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Preface

These lecture notes are for the third-year course on fluid dynamics in the
Mathematical Tripos at Cambridge University. They were developed while
lecturing the course over the years on ten occasions. The current lecturer
may well present material differently and in a different order, which could be
better.

The third-year course follows a second-year course on fluid dynamics.
Key results from that course are summarised in chapter 1. That second-
year course included friction but only for unidirectional flows. This course
will generalise viscous friction to full three-dimensional flows, in chapter 2.
Unidirectional flows are then revisited in the following chapter 3, examining
finer details than in the previous course.

The equations governing the motion of fluids, the Navier-Stokes equa-
tions, are non-linear partial differential equations, with few exact analytic
solutions. There is a major industry in solving the equations numerically, but
that is not for this course. To progress, this course makes approximations
which are appropriate to various limiting conditions, and produce accurate
answers in those conditions. Chapter 4 considers flows in which viscous fric-
tion dominates inertia, three-dimensional flows rather than the unidirectional
flows of the previous course. An important subclass of flows with negligible
inertia occurs in thin layers, where locally the flow looks nearly unidirectional
but globally the flow is three-dimensional, see chapter 5. The opposite limit
of large inertia and small viscosity is more subtle: in most of the flow viscos-
ity can be neglected, but there are thin layers, normally next to boundaries,
where viscosity must be considered. The idea of the effects of viscosity being
confined to thin regions is first developed in some special flows in chapter 6.
This is followed in chapter 7 by a study of viscous boundary layers. Finally,
many possible flows are unstable. The course ends by examining the stability
of a steady laminar flow in chapter 8.
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Chapter 1

Revision of ideas and results
from Fluids in IB

1.1 Continuum hypothesis

We do not deal with the dynamics of individual molecules. Molecular details
are smeared out by averaging over small volumes to define properties like

• density ρ(x, t),

• velocity u(x, t), and

• pressure p(x, t).

The averaging volume needs to be small compared with the laboratory scale
of interest, but large compared with molecules. The processing of smearing
out leads to derived forces, volume forces and surface forces, see later.

1.2 Time derivatives

A fluid particle, sometime called a material element or a Lagrangian point ,
moves with the fluid, so its position x(t) satisfies

ẋ = u(x, t).

The rate of change of a quantity as seen by a fluid particle is written D/Dt,
given by the chain rule as

D

Dt
≡ ∂

∂t
+ u · ∇.

6



In particular, the acceleration of a fluid particle is

Du

Dt
=
∂u

∂t
+ u · ∇u.

1.3 Mass conservation

u=1 u=2

Note that one must constrain u(x, t), otherwise u = 1 into a pipe and u = 2
out of the pipe creates mass.
Because mass in neither created or destroyed, the mass density ρ satisfies

∂ρ

∂t
+∇ · (ρu) = 0, or equivalently

Dρ

Dt
+ ρ∇ · u = 0.

Note that the first form of this equation is typical conservation laws. The
quantity ρu is called the mass flux . For an incompressible fluid, the density
of each material element is constant and so Dρ/Dt = 0. Hence

∇ · u = 0.

For this course, we restrict attention to incompressible fluids with uniform
density, i.e. ρ independent of x and t.

For two-dimensional flows, the condition ∇ · u = 0 is automatically sat-
isfied by u = (ψy,−ψx, 0), with a streamfunction ψ(x, y).

1.4 Kinematic boundary condition

Applying mass conservation to a region
close to a boundary S, we have

ρu− · n = ρu+ · n,

n

S
−

u+

u

i.e. the normal component of velocity must be continuous across S. [Not so
at an evaporating interface where ρ would jump.] In particular, at a fixed
boundary, u · n = 0. And if the moving boundary of a fluid is given by
F (x, t) = 0, then since the surface consists of material points:

DF/Dt = 0.

This form of the boundary condition is sometime more convenient for free-
surface problems.

7



1.5 Momentum conservation
On the assumption that the only sur-
face force across a material surface
ndS is given by a pressure as p(x, t)
as −pndS,

n

dS

then Newton’s equation of motion is

ρ
Du

Dt
= −∇p+ F(x, t),

where F(x, t) is the force per unit volume (e.g. gravity ρg). This is Euler’s
equation.

1.6 Dynamic boundary condition

On the same assumption, applying momentum conservation to a region close
to the boundary S gives (in the absence of surface tension) gives

−p−n = −p+n.

Thus the pressure is continuous across S. [Again not so at an evaporating
interface.]

In this course, we abandon the inviscid assumption of §1.5 & §1.6, and
include tangential frictional forces across material surfaces.

1.7 An example: steady flow past a circular

cylinder

The steady Euler equation with F = 0 is satisfied by a potential flow u = ∇φ
with ∇ · u = ∇2φ = 0, and pressure from Bernoulli p+ 1

2
ρu2 = const.

The solution with φ ∼ Ux as r → ∞ and
u · n = ∂φ/∂r = 0 on r = a is

φ = U(r + a2/r) cos θ,

with associated streamfunction

ψ = U(r − a2/r) sin θ,

and tangential velocity 2U sin θ on r = a.

-2
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1.8 Books for Part II

• D.J. Acheson Elementary Fluid Dynamics. Oxford University Press –
elementary

• G.K. Batchelor An Introduction to Fluid Dynamics. Cambridge Uni-
versity Press. – heavy style, for lecturers

• E. Guyon, J-P. Hulin, L. Petit & C.D. Mitescu Physical Hydrodynam-
ics. Oxford University Press – physicists’ insights

• Homsy, G.M. et al. Multi-media Fluid Mechanics. Cambridge Univer-
sity Press 2000 – lots of video clips, some beyond Part II

• M. Van Dyke An Album of Fluid Motion. – good B&W photos, now
collectors item
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Chapter 2

Equations of motion for a
Newtonian viscous fluid

2.1 Viscosity

Area A

Velocity VDrag D

separation h

fluid fixed

In viscous fluids there is a tangential component of the surface forces, e.g. when
a plate slides past another, there is a drag force D, proportional to the sur-
face area A, velocity difference V , and inversely proportional to separation
h

D = µ
AV

h
,

with coefficient µ, the viscosity , with units ML−1T−1; for water it is 1.1 10−3,
air 1.8 10−5, and honey 10−1 kg m−1s−1.

How can we generalise this for one plate sliding over another to three-
dimensional flows? The velocity difference between the plates will become
the strain-rate, while the tangential force will become the stress. Both the
strain-rate and the stress are 2nd order tensors.
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2.2 Rate of strain tensor

Consider the velocity near to a fixed point, wlog 0,

ui(x) = ui(0) + xj
∂ui
∂xj

∣∣∣∣
0

+ 1
2
xjxk

∂2ui
∂xjxk

∣∣∣∣
0

+ · · ·

We keep just the first two terms on the right hand side. Define the symmetric
and the antisymmetric parts of the velocity gradient

eij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
– strain-rate tensor

Ωij = 1
2

(
∂ui
∂xj
− ∂uj
∂xi

)
– vorticity tensor

In 3D, there are three independent components of an antisymmetric 2nd
order tensor

Ωij =

 0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

 = εijkΩk

Note the IB vorticity vector ω = ∇× u = εijk
∂uj
∂xk

= −2Ω
So

ui(x) = ui(0) + eijxj + 1
2
(ω × x)i + · · ·

The last term describes a local solid-body rotation.
Now eij is a symmetric 2nd order tensor, so has real and orthogonal

eigenvectors. Choose coordinate axes parallel to these evectors, so that e is
diagonal

e =

e1 0 0
0 e2 0
0 0 e3

 .

But incompressible is
0 = ∇ · u = e1 + e2 + e3

Wlog we take e1 > 0 and e2 < 0, so that the straining part of the flow is

1

2

u = (e1x1, e2x2, e3x3)
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Example simple shear u = (γy, 0, 0) breaks down into

∇u =

0 0 0
γ 0 0
0 0 0

 =

0 γ
2

0
γ
2

0 0
0 0 0


strain

+

0 −γ
2

0
γ
2

0 0
0 0 0


vorticity

= +

2.3 Stress tensor

2.3.1 Tractions

In continuum mechanics, deformable solids or fluids, we smear out molecular
details, producing two types of forces (derived forces):

• volume/body forces , like gravity, that act on a volume, F(x, t)δV for a
small volume δV , and

• surface tractions , like pressure and tangential viscous forces, that act
across a surface, τ (x, t; n)δS for a small surface nδS. The force is
exerted by side into which n point. The force comes from short range
(∼ mean-free-path) activities.

2.3.2 Tensor

(We will find that vector τ δS is linear in vector nδS.)

Take nδS to be the inclined sur-
face of a small tetrahedron, whose
other sides coincide with the coor-
dinate planes.

1

2
3

τ(−1)δ S 1

n) δ S

τ(−3)δ

τ(

τ(−2)δ S 2S 3

12



Consider the force balance. The volume and acceleration forces are O(ρgL3),
where L is the linear size of the tetrahedron. The surface forces are O(pL2)
with a typical pressure p = ρgH (H height of the atmosphere). Hence for
a small tetrahedron L � H, the surface forces are O(H/L) larger, so must
balance amongst themselves

τ (n)δS + τ (−1)δS1 + τ (−2)δS2 + τ (−3)δS3 = 0.

But by the geometry of the tetrahedron

δSi = niδS.

Hence the surface traction τ (x, t; n) is linear in the direction n

τi(x, t; n) = σijnj,

where the 2nd order stress tensor σij = τi(j), the ith component of force
exerted across unit area in the jth direction by the + side.

Note we have used Newton III: τ (−1)δS1 = −τ (1)δS1, etc.

2.3.3 Symmetry

(We shall find σij = σji.)

Consider the angular momentum balance on a small volume V , taking mo-
ments about a fixed point in V . The moment of the surface forces is∫

S

εijkxjσklnl dS,

which is O(pL3). But the moment of the volume and acceleration forces is
O(ρgL4). So again for small L� H, the surface forces must balance amongst
themselves. Then using the divergence theorem,

0 = above =

∫
V

∂

∂xl
(εijkxjσkl) dV =

∫
V

εijk

(
σkj + xj

∂σkl
∂xl

)
dV.

