1st order, implicit

For $u_{t}=\lambda u$

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=\lambda u^{n+1}
$$

So

$$
u^{n}=\left(\frac{1}{1-\lambda \Delta t}\right)^{n} u_{0}
$$

Very stable just unstable in $|1-\lambda \Delta t|<1$
But inaccurate if Δt large
E.g. λ real and negative \& large $\Delta t=1 /|\lambda|$ gives

$$
u(t) \sim e^{\lambda t \ln 2} \quad \text { cf } \quad e^{\lambda t}
$$

Mid-point Euler - 2nd order, explicit

Simple to recode the first-order Forward Euler to make second-order

$$
\begin{aligned}
\frac{u^{*}-u^{n}}{\frac{1}{2} \Delta t} & =F\left(u^{n}, t_{n}\right) \\
\frac{u^{n+1}-u^{n}}{\Delta t} & =F\left(u^{*}, t_{n+\frac{1}{2}}\right)
\end{aligned}
$$

Same stability as Forward Euler

Crank-Nicolson - 2nd order implicit

For $u_{t}=\lambda u$

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=\lambda \frac{u^{n+1}+u^{n}}{2}
$$

NB: RHS uses unknown u^{n+1}, not a problem for this simple linear problem. Solution

$$
u^{n}=\left(\frac{1+\frac{1}{2} \lambda \Delta t}{1-\frac{1}{2} \lambda \Delta t}\right)^{n} u^{0}
$$

Case $\operatorname{Re}(\lambda)<0 \quad$ stable all Δt
Case λ imaginary amplitude correctly constant all Δt although phase drifts

Leap frog - 2nd order, explicit

$$
\frac{u^{n+1}-u^{n-1}}{2 \Delta t}=\lambda u^{n}
$$

Two-term recurrence relation

$$
u^{n+1}-2 \lambda \Delta t u^{n}-u^{n-1}=0
$$

has solutions $u^{n}=A \theta_{+}^{n}+B \theta_{-}^{n}$ with $\theta_{ \pm}=\lambda \Delta t \pm \sqrt{1+\lambda^{2} \Delta t^{2}}$
So

$$
u^{n} \sim e^{\lambda n \Delta t}+\epsilon(-1)^{n} e^{-\lambda n \Delta t}
$$

Spurious solution blows up if $\operatorname{Re}(\lambda)<0$
But stable for purely imaginary $\lambda \& \Delta t<1 /|\lambda|$

Runge-Kutta

E.g. standard 4th order RK, for $u_{t}=F(u, t)$

$$
\begin{aligned}
d u^{1} & =\Delta t F\left(u^{n}, t^{n}\right) \\
d u^{2} & =\Delta t F\left(u^{n}+\frac{1}{2} d u^{1}, t^{n}+\frac{1}{2} \Delta t\right) \\
d u^{3} & =\Delta t F\left(u^{n}+\frac{1}{2} d u^{2}, t^{n}+\frac{1}{2} \Delta t\right) \\
d u^{4} & =\Delta t F\left(u^{n}+1 d u^{3}, t^{n}+1 \Delta t\right) \\
u^{n+1} & =u^{n}+\frac{1}{6}\left(d u^{1}+2 d u^{2}+2 d u^{3}+d u^{4}\right)
\end{aligned}
$$

NB: 4 function calls per step - very expensive
Can vary Δt after each step - adaptive
Good stability, need $\Delta t \lesssim \frac{3}{|\lambda|}$

Error control for RK4

Take 2 steps of Δt from u^{n}

$$
u^{n+2}=A+2 b \Delta t^{5}+\ldots
$$

Take 1 step of $2 \Delta t$ from u^{n}

$$
u^{*}=A+b(2 \Delta t)^{5}+\ldots
$$

Extrapolating, 5th order estimate of answer

$$
\frac{16}{15} u^{n+2}-\frac{1}{15} u^{*}
$$

Estimate of error

$$
\frac{1}{30}\left(u^{*}-u^{n+2}\right)
$$

- decide if to decrease/increase Δt

Implicit Runge-Kutta

$$
\begin{aligned}
& d u^{1}=\Delta t F\left(u^{n}+\frac{1}{4} d u^{1}+\left(\frac{1}{4}-\frac{\sqrt{3}}{6}\right) d u^{2}, t^{n}+\left(\frac{4}{1}-\frac{\sqrt{3}}{6}\right) \Delta t\right) \\
& d u^{2}=\Delta t F\left(u^{n}+\left(\frac{1}{4}+\frac{\sqrt{3}}{6}\right) d u^{1}+\frac{1}{4} d u^{2}, t^{n}+\left(\frac{1}{4}+\frac{\sqrt{3}}{6}\right) \Delta t\right) \\
& u^{n+1}=u^{n}+\frac{1}{2} d u^{1}+\frac{1}{2} d u^{2}
\end{aligned}
$$