The 2nd term in 2nd integral is again O(ρgL4), so can be ignored. Hence∫
V

εijkσkj dV = 0

But V is arbitrary, so the integrand must vanish

εijkσkj = 0 or σij = σji.
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σ12

σ12

σ21

σ21

Pictorially, balacing the couples exerted finds the stresses equal.

2.4 Constitutive equation for a Newtonian vis-

cous fluid

(To relate the stress tensor to the strain-rate tensor.)

‘Constitutive’ says what material is made of. A fluid, as opposed to a de-
formable solid, moves continuously under deforming/stretching forces, but
can be a rest under pressure.

In an incompressible (∇ · u = 0) viscous fluid, the stress tensor has two
parts

• an isotropic pressure part, as in IB, which produces a traction normal
to the surface, with magnitude independent of the orientation of the
surface, and

• a frictional term due to neighbouring fluid sliding past, called the de-
viatoric part,

σij = −pδij + σdev
ij

(
∂uk
∂xl

)
.

Here we measure the sliding of neighbouring fluid by ∇u, the first term in a
Taylor series. This needs `microstructure(∼ 10−9 m) � `laboratory – may not be
true for processing paper plup.

For common viscous fluids, we make two further assumptions

• σdev is linear and instantaneous in ∂ui/∂xj, which needs tmicro(∼ 10−12 s)�
tlab – may not be true for processing flood. This is expressed by

σdev = Aijkl
∂uk
∂xl

,
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• the fluid is isotropic – may not be true for paper fibre suspension. The
general 4th order isotropic tensor is

Aijkl = µ′δijδkl + µ′′δikδjl + µ′′′δilδjk.

Thus

σdev = µ′δij
∂uk
∂xk

+ µ′′
∂ui
∂xj

+ µ′′′
∂uj
∂xi

But ∇ · u = 0 (and σdev
ii = 0), so we may take the µ′ term to be zero. And

we have symmetry σij = σji, so µ′′′ = µ′′, say just µ. Thus

σij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
,

or very important
σij = −pδij + 2µeij ,

with strain-rate tensor eij from §2.2.

Note that the stress does not depend on the vorticity, as expected: solid-body
rotation does not stress the fluid. One needs stretching for stress.

2.5 Momentum equation

2.5.1 Cauchy equation

(Same considerations for conservation of mass and of energy)

Use an inertial frame. The momentum inside a fixed arbitrary (smooth)
volume V changes in time due to

(i) momentum carried across boundary S,

(ii) volume forces, and

(iii) surface tractions.

V

S

u dt

n dS

15



The volume of fluid entering V across δS (n outward normal) in δt is−uδt·nδS.
Hence the momentum entering V is ρu (−uδt·nδS). Hence

d

dt

∫
V

ρui dV =

∫
S

−ρuiujnj dS +

∫
V

Fi dV +

∫
S

σijnj dS.

Now V is fixed in time, so the left hand side is∫
V

∂

∂t
(ρui) dV.

For the two surface integrals on the right hand side, we use the generalise
divergence theorem ∫

S

Tijnj dS =

∫
V

∂Tij
∂xj

dV,

for ∫
V

∂

∂t
(ρui) dV =

∫
V

(
− ∂

∂xj
(ρuiuj) + Fi +

∂σij
∂xj

)
dV.

But V is arbitrary, so the two integrands must be equal. Now we can expand
the derivatives of two products

∂

∂t
(ρui) =

∂ρ

∂t
ui + ρ

∂ui
∂t
, − ∂

∂xj
(ρuiuj) = −ρuj

∂ui
∂xj
− ui

∂

∂xj
(ρuj).

The first term of the first expression and last term of the second expression
cancel by mass conservation

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0,

so we finally have Cauchy’s momentum equation

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= Fi +

∂σij
∂xj

.

This is for any continuum, a fluid or a deformable solid. The left hand side
is often written with the material derivative Dui/Dt, so

ρ
Dui
Dt

= Fi +
∂σij
∂xj

Sometimes the two terms from the surface integrals are combined into the

momentum flux = ρuiuj − σij.
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2.5.2 Navier-Stokes equation

Substituting the expression for the stress in a Newtonian fluid from §2.4, and
assuming µ is constant

∂σij
∂xj

= −δij
∂p

∂xj
+ µ

(
∂2ui
∂xjxj

+
∂2uj
∂xixj

)
.

The last term is ∂(∇ · u)/∂xi = 0. Hence Cauchy’s momentum equation
becomes the Navier-Stokes equation

ρ
Du

Dt
= F + µ∇2u .

The left hand side is from Navier and the right hand side from Stokes.

In a non-inertial rotating frame, Du
Dt
→ Du

Dt
+ 2ω × u + ω × (ω × x).

2.5.3 Dynamic boundary condition

Mass conservation requires the normal component of the velocity, u ·n, to
be continuous. The momentum equation requires ∇u to be finite onto the
boundary, for else σ would be infinite. Hence additionally we need the tan-
gential component of the velocity to be continuous

u− (u · n)n continuous.

This is called the no-slip boundary condition. Hence the full u is continuous
– may not be true on super-hydrophobic surfaces like lotus leaves.

If one applies momentum conservation to a small volume near to the
surface, one concludes that momentum flux ρuiuj−σijnj must be continuous.
But u is continuous, so

σijnj continuous .

Note that the not all the components of the stress tensor σij need be contin-
uous.

At small scales, surface tension can be important, which modifies the
boundary condition to

σ+
ijnj − σ−ijnj = niγ

(
1

R1

+
1

R2

)
,

where γ is the surface tension and Ri are the two principal radii of curvature
of the surface. At the free surface between water and air, one can often ignore
wind, so σwater

ij nj = 0.
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2.6 Energy equation

We form the mechanical energy equation for a continuum by contracting ui
with the Cauchy momentum equation

uiρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= uiFi + ui

∂σij
∂xj

.

LHS = ρ
∂

∂t

(
1
2
uiui

)
+ ρuj

∂

∂xj

(
1
2
uiui

)
+

by mass = 0(
1
2
uiui

)(∂ρ
∂t

+
∂

∂xj
(ρuj)

)
=

∂

∂t

(
1
2
ρuiui

)
+

∂

∂xj

(
uj

1
2
ρuiui

)
,

RHS = uiFi +
∂

∂xj
(uiσij)−

∂ui
∂xj

σij.

Now integrate over a fixed volume V and use the Divergence Theorem

d

dt

∫
V

1
2
ρu2 dV

(1)

+

∫
S

1
2
ρu2(u·n) dS

(2)

=

∫
V

u·F dV
(3)

+

∫
S

uiσijnj dS

(4)

−
∫
V

∂ui
∂xj

σij dV

(5)

.

(1) rate of change of kinetic energy in V is due to

(2) flux of kinetic energy over boundary S,

(3) working against the volume forces inside V ,

(4) working against the surface tractions on S, and

(5) stress working in V .

So far this is for a general continuum. We now specialise to a Newtonian
viscous fluid with

σij = −pδij + 2µeij.

The stress working term becomes

σij
∂ui
∂xj

= −pδij
∂ui
∂xj

+ 2µeij
∂ui
∂xj

.
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Now −pδij∂ui/∂xj = −p∂uj/∂xj = 0 by mass conservation, and ∂ui/∂xj =
eij + Ωij, with symmetric eij, antisymmetric Ωij, and the double contraction
eijΩij = 0 vanishes, as it does any symmetric 2nd order tensor contracted
with any antisymmetric 2nd order tensor. Hence

σij
∂ui
∂xj

= 2µeijeij = Φ,

Thus we find the rate of loss of mechanical energy due to friction is the
dissipation Φ per unit volume of fluid.

In this course we do not discuss other forms of energy, e.g. potential,
heat, electrical,. . . , which are needed for the full engergy equation, which
with some thermodynamics yields an equation governing temperature.

2.7 Scalings

The governing Navier-Stokes equation is

ρ

(
∂u

∂t
+ u · ∇u

)
= F−∇p+ µ∇2u

We set F = 0 for this section.

Consider flow past an obstacle

U

L

Let the flow have a typical velocity U , vary over a typical length L, and vary
over a typical time T . Then the flow depends

u = u(x, t; ρ, µ, U, L, T ).

Now to nondimensionalise. Define the nondimensional velocity u∗ = u/U ,
position x∗ = x/L, time t∗ = t/T , and pressure (using a viscous scaling) p∗ =
pL/µU . Alternatively one could have used an inertial scaling p∗∗ = p/ρU2.
Substitute into the Navier-Stokes equation

ρ

(
U

T

∂u∗

∂t∗
+
U2

L
u∗ · ∇∗u∗

)
=
µU

L2

(
−∇∗p∗ + µ∇∗2u∗

)
,

where ∇∗ = ∂/∂x∗. Dividing by µU/L2 we have

Re

(
St
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗p∗ + µ∇∗2u∗,
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with two non-dimensional groups

Reynolds number Re = ρUL/µ,

Strouhal number Sr = L/UT .

• If Sr � 1, then the flow is quasi-steady, and one can often ignore
∂u∗/∂t∗.

• If Sr � 1, then the flow is rapidly oscillating, and one can often ignore
u∗ · ∇∗u∗.

• If Re � 1, then the flow is viscously dominated, and one can often
ignore the left hand side, see chapter 4.

• If Re � 1, then the flow is inertially dominated, and one can often
ignore ∇∗2u∗ in most of the flow, but not everywhere, a dangerous
approxamation, see chapter 7.

Sometimes we use a Reynolds number for oscillating flows

ReT = ReSr =
ρL2

µT
.

The ratio µ/ρ occurs often, so given its own name and symbol: the kinematic
viscosity

ν = µ/ρ,

with units L2T−1. We now call the original µ the dynamic viscosity . µ is the
viscosity per unit mass, while ν is the viscosity per unit volume. Typical val-
ues are ν = 1.5 10−5 m2s−1 for dry air, and 1.1 10−6 m2s−1 water, equivalently
3
4

acre/year. Note that air is more viscous than water in this measure.

We now write the Reynolds number

Re =
UL

ν

Values vary enormously:

• E.g. a low speed aircraft: U = 100 m/s, L = 2 m, ν = 1.5 10−5 m2/s,
gives Re = 1.3 107.

• E.g. a water droplet in a cloud U = 1µm/s, L = 1
2
µm, ν = same, gives

Re = 3 10−8.

Two flows u(x, t; ρ, µ, U, L, T ) with the same Reynolds number(s) Re (and
ReT if unsteady), with the same shape geometry, e.g. sphere, (but possibly
different L) will have the same nondimensional flow u∗(x∗, t∗;Re,ReT ) and
are called dynamically similar . This is basis of scale model testing; e.g. wind
tunnel testing of scaled aircraft and cars.
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2.8 Governing equations for this course

Mass conservation for incompressible fluid

∇ · u = 0.

Momentum conservation

ρ

(
∂u

∂t
+ u · ∇u

)
= F−∇p+ µ∇2u.

Boundary conditions

u continuous, σijnj continuous,

with σij = −pδij + 2µeij, 2eij =
∂ui
∂xj

+
∂uj
∂xi

.

Exercise 2.1 (Simple shear) Show that steady simple shear flow u =
(γy, 0, 0) is the sum of a planar extensional flow (whose principal axes should
be determined) and a solid-body rotation. Show that the Navier-Stokes equa-
tions are satisfied if the pressure is constant and the body force vanishes. If
the flow is maintained between two plates at y = 0 and y = h, find the forces
on the plates.

Exercise 2.2 (Elliptic and hyberbolic flows) Consider the two-dimen-
sional linear flow

u = (αx− 1
2
ωy,−αy + 1

2
ωx).

Confirm that this flow is incompressible and find its streamfunction. Show
that the streamlines are elliptic or hyperbolic according to whether |α| ≶
1
2
|ω|.

Evaluate ρu · ∇u and find a pressure field to balance it. Discuss the
minimal or maximal nature of the pressure at the origin in terms of the
streamline pattern.

Exercise 2.3 (Dissipation) Show for a volume V with a stationary rigid
boundary that the total rate of dissipation of energy can be written alterna-
tively as

2µ

∫
V

eijeij dV = µ

∫
V

ω2 dV, where ω = |∇ × u|.

It follows that if the flow is irrotational, there is no dissipation. Why?
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Chapter 3

Unidirectional flows

This chapter examines in finer detail flows which were presented in the earlier
IB course. We consider flows in one direction, say the x-direction, with no
variation in the direction of flow ∂/∂x ≡ 0, with possible variations in time
and in directions perpendicular to the flow. Thus

u(x, t) = (u(y, z, t), 0, 0).

Then automatically satisfy mass conservation

∇ · u =
∂u

∂x
≡ 0.

The left hand side of conservation of momentum reduces to

ρ

(
∂u

∂t
+ u · ∇u

)
=

(
ρ
∂u

∂t
, 0, 0

)
,

because there is no variation in the in the direction of the flow (u · ∇ ≡ 0),
while right hand side becomes

−∇p+ F + µ∇2u =

(
−∂p
∂x

+ Fx + µ∇2u,−∂p
∂y

+ Fy,−
∂p

∂z
+ Fz

)
.

Then if F = 0, p is independent of y and z, so ∂p/∂x is independent of y and
z, so can be written dp/dx. Thus we need to solve

ρ
∂u

∂t
= −dp

dx
+ µ

(
∂2u

∂y2
+
∂2u

∂z2

)
.

And because u is independent of x, then dp/dx is independent of x, so it is
a constant.

22



3.1 Plane Couette flow

(Maurice Couette c1888).

fixed
h

V

x

y

z

n

n

Take (i) independent of z, (ii) steady ∂/∂t ≡ 0, (iii) F = 0, and (iv)
dp/dx = 0 because open to atmospheric pressure at both ends. Hence gov-
erning equation becomes

0 = 0 + µ
d2u

dy2
in 0 ≤ y ≤ h.

The boundary conditions are

u = V on y = h, u = 0 on y = 0.

The solution is

u = γy with γ =
V

h
,

with strain-rate

eij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

 0 γ/2, 0
γ/2 0 0
0 0 0

 ,

and stress

σij = −pδij + 2µeij =

−p µγ 0
µγ −p 0
0 0 −p

 .

Thus the force per unit area exerted by the top plate on the fluid, y = h,
n = (0, 1, 0)

σijnj = (µγ,−p, 0),

and the force per unit area exerted by the bottom plate on the fluid, y = 0,
n = (0,−1, 0)

σijnj = (−µγ, p, 0).
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Note that the forces are equal and opposite because there is no source of
momentum between the plates.
The rate of working by plates per unit area is

force × velocity = (µγ,−p, 0) · (V, 0, 0)+)− µγ, p, 0) · (0, 0, 0) = µγV.

Now the dissipation of kinetic energy due to friction (§2.6) is

Φ = 2µeijeij = 2µ

((γ
2

)2

+
(γ

2

)2
)

= µγ2.

This dissipation per unit area integrated through depth h is∫ y=h

y=0

2µeijeij dy = µγ2h.

Note that it is equal to the rate of working of plates µγV , because there is
no other source of energy.

3.2 Plane Poiseuille flow

Poiseuille 1838, Hagen 1839.

y=h

x
y

z

x=L: p=0x=0: p= ∆ p

y=−h

Take (i) independent of z, (ii) steady ∂/∂t ≡ 0, and (iii) F = 0. Flow driven
by pressure gradient

dp

dx
= constant, independent x, y, z, t = −∆p

L
.

Hence the governing equation is

0 = −dp
dx

+ µ
∂2u

∂y2
in − h ≤ y ≤ h.

The boundary conditions are

u = 0 on y = ±h.
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The solution is

u = − 1

2µ

dp

dx
(h2 − y2).

The volume flux (per unit length in z-direction) is

Q =

∫ h

−h
u dy = −2h3

3µ

dp

dx
.

The strain-rate is

eij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
= 1

2

du

dy

 0 1 0
1 0 0
0 0 0

 =
y

2µ

dp

dx

 0 1 0
1 0 0
0 0 0

 ,

and the stress

σij = −pδij + 2µeij =

−p y dp
dx

0

y dp
dx
−p 0

0 0 −p

 .

The traction exerted by the top and bottom boundaries y = ±h,
n = (0,±1, 0) is

σijnj = (h
dp

dx
,∓p, 0).

Then total force (per unit length in z-direction) over a x length of L is

(2h
dp

dx
L, 0, 0) = (−2h∆p, 0, 0),

whereas net pressure force on the ends is (2h∆p, 0, 0), i.e. equal and opposite
because there is no source of momentum in interior.
The integrated dissipation (per unit length in z-direction) is∫ x=L

x=0

∫ y=h

y=−h

(
2µeijeij = µ

(
du

dy

)2
)
dydx =

2h3

3µ

(
dp

dx

)2

L = Q∆p

which is the rate of working by the flux Q against the pressure drop ∆p,
because there is no other source of energy.

Extensions

• Circular cross-section pipe, and elliptical cross-section pipe.

• Removing the coating of liquid inside a tube. Take steady, F = 0,
dp/dx given constant (same in both air and water!).
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x
r

air

water

water

u(r)

On interface of water and air u and µ∂u/∂r continuous.

• Flow of two layers of liquid down an inclined plane.

α

u(y)

x

y

Take F = ρ(g cosα, g sinα, 0), ρ and µ different in two liquids, u = 0
on plane, u and µdu/dy continuous on interface, and µ du/dy = 0 and
p = 0 on top surface.

There are interesting questions of the stability of these steady laminar
flows. Reynolds found by experiments in 1883 that pipe flow was unstable if
Re & 1000 when the flow became time-dependent and three-dimensional.

3.3 Impulsively started flat plate

Rayleigh (1911) problem, but Stokes (1851)

y

x

u(y,t)
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Take (i) F = 0, (ii) dp/dx = 0, and (iii) initially at rest

u = 0, at t = 0, in y > 0.

The plate y = 0 starts at t = 0 to move at a constant velocity U in its own
plane

u = U at y = 0, in t > 0.

The momentum equation in the x-direction is

ρ
∂u

∂t
= µ

∂2u

∂y2
for t > 0, y > 0.

Before solving, note that we have a diffusion equation for u – information
that the plate has started to move diffuses into the fluid with a diffusivity

ν = µ/ρ,

the kinematic viscosity of §2.7. The solution can be found readily by Laplace
transforms

u(y, t) = U erfc

(
u√
4νt

)
,

with error function complement

erfc(z) =
2√
π

∫ ∞
z

e−s
2

ds.

An alternative method to derive the solution is to seek a “similarity” solution,
which is possible because there is no specified length scale. First note that
u(y, t) must be linear in U . Second, on dimensional grounds ρ, t, µ, y can
only occur in the non-dimensional group η = y/

√
4νt. Hence seek a solution

of the form
u(y, t) = Uf(η).

Substitute into the diffusion equation

−ρUf ′ η
2t

= µU
1

4νt
f ′′,

i.e.

f ′′ + 2ηf ′ = 0, so f ′ = −Ae−η2 , so the above solution.

Note that the region of the fluid effected u & 1
5
U is y .

√
νt. This distance√

νt through which momentum diffuses in time t will recur many time in the
course. Note that the stress exerted by the fluid on the lower boundary is

µ
∂u

∂y

∣∣∣∣
y=0

= − 1√
π

µU√
νt
,

where the second fraction easily comes from from dimensional analysis, while
the first fraction is all that the mathematics contributes.
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3.4 Oscillating flat plate

Stokes
Look for steady oscillations after transients have decayed. As before

∂u

∂t
= ν

∂2u

∂y2
in y > 0

u = U cosωt on y = 0

u→ 0 as y →∞

Solution
u = Re

{
Ueiωt−

√
iω
ν
y
}

Take ω > 0 (ν > 0), need
√
i = (1 + i)/

√
2 for decay at ∞. So

u(y, t) = Ue−κy cos(ωt− κy) where κ =

√
ω

2ν

0ω t= π/4 π/2 3π/4 π

The figure shows a ’propagation’: the plate drags the fluid, the fluid
above starts to move and through interia continues to move after the plate
has stopped. Note activity in the second wavelength is very very small,
e−2π ≈ 10−3.