Iterate to find $d u^{1}$ and $d u^{2}$ - very expensive
Stable all Δt if $\operatorname{Re}(\lambda) \leq 0$

Multi-step methods - use information from previous steps

AB3 Adams-Bashforth, 3rd order, explicit

$$
u^{n+1}=u^{n}+\frac{\Delta t}{12}\left(23 F_{n}-16 F_{n-1}+5 F_{n-2}\right)
$$

AM4 Adams-Moulton, 4th order, implicit

$$
u^{n+1}=u^{n}+\frac{\Delta t}{24}\left(9 F_{n+1}+19 F_{n}-5 F_{n-1}+F_{n-2}\right)
$$

NB uses 1 function evaluation per step - good
NB difficult to start or change step size $\Delta t-$ bad
NB Stable $\Delta t \lesssim 1 /|\lambda|$
Predictor-corrector
AB3 sufficiently good estimate for u^{n+1} to use in AM4 F_{n+1}, but then 2 function evaluations per step

Sympletic integrators

For Hamiltonian (non-dissipative) systems

$$
\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}, \quad \dot{q}_{i}=\frac{\partial H}{\partial p_{i}}
$$

conserve H and projections of volume of phase-space NB Important for integration to long times.

Sympletic integrators have same conservations properties for a numerical approximation to the Hamiltonian $H^{\text {num }}(\Delta t)$
NB must keep Δt fixed
E.g. Störmer-Verlet (sort of leap-frog) - for molecular dynamics

$$
\begin{aligned}
p^{n+\frac{1}{2}} & =p^{n}+\frac{1}{2} \Delta t F\left(r^{n}\right) \\
r^{n+1} & =r^{n}+\Delta t \frac{1}{m} p^{n+\frac{1}{2}} \\
p^{n+1} & =p^{n+\frac{1}{2}}+\frac{1}{2} \Delta t F\left(r^{n+1}\right)
\end{aligned}
$$

Navier-Stokes - different methods for different terms

For $u_{t}+u u_{x}=u_{x x}$ (no pressure, yet)

$$
\begin{aligned}
\frac{u^{n+1}-u^{n}}{\Delta t}=- & \left(u u_{x}\right)^{n+\frac{1}{2}} \\
& +\frac{u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}+u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{2 \Delta x^{2}}
\end{aligned}
$$

implicit on diffusion for stability at boring fine scales
AB3 explicit on safe advection

$$
\left(u u_{x}\right)^{n+\frac{1}{2}}=\frac{1}{12}\left(23\left(u u_{x}\right)^{n-\frac{1}{2}}-16\left(u u_{x}\right)^{n-\frac{3}{2}}+5\left(u u_{x}\right)^{n-\frac{5}{2}}\right)
$$

Iserles Zig-Zag - 2nd order and sort of upwinding

$$
\left(u u_{x}\right)^{n+\frac{1}{2}}=\frac{u_{i}^{n+1}+u_{i}^{n}}{2}\left(\frac{u_{i+1}^{n+1}-u_{i}^{n+1}}{2 \Delta x}+\frac{u_{i}^{n}-u_{i-1}^{n}}{2 \Delta x}\right) \quad \text { if } \quad u_{i}^{n}>0
$$

Lagrangian methods in $\mathbf{u} \cdot \nabla \mathbf{u}$ dominant

Pressure update - 2nd order, exact projection to $\nabla \cdot \mathbf{u}=0$

Split time-step

$$
\frac{u^{*}-u^{n}}{\Delta t}=-\left(u u_{x}\right)^{n+\frac{1}{2}}-\nabla p^{n-\frac{1}{2}}+\nu \nabla^{2}\left(\frac{u^{*}+u^{n}}{2}\right)
$$

Projection

$$
u^{n+1}=u^{*}+\Delta t \nabla \phi^{n+1}
$$

with

$$
\nabla^{2} \phi^{n+1}=-\nabla \cdot u^{*} / \Delta t \quad \text { with } \mathrm{BC} \quad \Delta t \frac{\partial \phi^{n+1}}{\partial n}=u_{n}^{\mathrm{BC}}-u_{n}^{*}
$$

Update

$$
\nabla p^{n+\frac{1}{2}}=\nabla p^{n-\frac{1}{2}}-\nabla\left(\phi^{n+1}-\frac{1}{2} \nu \Delta t \nabla^{2} \phi^{n+1}\right)
$$

Tangential BC

$$
u_{\text {tang }}^{*}=u_{\text {tang }}^{\mathrm{BC}}-\Delta t \nabla \phi^{n}
$$