The depth of influence is δ =
√

2ν/ω, i.e.
√
νt of §3.3 with t = π/ω. In

water ν = 1.1 10−6 m2s−1, hence 1 Hz gives δ = 0.6 mm, 1 c/day gives 0.17 m
and 1 c/yr gives 3 m.

The total rate of dissipation within the fluid (per unit area of the plate)
is ∫ ∞

0

µ

(
∂u

∂y

)2

dy by Φ = 2µeijeij = µ(∂u/∂y)2.

This has a time-avergaed

1
2
µU2

√
ω

2ν
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which equals the time-averaged rate of working against the surface stress

µU

√
ω

ν
cos(ωt+ π

4
)

Need this for the slowing of pendulum - Stokes. Note the rate of working
against the surface stress equals is not equal instantaneously to the rate of
dissipation, because of an oscillating amount of kinetic energy.

3.5 Flow between two rotation cylnders

Taylor-Couette flow or circular Couette flow, Couette 1890.

V(r)

Ω Ω1 2

The flow is not quite unidirection:

u · ∇u = −V
2

r
r̂,

so centrifugal acceleration creates a pressure p(r) which is low at middle.
The solution can be found by various methods (be warned of problems in

curvilinear coordinates where (∇2u)θ 6= ∇2uθ) is

V = Ar +B
1

r

The first term is solid body rotation. The second term is the line vortex of
IB, so a potential flow. Fixing the constants so that V = Ω1r1 at r = r1 and
V = Ω2r2 at r = r2

V =
Ω1r

2
1 − Ω2r

2
2

r2
1 − r2

2

r − (Ω1 − Ω2)r2
1r

2
2

r2
1 − r2

2

1

r
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To obtain the solution one can use the Navier-Stokes equations in cylin-
drical coodinates, which for the special flow u = (0, V (r), 0 with pressure
p(r) are

r : −ρV
2

r
=− ∂p

∂r
,

θ : 0 =µ

(
1

r

∂

∂r

(
r
∂V

∂r

)
− V

r2

)
,

σrθ =µr
∂

∂r

(
V

r

)
.

Exercise 3.1 (Elliptical pipe) Fluid flows steadily through a cylindrical
tube parallel to the z-axis with velocity u = (0, 0, w(x, y)), under a uniform
pressure gradient G = −dp/dz. Show that the Navier-Stokes equations with
no body force are satisfied provided

∇2w = −G/µ,

and state the appropriate boundary conditions.
For a tube with an elliptical cross-section with semi-axes a and b, show

that

w = w0

(
1− x2

a2
− y2

b2

)
,

finding w0. Show that the volume flux (i.e. the volume of fluid passing any
section of the tube per unit time) is given by

Q =
πa3b3G

4(a2 + b2)µ
.

Now specialise to circular cross-section, b = a. Show that the viscous
stress on the boundary, which you may take to be σrz = µ∂w/∂r, produces
an axial force 4πµw0L on a length L of the tube, and that this balances the
pressure difference exerted across the ends LGπa2. Further show that the
dissipation within the tube is 2πµw2

0L and this is equal to the rate of working
against the pressure difference across the ends LGQ.

Exercise 3.2 (Inclined two-layer) Two incompressible fluids of the same
density ρ and viscosities µB and µT flow steadily, one on top of the other,
down a plane inclined at an angle α to the horizontal. The depths of the
layers (normal to the plane) are uniform and equal to hB and hT respectively.
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Using coordinates x down the plane and y perpendicular to it, write
down the boundary conditions on the plane, on the interface between the
two layers and on the top free surface. Find the pressure field and velocity
field in each fluid on the assumption that they depend only on y. Observe
that the velocity profile in the bottom layer depends on hT but not µT . Why?

Exercise 3.3 (Dissipation for oscillating plate) A plane rigid bound-
ary of a semi-infinite domain of fluid oscillates in its own plane with velocity
U cosωt, and the fluid is at rest at infinity. Find the velocity field. [Hint: use
e−κ(1+i)z with κ2 = ω/2ν.] Show that the time-averaged rate of dissipation
of energy in the fluid is

1
2
ρU2

(
1
2
νω
)1/2

per unit area of the boundary. Verify that this is equal to the time average
of the rate of work of the boundary on the fluid (per unit area).

Exercise 3.4 (Couette flow) Viscous fluid is contained in the space be-
tween two coaxial cylinders r = a and b (> a), which may be consider to
be of infinite length. The inner cylinder rotates with steady angular veloc-
ity Ω about its axis and the outer cylinder is at rest. The velocity field in
the fluid is steady and of the form u = (0, v(r), 0) in cylindrical polar co-
ordinates, and the pressure varies only in the radial direction. Look up the
components of the Navier-Stokes equations in these coordinates, say in Ap-
pendix 2 of Batchelor or Wikipedia. [Alternatively work in Cartesians, with
u = (yf(r),−xf(r), 0) with r2 = x2 + y2, using ∂xf = xf ′/r.] Show that

v(r) = Ar +B/r,

where A and B are to be determined. Calculate the torque per unit length
that must be applied to the inner cylinder to maintain the motion. [Use
the component eθr of the strain-rate tensor in cylindrical polars, given by
2eθr = r d(v/r)/dr in this flow.]

Exercise 3.5 (Oscillating channel flow) Fluid having kinematic viscos-
ity ν and density ρ is confined between a fixed plate at y = h and a plate
at y = 0 whose velocity is (U cosωt, 0, 0), where U is a constant. There is
no body force and the pressure is independent of x. Explain the physical
significance of the dimensionless number S = ωh2/ν.

Assuming that the flow remains time-periodic and unidirectional, find
expressions for the flow profile and the time-average rate of working Φ per
unit area by the plates on the fluid.

Sketch the velocity profile and evaluate Φ in the limits S → 0 and S →
∞, and explain why in these limits Φ becomes independent of ω and h
respectively.
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Chapter 4

Stokes flows

This chapter is concerned with flows with a small Reynolds numbers Re =
UL/ν � 1, sometimes called ‘creeping flows’. The Reynolds number can
be small for many reasons: the velocity U can be small, e.g. 1 cm/day in oil
reservoirs; the lengthscale L can be small, e.g. 10µm bacteria; or the viscosity
ν can be large, e.g. 108 m2/s molten glass. An example more relevant to this
course is a 1µm water droplet falling under gravity in air at 0.1 mm/s, so
Re = 10−5.

When the Reynolds number is small, one can ignore the inertial terms of
the left hand side of the Navier-Stokes equations. This produces the Stokes
equations, the governing equations for this chapter

0 = F−∇p+ µ∇2u,

with ∇ · u = 0,

with boundary conditions of u(x, t) given. One then has to calculate the full
flow field u(x, t) and surface stress σijnj. Note: Stokes theory for Re � 1
usually works for Re < 2.

4.1 Some simple properties

Solving the Stokes equations rapidly brings some messy details of algebra, so
first we examine some simple yet very useful propoerties before facing up to
the nasty calculations.

4.1.1 Instantaneity

With no ∂u/∂t term (no inertia to build up to terminal velocity) the response
is instantaneous. As the boundary conditions might change in time, the forces
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will change in time corresponding to the instantaneous boundary conditions,
a so called ’quasi-steady’ response.

4.1.2 Linearity

With no nonlinear u ·∇u term, the velocity u(x) will be linear in the bound-
ary conditions, and so will be the surface stresses and resultant forces.

For example the drag force F on a particle is linear in its instantaneous
velocity U(t),

F(t) = AU(t),

where the second order tensor A will depend on the size, shape and orienta-
tion of the particle.

This simple result can be applied to an axisymmetric particle to break up
the contributions to the force into the linearly additive contributions from
the motion parallel to the axis U‖ and perpendiculat U⊥,

F(t) = αU‖(t) + βU⊥(t),

with two scalars α and β.
u

u
u

F

⊥

ll

4.1.3 Reversible in time

Consider a force F(t) applied for a certain time 0 ≤ t ≤ t1. Now reverse
force and its history, i.e. F(t) = −F(2t1 − t) in t1 ≤ t ≤ 2t1 The flow u(x, t)
will reverse and its history reverses. Hence all fluid particles return to their
starting position. There as some nice videos demonstarting this.

The reversibility in time means that one cannot swim at Re � 1 by
reversible flapping, i.e. a recipricating motion. Again there are some nice
videos of G.I.Taylor demonstration this. To swim at low Reynolds numbers
one needs something like a propagating wave or a helical motion.

4.1.4 Reversible in space

Linearity along with some symmetry of geometry requires certain components
of the velocity to vanish.

• A sphere sedimenting next to a vertical wall does not migrate towards
or away from the wall at Re� 1. For suppose not:
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g g g

U

U

U

reverse g so reverse U up/down symmetry

First and last pictures should be identical, so the velocity component
perpendicular to the wall must vanish.

• Two equal spheres fall without separating.

• An ellipsoid, or any other particle with three perpendicular planes of
symmetry, falls under gravity without rotating in an unbounded flow.

• Two rigid spheres in a shear flow (possibly unequal, possibly next to a
rigid wall) resume their original undisturbed streamlines after a colli-
sion.

t t

symmetry

4.1.5 Harmonic functions

If F = 0, then

∇ ·momentum → ∇2p = 0

∇×momentum → ∇2ω = 0, ω = ∇× u

∇2 momentum → ∇2∇2u = 0 using −∇∇2p = 0
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Hence p and ω are harmonic (∇2 = 0) and u is biharmonic.

4.2 Flow past a sphere

We now confront the nasty algebra for the solution of uniform flow U past a
fixed rigid sphere of radius a.

4.2.1 The solution

The solution is more important than its derivation

u = U

(
1− 3a

4r
− a3

4r3

)
+ x(U · x)

(
− 3a

4r3
+

3a3

4r5

)
,

p = −3aµU · x
2r3

and σ · n
∣∣
r=a

=
3µ

2a
U.

Note that the stress on the surface does not vary with position, so that it is
easily integrated to evaluated the Stokes drag on the sphere∫

r=a

σ · n dS = 4πa2 3µ

2a
U = 6πµaU.

Note that of the 6, 4 is from pressure and 2 is from the tangential viscous
friction. Note that the drag is 4πµaU for a bubble with boundary conditions
u · n = 0 and (σijnj)tangential = 0.

4.2.2 Method 1

The simpest derivation that I know starts by noting that the linearity of the
Stokes equations means that u(x) must be linear in U. Further, the problem
has spherical symmetry about the centre of the sphere, which we take as the
origin. The velocity and pressure fields must therefore take the forms

u(x) = Uf(r) + x(U · x)g(r),

p(x) = µ(U · x)h(r),

where r = |x|, and f , g and h are functions of scalar r to be determined.
Now differentiating gives

∂ui
∂xj

= Uixjf
′/r + δijUnxng + xiUjg + xixjUnxng

′/r.
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Then contracting i with j in this expression, we have the incompressibility
condition

0 = ∇ · u = Unxn(f ′/r + 4g + rg′),

our first relation between the unknown functions. Differentiating again for
momentum equation

µ∇2ui = µUi (f
′′ + 2f ′/r + 2g) + µxiUnxn (g′′ + 6g′/r)

∇ip = µUih+ µxiUnxnh
′/r

Hence the governing equations give three relations between the unknown
functions

f ′/r + 4g + rg′ = 0, f ′′ + 2f ′/r + 2g = h and g′′ + 6g′/r = h′/r.

Eliminating h and then f yields

r2g′′′ + 11rg′′ + 24g′ = 0.

This differential equation is homogeneous in r had so has solutions of the
form g = rα. Substituting one finds α = 0, −3 and −5. The associated other
two functions are f = −(α + 4)rα+2/(α + 2) and h = −(α + 5)(α + 2)rα.

Hence the general solution of the assumed form linear in U is

u(x) = U
(
−2Ar2 +B + Cr−1 − 1

3
Dr−3

)
+ x(U · x)

(
A+ Cr−3 +Dr−5

)
,

p(x) = µ(U · x)
(
−10A+ 2Cr−3

)
.

We shall need the stress exerted across a spherical surface with unit normal
n = x/r

σ · n = U
(
−3Ar + 2Dr−4

)
+ x(U · x)

(
9Ar−1 − 6Cr−4 − 6Dr−6

)
.

Applying the boundary conditions of no flow on the rigid sphere and
uniform flow far from the sphere, we find the coefficients

A = 0, B = 1, C = −3
4
a and D = 3

4
a3,

And hence the solution given earlier.

4.2.3 Method 2

An alternative derivation uses a Stokes streamfunction for the axisymmetric
flow

ur =
1

r2 sin θ

∂Ψ

∂θ
and uθ = − 1

r sin θ

∂Ψ

∂r
.
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The vorticity equation (curl of the momentum equation, to eliminate the
pressure) is then at low Reynolds numbers (after a lot of algebra)

D2D2Ψ = 0 where D2 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
.

The uniform flow at infinity has Ψ = 1
2
Ur2 sin2 θ, so one tries Ψ = F (r) sin2 θ,

and finds (after a lot more work) F = Ar4 +Br2 + Cr +D/r.

4.2.4 Method 3

One can show (Papkovich-Neuber) that the general solution of the Stokes
equation can be expressed in terms of a vector harmonic function φ(x)
(i.e. ∇2φ = 0)

u = 2φ−∇(x · φ) with p = −2µ∇ · φ,

and σij = 2µ

(
δij
∂φn
∂xn
− xk

∂2φk
∂xi∂xj

)
both requiring some detailed calculations. Linearity and spherical symmetry
then give

φ = αU
a

r
+ βU · ∇∇a

3

r
,

with coefficients α and β to be determined by applying the boundary condi-
tions, again a lot of work.

4.2.5 Method 4

In Stokes flow, the pressure and vorticity are harmonic functions. Using
linearity and spherical symmetry, they must take the form

p = µAU · x/r3 and ∇∧ u = BU ∧ x/r3,

withe coefficients A and B to be determined. The final step to find u(x) is
tedious.

4.2.6 Sedimentation of a rigid sphere

Having found the Stokes flow past a sphere, we can use it to find the Stokes
settling velocity under gravity of an isolated sphere. Balancing the forces on
the falling sphere, with densities ρs of sphere and ρf of fluid

0 = ρs
4π
3
a3g − ρf

4π
3
a3g − 6πµaU

no inertia weight buoyancy Stokes drag
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So we find the Stokes settling velocity

US =
2∆ρa2g

9µ

E.g. 1µm sphere, ∆ρ = 103 kg m−3, water µ = 10−3 Pa s gives U = 2µm/s,
i.e. falls through diameter in a second. Check Re = 10−6, which is small.

Using the general solution for Stokes flow inside and outside a sphere, one
can find (tough student exercise!) that the drag on a fluid sphere is

F = −2π
2µf + 3µs
µf + µs

µfaU

4.2.7 Far field

At large distances, r � a, the sphere appears just to apply a point force.
The disturbance flow is

u′ ∼ U

(
−3a

4r

)
+ x(U · x)

(
− 3a

4r3

)
.

Now F = 6πµaU, so

u′ =
1

8πµ

(
F

1

r
+ x(F · x)

1

r3

)
.

The far field depends only on the net force and is independent of the shape
of the particle. It is the Greens function for Stokes flows, called a Stokeslet .
The F/4πµr is the familiar Greens function for a harmonic function, with
remainder to ensure an incompressible flow. The form can alternatively be
found by Fourier Transforms.

4.2.8 A rotating sphere

The Stokes flow outside a sphere rotating at angular velocity Ω is simply

u(x) = Ω× x
a3

r3
.

A potential flow, so satisfies Stokes equations. Hence the couple on the sphere
is (student exercise)

G = −8πµa3Ω.
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4.2.9 Stokes flow past an ellipsoid

For an ellispoid with principle semi-diameters a1, a2, a3, Oberbeck (1876)
found

Force F1 = − 16πµU1

L+ a2
1K2

, and Couple G1 = − 16πµ(a2
2 + a2

3)

3(a2
2K2 + a2

3K3)
,

where

L =

∫ ∞
0

dλ

∆(λ)
and Ki =

∫ ∞
0

dλ

(a2
i + λ)∆(λ)

,

with ∆2 = (a2
1 + λ)(a2

3 + λ)(a2
3 + λ).

For a disk a1 � a2 = a3

F1 ∼ 16πµa2U1, F2 ∼ 32
3
µa2U2, Gi ∼ 8

3
µa3

2Ωi,

while for a rod a1 � a2 = a3,

F1 ∼
4πµa1U1

ln−1
2

, F2 ∼
8πµa1U2

ln +1
2

, G1 ∼ 16
3
πµa1a

2
2Ω1, G2 ∼

8
3
πµa3

1Ω2

ln−1
2

,

where ln = ln 2a1
a2

.
The important conclusion is that in Stokes flow the drag depends on

the largest linear dimension and is otherwise rather insensitive to shape of
the particle. In translation the drag is approximately (within a factor of 4)
6πµaU with a the largest diameter.

4.3 More properties of Stokes flows

4.3.1 A useful result

Let uS(x) and pS(x) be a Stokes flow with force F = 0 in V , with its eSij and
σSij. Let u(x) be any other incompressible flow. Then claim∫

V

2µeSijeij dV =

∫
S

σSijnjui dA.

Now

2µeSij = σSij + pSδij and pSδijeij = pS∇ · u = 0, so 2µeSijeij = σSijeij.

And

σSij = σSji, so σSijeij = σSij
∂ui
∂xj

=
∂

∂xj

(
σSijui

)
−
∂σSij
∂xj

ui.

The last term vanishes because F = 0. Then by the divergence theorem∫
V

2µeSijeij dV =

∫
V

σSijeij dV =

∫
V

∂

∂xj

(
σSijui

)
dV =

∫
S

σSijnjui dA.
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4.3.2 Minimum dissipation

Let u(x) and uS(x) be two incompressible flows in V , both satisfying the
same boundary condition u = uS = U(x) given on S. Let uS also satisfy
the Stokes equation with F = 0 in V .
Then ∫

V

2µeijeij dV =

∫
V

2µeSije
S
ij dV

+

∫
V

2µ(eij − eSij)(eij − eSij) dV +

∫
V

4µeSij(eij − eSij) dV.

The middle integral on the right hand side is positive. The last integral is of
the form of the useful result §4.3.1∫

V

4µeSij(eij − eSij) dV =

∫
S

2σSijnj(ui − uSi ) dA

But on S, ui − uSi = Ui − Ui = 0, so the last integral vanishes. Hence∫
V

2µeijeij dV ≥
∫
V

2µeSije
S
ij dV,

i.e. the Stokes flow uS(x) has the minimum dissipation out of all incompress-
ible flows satisfying the boundary condition

Warning this is for the same geometry. One is not comparing two
flows in different geometry, and so one cannot use the result to select the
geometry which has the minimum dissipation.

As a flow at non-zero Reynolds number is an incompressible flow which
is not a Stokes flow, the drag will larger at non-zero Reynolds numbers.

4.3.3 Uniqueness

If u1(x) and u2(x) are two Stokes flows in V satisfying the same boundary
conditions, then minimum dissipation gives∫

V

2µ(e1
ij − e2

ij)(e
1
ij − e2

ij) dV = 0

Hence
e1
ij − e2

ij = 0 in V ,

i.e. u1 − u2 is strainless, i.e. a solid body translation + rotation, i.e. zero by
the boundary conditions. Hence

u1(x) = u2(x) in V .

Hence Stokes flows are unique.
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4.3.4 Geometric bounding

An application of minumum dissipation. Consider a rigid cube with sides
of length 2L moving at U through a viscous fluid, resulting in a drag force
Fcube.

Let uS(x) be Stokes flow outside the cube. Then dissipation∫
outside cube

2µeSije
S
ij dV =

∫
cube

σSijnju
S
i dS = −U · Fcube,

the rate of working by the surface forces on the cube.
Now consider a sphere which just contains the cube, and hence has a

radius a =
√

3L, also moving at U. Define a second flow

u(x) =

{
the Stokes flow for sphere outside sphere,

U in gap.

Then for this second flow∫
outside cube

2µeijeij dV =

∫
outside sphere

2µeijeij dV,

because eij = 0 in gap,

= rate of working by sphere = 6πµ
√

3LU ·U

Hence minimum dissipation bounds drag F on cube

−Fcube ·U ≤ 6πµ
√

3LU ·U

Similarly for sphere just contained inside cube

6πµLU ·U ≤ −Fcube ·U

Student exercise: bound for tetrahedron (not so tight).

4.3.5 Reciprocal theorem

Let u1(x) and u2(x) be two Stokes flows inside the same volume V with dif-
ferent boundary conditions on S. Then by the useful result §4.3.1, extended
to include volume forces fi(x)∫

V

u1 · f2 dV +

∫
S

u1 · σ2 · n dA =

∫
V

2µe1 : e2 dV

=

∫
V

u2 · f1 dV +

∫
S

U2 · σ1 · n dA

i.e. work done by one velocity on the forces of the other is vice versa. This
is the Greens theorem in any other subject.
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4.3.6 Symmetry of resistance matrix

An application of the reciprocal theorem. For a rigid particle moving at U
with no volume forces, the drag force F is linear in U

F = AU

with second order tensor A. Now consider a particle moving at two velocites,
first U1 and then U2. The reciprocal theorem gives∫

u1
iσ

2
ijnj dS =

∫
u2
iσ

1
ijnj dS

But by boundary condition∫
u1
iσ

2
ijnj dS = U1

i

∫
σ2
ijnj dS = U1

i F
2
i ,

and similarly for the right hand side, so

U1 · F2 = U2 · F1 i.e. UT1AU2 = U2TAU1

But U1 and U2 are arbitrary. Hence the second order tensor A is symmetric.

Now consider a particle moving in a general rigid body motion in fluid
at rest a infinity, translating at U(t) and rotating (about a selected point)
at Ω(t), with no volume forces. The force F(t) and couple G(t) (about the
same selected point) are given by linearity(

F
G

)
=

(
A B
C D

)(
U
Ω

)
with second order tensors A, B, C and D depending on the size, shape and
orientation of the particle. The reciprocal theorem then gives for the two
rigid body motions

U1 · F2 + Ω1 ·G2 = U2 · F1 + Ω2 ·G1

This is true for all U1 etc, so

A = AT , B = CT and D = DT .

The symmetry B = CT means

force due to rotating = couple due to translating.

These symmetries plus the geometric symmetry of a cube give

A & D diagonal, and B = CT = 0

Thus drag on a cube is parallel to velocity, also true for symmetric tetrahe-
dron. One needs a “corkscrew” feature for B 6= 0.
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4.4 Flows in a corner

There are many flows which are locally two-dimensionally near a corner

• Scraping fluid off a rigid surface

U

U

(moving frame)

• Moving three-phase contact of a spreading drop

solid

liquid

air
stress−free

• Hinged plates

• Source flow

• Flow past a corner
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• Flow past a slot in a wall

This is equivalent to the corner flow with an angle of zero.

It is best to tackle all these 2D flows with a streamfunction ψ

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
,

so automatically satisfying the incompressibility, ∇ · u = 0.
The vorticity is ω = ∇×u = (0, 0,−∇2ψ). Eliminate the pressure in the

Stokes equations by taking its curl forms the vorticity equation

−∇2ω = ∇4ψ = 0,

i.e. ψ is a biharmonic function.

4.4.1 Source flow

(Jeffrey & Hamel)
If there is a volume flux Q (per unit z-direction), then ur ∝ Q/r, so we

try
ψ = Qf(θ)

so that ur = Qf ′/r and uθ ≡ 0. The biharmonic equations gives

f iv + 4f ′′ = 0,

with general solution

f = A cos 2θ +B sin 2θ + C +Dθ.
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Looking for solutions in which ur is symmetric about θ = 0 gives A = C = 0.
Applying a no-slip boundary condition f ′ = 0 at θ = ±α and a given volume
flux

Q =

∫ α

−α
ur rdθ = Q(f(α)− f(−α)),

we have

f = 1
2

sin 2θ − 2θ cos 2α

sin 2α− 2α cos 2α
.

Check f becomes parabolic for α � 1. This solution has a problem at
2α = 257◦ when the denominator vanishes – see §4.4.3.

4.4.2 Flow past a corner

(Moffatt 1964)
This flow is not forced by the boundary condition on θ = ±α where ψθ

and ψr vansih, but is forced by disturbances at large r outside the local
solution.

We look for eigensolutions (solutions without scale)

ψ(r, θ) = rλ(θ).

Then the biharmonic equation gives

∇4ψ = ∇2
(
rλ−2(f ′′ + λ2f)

)
= rλ−4

(
(D2 + λ2)(D2 + (λ− 2)2)f

)
= 0.

This has a general solution

f = A cosλθ +B sinλθ + C cos(λ− 2)θ +D sin(λ− 2)θ.

There are symmetric flows with A = C = 0 and antisymmetric flows
B = D = 0. Consider the latter. The no-flux boundary condition f = 0 at
θ = ±α reduces the solutuon to

f = cos(λ− 2)α cosλθ − cosλα cos(λ− 2)θ.

The eigenvalue λ is determined by applying the no-slip boundary condition
f ′ = 0 and θ = α

0 = −λ cos(λ− 2)α sinλα + (λ− 2) cosλα sin(λ− 2)α.

For vertex angles 2α < 146◦, all roots for λ are complex

e.g. for 2α = 90◦ λ = 2.37± i0.56, λ = 3.44± i0.74, . . .
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For 2α > 146◦, the smallest root is real. There is a similar soltion for the
symmetric flows, with the critical angle of 159◦.

To understand the complex roots, write

ψ = rλr+iλifλ(θ) + complex conjugate

rλr [cos(λi ln r)Re(f)− sin(λi ln r)Im(f)]

Thus at all fixed θ, ψ oscillates indefinitely as r → 0, i.e. we have a sequence
of eddies of ever decreasing size.

The centres satisfy

λi ln rn+1 = λi ln rn − π i.e. rn+1/rn = e−π/λi .

The magnitude of the circulation (magnitude of ψ) decreases by(
rn+1

rn

)λr
= e−πλr/λi ∼ 1

2000
for 90◦ .

Note when 2α < 146◦ the fluid avoids stretching by the sequence of roughly
solid body rotations.

4.4.3 Back to source flow

Beyond 2α = 257◦ the source flow of §4.4.1 with ψ ∝ r0 is dominated by one
of §4.4.2’s eigensoltions with ψ ∝ rλ (λ = 0 at 257◦ rising to λ = 1

2
at 360◦).

In the source flow with inlet radius r1 and outlet radius r2, it was assumed
that the flow in r1 � r � r2 would be a scaleless similarity solution not
depending on either r1 or r2. While such a flow exists, it is only realised (in
the real world) if disturbances from r = r1 and from r = r2 decay into the
interior r1 � r � r2. They do not decay from r = r1 when 2α > 257◦.
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Exercise 4.1 (Drag on a cube) A force is applied to a cube at its cen-
tre in a direction normal to one flat surface. Using reversibility in space,
show that the cube moves in the direction of the applied force, also without
rotating. Now using linearity, deduce that in all orientations a cube of uni-
form density sediments vertically without rotating. [Hints: resolve force into
components, and isotropy.]

[** What of a tetrahedron, an ellipsoid and a helix? **]

Exercise 4.2 (Two equal spheres) Show that in Stokes flow two equal
spheres arbitrarily aligned fall under gravity at constant separation, i.e. nei-
ther separating nor coming closer together.

Exercise 4.3 (Strainless flow) If the strain-rate tensor e(x) vanishes through-
out a connected region, show that the flow is rigid body motion.

[Hint: first show ∂2u1/∂x2∂x3 ≡ 0.]
Show that if the surface traction is specified on a bounding surface, then

the Stokes flow in the interior is unique to within the addition of a rigid body
motion.

Exercise 4.4 (Rotating sphere) Derive the Stokes flow outside a rotating
rigid sphere

u(x) = Ω× x
a3

r3
and p = 0.

Show that the couple exerted on the sphere is −8πµa3Ω.

Exercise 4.5 (Papkovich-Neuber) If A(x) is a vector harmonic function,
i.e. ∇2A = 0, show that

u = 2A−∇(A · x) and p = −2µ∇ ·A

satisfy the Stokes equation. Calculate the stress tensor.
For a sphere of radius a translating at velocity V through a fluid which

is otherwise at rest, the harmonic function takes the form

A = αaV
1

r
+ βa3 (V · ∇)∇1

r
,

(Why?) Find the constants α and β.

Exercise 4.6 (Spherical bubble) Consider a spherical bubble of radius a
in a uniform flow U. Recall the expression obtained in lectures for the Stokes
flow outside a sphere of the form

u(x) = Uf(r) + x(U · x)g(r).
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Applying boundary conditions on r = a of no normal component of velocity
and no tangential component of surface traction, find the flow u(x). Find
the drag force 4πµaU.

Exercise 4.7 (Faxen) When a rigid sphere of radius a translates with ve-
locity U through unbounded fluid at rest at infinity, it may be shown that
the traction per unit area, σ · n, exerted by the sphere on the fluid has the
uniform value 3µU/a over the sphere surface. Find the drag on the sphere.

Suppose that the same sphere is free of external forces and is placed with
its centre at the origin in an unbounded Stokes flow given in the absence of
the sphere as u∗(x). By applying the reciprocal theorem to the perturbation
to the flow generated by the presence of the sphere, and assuming this tends
to zero sufficiently rapidly at infinity, show that the instantaneous velocity
of the centre of the sphere is

V =
1

4πa2

∫
r=a

u∗(x) dS.

Exercise 4.8 (Bounds) Find upper and lower bounds for the couple on a
tetrahedron rotating about its centre in a viscous fluid.

Exercise 4.9 (Sperical annulus) A spherical annulus of incompressible
viscous liquid occupies the region R1(t) < r < R2(t) between two free sur-
faces on which pressures (normal traction) P1(t) and P2(t) are applied. The
resulting flow is spherically symmetric. Show (neglecting inertia and surface
tension)

d

dt

(
R3

1

)
=

π(P1 − P2)

µV
R3

1

(
R3

1 + 3V/4π
)
,

where V is the constant volume of the liquid. [Hints: ur = A/r2 (why?) and
σrr = −p+ 2µ∂u/∂r in this flow.]

Show that if P1−P2 is maintained positive and constant, then R1 becomes
infinite in a finite time. What happens if P1−P2 is maintained negative and
constant.

Exercise 4.10 (Hinged plates) Fluid is contained in the region −α < θ <
α between two rigid hinged plates. Thus the velocity components in plane
polar coordinates satisfy

ur = 0, uθ = ∓ωr on θ = ±α.

Neglecting inertia forces, show that a solution to the Stokes problem may be
found in the form

ψ = 1
2
ωr2g(θ)
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and find the function g(θ). Deduce the pressure field p(r, θ). Discuss the
limitations of the model. [Does denominator of g vanish?]

Exercise 4.11 (Channel entry) Viscous fluid is contained between two
planes y = ±a and a two-dimensional flow with streamfunction ψ(x, y) is
generated by some agency (e.g. a rotating cylinder) near x = y = 0. It
is required to find the form of the flow field for large positive x. Find the
general solution of ∇4ψ = 0 of the form

ψ = f(y)e−kx Re k > 0,

for which f(y) is an even function of y, and hence show that k is determined
by the equation

2ka+ sin 2ka = 0.

Show that this equation as no real roots. The equation has complex roots,
that with the smallest real part being 2ka = 4.2±2.3i. Sketch the streamlines
of the flow.
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Chapter 5

Flows in thin layers

The is variously known as lubrication theory, slowly varying, and the long
wavelength approximation. All the applications are essentially Poiseuille flow
at low Reynolds numbers. We will follow Reynolds’ approach. An alternative
approach based on asymptotic expansions works to produce the same answer,
but with many more pages of algebra. Above all, these flows are very useful.

5.1 Thrust bearing

This problem has simple algebra. It has applications of gear teeth and knee
cartilage.

U x

ydh(x)

x=0 x=L

rest

p=p

p=p

d

0

0

1

2

The problem is easiest tackled in a fixed geometry, i.e. move with lower
boundary.

There are 4 steps.
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5.1.1 Geometry

The gap is

h(x) = d1 + αx with α =
d2 − d1

L
.

To be a thin film, we require h� L and h′ � 1.

5.1.2 Unidirectional flow

At leading order the flow is u ∼ (u(y), 0, 0) so that u · ∇u ∼ 0. Then the
momentum equations reduces to

x-mtm: 0 =
∂p

∂x
+ µ

∂2u

∂y2
, because no

∂2

∂x2
by h� L,

y-mtm: 0 =
∂p

∂y
, because flow ∼ (u(y), 0, 0).

Hence to this approximation p is independent of y, so ∂p/∂x is independent
of y, which helps the integration of the x-momentum equation. We need
boundary conditions

u = −U on y = 0, u = 0 on h = h(x).

So integrating the x-momentum equation

u = − 1

2µ

dp

dx
y(h− y)− U h− y

h
.

In this, we still need to find dp(x)/dx.

5.1.3 Mass conservation

This is the clever trick of Reynolds to avoid a tedious asymptotic analysis.
The total volume flux (per unit z-direction)

Q =

∫ h

0

u dy = − h3

12µ

dp

dx
− 1

2
Uh.

Global mass conservation requires Q to be constant, independent of x. We
do not yet know value of Q, but that it is constant gives the x-variation of
dp/dx

dp

dx
= −12µQ

h3(x)
− 6µU

h2(x)
.
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Integrating from p = p0 at x = 0, with h(x) = d1 + αx

p(x) = p0 +
6µQ

α

(
1

h2(x)
− 1

d2
1

)
+

6µU

α

(
1

h(x)
− 1

d1

)
.

This gives the variation of p with x with one undetermined constant, Q. But
p = p0 also at x = L, so

Q = − Ud1d2

d1 + d2

.

Note with this Q, p is a maximum, dp/dx = 0, when h(x) = 2d1d2/(d1 + d2).
A parabolic component of the flow is driven by the pressure gradient away
from the pressure maximum, in order to keep the total flux constant, see
figure.

U

Pmax

grad p grad p

When d2 � d1, Q = −Ud1, the maximum pressure is at h(x) = 2d1 and

µ
∂u

∂y

∣∣∣∣
y=0

reverses sign at h = 3
2
d1,

µ
∂u

∂y

∣∣∣∣
y=h

reverses sign at h = 3d1.

5.1.4 Forces

The forces are calculated from the surface tractions σijnj with

σij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
.

On the lower boundary n = (0,−1, 0). But be warned there is danger on the
upper boundary, where it is necessary to take account of the small slope, so
n = (−h′, 1, 0), where a denominator of

√
1 + h′2 has been dropped because
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h′2 � 1. The normal force on the lower plate (per unit z-width, and in excess
of that from the atmospheric pressure p0) is∫ L

0

(p− p0) dx =
6µU

α2

(
ln
d2

d1

− 2
d2 − d1

d2 + d1

)
.

The tangential force on the lower plate (per unit z-width) is∫ L

0

µ
∂u

∂y

∣∣∣∣
y=0

dx =

∫ L

0

(
−h

2

dp

dx
+
µU

h

)
dx

=
4µU

α

(
ln
d2

d1

− 3

2

d2 − d1

d2 + d1

)
.

The equal and opposite normal force on the top plate is straight forward to
calculate. For the tangential force on the upper plate, one must include a
contribution from the large pressure multiplied by the small slope h′.

Note that the 1/α2 normal force is must larger than the 1/α tangential
force (α� 1). Thus one can make low friction bearings – all due to the large
pressure built up over the long (thin) layer. In real gears the pressure is so
high the the solid surfaces deform elastically, typically doubling the gap, and
the viscosity changes with pressure, typically exponentially.

The condition to neglect the inertial terms can be refined to

1� |ρu · ∇u|
|µ∇2u|

=
ρU2/L

µU/h2
=
Uh

ν

h

L
,

so it is possible to have a moderate Reynolds number Re = Uh/ν if the
layer is compensatingly thin h � L. The combination Reh/L is called the
“reduced Reynolds number”.

The geometry can be wrapped round a circle to make a journal bearing

Pmin

Pmax

Lift

where the pressure variation ensures a constant flux around the bearing.

53



5.2 Cylinder approaching a wall

V

h(x)

y

x

a

d

P

θ

0

Instantaneous separation d� a.
Repeating the four key steps of §5.1, now more briefly.

5.2.1 Geometry of thin gap

h(x) = d+ a

(
1− cos θ ∼ 1

2
θ2 ∼ 1

2

(x
a

)2
)
,

∼ d

(
1 +

x2

2ad

)
.

We shall find that all the action is where h . 3d, i.e. where

x ∼ 2
√
ad

{
� a, so θ small, so above approx OK,

� d, so approx unidirectional flow.

5.2.2 Unidirectional flow

Now the boundary condition is u = 0 on both y = 0 and h(x). So as before

u = − 1

2µ

dp

dx
y(h− y).

5.2.3 Mass conservation

The total volume flux (per unit z-width), as before

Q =

∫ h

0

u dy = − h3

12µ

dp

dx
.
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Now the top boundary is moving down at V , so that the volume flux out of
[0, x] is

Q(x) = V x.

Hence we have the pressure gradient

dp

dx
= −12µV x

h3(x)
= − 12µV x

d3
(
1 + x2

2ad

)3 .

Integrating

p = p0 +
6µV a

d2
(
1 + x2

2ad

)2 .

Here we can see that most of the pressure is where h . 3d, as claimed earlier.

5.2.4 Forces

The normal force (per unit z-width) on lower flat plate in excess of that from
atmospheric pressure p0 is∫ ∞

−∞
(p− p0) dx, where “∞” is where h & 3d

=
6µV a

d2

√
2ad

(∫ ∞
−∞

dξ

(1 + ξ2)2
= π

)
= 6
√

2π
(a
d

)3/2

µV.

If the cylinder is falling under own weight, F = Mg, then ḋ = −V , so
d ∝ t−2, and it takes an infinite time to touch (but surface roughness).

5.2.5 Other thin layers

• Journal bearing,

• Sphere approaching a wall,

• Cylinder falling parallel to a vertical wall (does not rotate!),

• Two cylinders counter rotating, for milling steel,

• Thin layers on inclined plane, for lava flow,

• Thin layer dripping off a rotating horizontal cylinder (Moffatt).
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5.3 Hele-Shaw cell

This device was invented to visualise two-dimensional potential flow for the
design of ships.

U

h

x

y
z

L

Flow is in the thin gap of thickness h between two fixed plates, with
obstacles of size L. If h � L, the flow is mostly in xy-plane. The no-slip
boundary condition is u = 0 on z = 0 and z = h. Then

u varies on h in z-direction (⊥ to flow),

u varies on L in x and y directions (‖ to flow).

Then we can ignore inertia if

|ρu · ∇u|
|µ∇2u|

=
ρU2/L

µU/h2
=
Uh

ν

h

L
� 1.

The momentum equation then becomes, by ∂x, ∂y ∼ 1/L� 1/h ∼ ∂z,

0 = −∇p+ µ
∂2u

∂z2
.

But u ∼ (u(x, y, z), v(x, y, z), 0) do ∂p/∂z = 0. So ∇p is in the xy-plane and
independent of z. Hence

u = − 1

2µ
∇2p z(h− z),

where ∇2 = (∂x, ∂y, 0). Integrating through the depth, the volume flux is

q2 =

∫ h

0

u dz = − h3

12µ
∇2p.

Integrating

0 = ∇ · u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z

across the depth

0 =
∂

∂x

(∫ h

0

u dz

)
+

∂

∂y

(∫ h

0

v dz

)
+ w(h)− w(0).
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This requires h to be independent of x and y, although the generalisations
work. Now the vertical velocity w vanishes on the boundaries z = 0 and
z = h so that the last two terms are zero. Hence for the two fixed flat plates

∇2 · q2 = 0.

Substituting in the expression for q2, and taking h and µ to be constant,

∇2
2p = 0.

Hence although the flow is dominating by viscosity, the flow is a (IB) potential
flow u ∝ ∇p with ∇2p = 0. Hence the Hele-Shaw device is used to visualise
two-dimensional potential flows, e.g. aerofoils. Note although u varies in
magnitude with z, it has the same direction for all z, which is essential when
using dye to mark the flow pattern.

5.3.1 Flow past a circular cylinder

Now

q2 = − h3

12µ
∇2 p and ∇2 · q2 = 0, so ∇2

2p = 0 in r ≥ a.

There is uniform flow at large distances

q2 → (Q, 0) in Cartesian coordinates as r →∞ .

Hence

p→ −12µQ

h3
r cos θ.

The condition of no flow through the cylinder is

q2 · n = 0 on r = a, so qr = 0, so
∂p

∂r
= 0.

Hence

p = −12µQ

h3
cos θ

(
r +

a2

r

)
.

The same equation governs for similar reasons seepage flows through
porous rock strata, as in oil reservoirs, aquifers and filters.
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5.4 Gravitational spreading on a horizontal

surface

g

z

r

z=h(r,t)

r=a(t)

P0

How does a liquid drop spread under gravity? – due to ∂h/∂r.
We assume (i) axisymmetry, (ii) a thin layer |∂h/∂r| � 1, (iii) a vis-

cous flow so that we can ignore inertia (Reduced Reynolds number small),
(iv) negligble surface tension and no problems of the moving contact line,
and (v) finally the table is horizontal.

The motion is mainly horizontal, so that the z momentum equation is

0 = −∂p
∂z
− ρg + µ0,

with the free surface boundary condition p = p0 at z = h(r, t). Hence the
pressure distribution is hydrostatic

p(r, z, t) = p0 + ρg(h− z).

The higher pressure on the the table (z = 0) in the centre leads to the
spreading. The r-momentum equation is

0 = −∂p
∂r

+ µ
∂2u

∂z2
,

with no slip boundary condition u = 0 at z = 0 and the free surface boundary
condition of no tangential stress µ∂u/∂z = 0 on z = h. Now our hydrostatic
pressure gives

∂2u

∂z2
=

1

µ

∂p

∂r
=
ρg

µ

∂h

∂r
.

But ∂h/∂r is independent of z so

u = − g

2ν

∂h

∂r
z(2h− z).
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The volume flux out of a cylinder of radius r is

Q(r) = 2πr

∫ h

0

u dz = −2πr
gh3

3ν

∂h

∂r
.

Mass conservation between cylinders r and r + δr is

2πδr
∂h

∂t
+Q(r + δr)−Q(r) = 0,

so

2πr
∂h

∂t
+
∂Q

∂r
= 0.

r

Q

dh/dt

Q

r+dr

Hence subsituting in the expression for Q, we have a nonlinear diffusion
equation governing the spreading of the drop

∂h

∂t
=

g

3ν

1

r

∂

∂r

(
rh3∂h

∂r

)
.

Note the condition for the edge of the spreading drop is

h = 0 at r = a(t), so there Q = 0.

Multiplying the above diffusion equation by r and integrating from r = 0 to
r = a gives ∫ a

0

r
∂h

∂t
dr =

g

3ν
rh3∂h

∂r

∣∣∣∣a
0

= 0.

Hence ∫ a

0

h2πr dr = V, a constant volume of the drop.

The nonlinear diffusion equation (with interesting behaviour where h → 0)
can be solved easily numerically as a initial value problem. One discovers
that all solutions tend in time to a similarity solution (of self-similar form)

h(r, t) = H(t)f(η) where η =
r

R(t)
.

First we find the scaling functions for the time-varying height H(t) and radius
R(t), and then the ordinary differential equation for the shape f(η). Global
mass conservations gives (dropping all numerical factors)

HR2 = V,
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while the governing diffusion eqaution gives

H

t
=
g

ν

H4

R2
.

Hence

H =

(
νV

gt

)1/4

R =

(
gtV 3

ν

)1/8

.

Substituting into the governing diffusion equation

−H
4t

+H
df

dη

−η
8t

=
g

3ν

H4

R2

1

η

d

dη

(
ηf 3 df

dη

)
.

i.e.

−1
4
f − 1

8
ηf ′ = 1

3

1

η

(
ηf 3f ′

)′
.

To be solved subject to the volume constraint

2π

∫ η0

0

fη dη = 1, where f(η0) = 0.

At this stage it is common to have to solve the ordinary equation numerically,
but in this example it can be solved analytically. If one first multiplies by η,
the equation has a first integral

−1
8
η2f = 1

3
ηf 3f ′ + const.

The constant vanishes because f ′ is finite at f = 0. Hence

1
3
f 2f ′ = −1

8
η, so 1

9
f 3 = 1

16
(η2

0 − η2), so f =
(

9
16

)1/3
(η2

0 − η2)1/3.

Finally the volume constraint is

1 = 2π

∫ η0

0

fη dη = 2π
(

9
16

)1/3
[∫ η0

0

(η2
0 − η2)1/3η dη = 3

8
η

8/3
0

]
Hence

η0 =

(
210

35π3

)
1/8 = 0.7792,

and the drop spreads according to

r = η0

(
gtV 3

ν

)1/8

.
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The 1/8 power-law for the time dependence means increasing slow spreadins,
e.g. if it takes 1 second for the first 1 cm, it will take 4 minutes to go to 2
cm and 18 hours to go to 4 cm.

Note that the assumption of a similarity shape has turned the partial dif-
ferential equation into an ordinary differential equation. Similarity solutions
may or may not exist, and may or may not be stable.

Exercise 5.1 (Sphere approaching a wall) A rigid sphere of radius a
falls through a fluid of viscosity µ under gravity towards a horizontal rigid
plane. Use lubrication theory to show that, when the minimum gap h0 is
very small, the speed of approach of the sphere is

h0W/6πµa
2,

where W is the weight of the sphere corrected for buoyancy.

Exercise 5.2 (Flow through a gap) Oil is forced by a pressure difference
∆p through the narrow gap between two parallel circular cylinders of radius
a with axes 2a+ b apart. Show that, provided b� a and ρb3∆p� µ2a, the
volume flux is approximately

2b5/2∆p

9πa1/2µ

when the cylinders are fixed.
Show also that when the two cylinders rotate with angular velocities Ω1

and Ω2 in opposite directions, the change in the volume flux is

2
3
ab(Ω1 + Ω2).

Exercise 5.3 (Hovering on an air-table) A disk hovers on a cushion of
air above an air-table – a fine porous plate through which a constant flux of
air is pumped. Let the disk have a radius R and a weight Mg and hover at a
low height h (h� R) above the air-table. Let the volume flux of air, which
has density ρ and viscosity µ, be w0 across unit surface area. The conditions
are such that ρwoh

2/µR� 1. Explain the significance of this restriction.
Find the pressure distribution in the air under disk. Show that this

pressure can balance the weight of the disk if

h = R

(
3πµRwo

2Mg

)1/3

.
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Exercise 5.4 (Dripping from rotating horizontal cylinder) A viscous
fluid coats the outer surface of a cylinder of radius a which rotates with an-
gular velocity Ω about its axis which is horizontal. The angle θ is measured
from the horizontal on the rising side. Show that the volume flux per unit
length Q(θ, t) is related to the thickness h(θ, t) of the fluid layer by

Q = Ωah− g

3ν
h3 cos θ,

and deduce an evolution equation for h(θ, t).
Consider now the possibility of a steady state with Q = const, h = h(θ).

Show that a steady solution with h(θ) continuous and 2π-periodic exists only
if

Ωa > (9Q2g/4ν)1/3.

Exercise 5.5 (Spreading of 2D drop) A two-dimensional drop h(x, t) spreads
on a horizontal table. Assuming that the drop has become a thin layer, find
how the drops spreads. [It is not possible to integrate the volume in closed
form.]
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Chapter 6

Vorticity generation and
confinement

We now switch to high Reynolds numbers. While inertia dominates, viscosity
has a role to play, particularly in special thin regions. This chapter is a
preparation for the following chapter on boundary layers.

6.1 Vorticity equation

The vorticity ω = ∇ × u is the local angular velocity, see §2.2. Hence the
vorticity equation is the angular momentum equation for fluid motion.

The momentum equation (Navier-Stokes), see §2.5.2, is

ρ
Du

Dt
= F−∇p+ µ∇2u.

The fluid acceleration may be written as

Du

Dt
=
∂u

∂t
+ (u · ∇)u =

∂u

∂t
+∇

(
1
2
u2
)
− u× (∇× u).

We now assume that the force is conservation

F = −∇Φ,

and that ρ and µ are constants.
Taking the curl of the momentum equation, we have

ρ

(
∂ω

∂t
−∇× (u× ω)

)
= µ∇2ω
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Now

∇× (u× ω) = (ω · ∇)u + u(∇ · ω)− (u · ∇)ω − ω(∇ · u)

The two divergences vanish, because ω is a curl and because the flow is
incompressible . Hence the vorticity equation

∂ω

∂t
+ (u · ∇)ω

(1)

= (ω · ∇)u
(2)

+ µ∇2ω
(3)

.

Term (1) is the advection of vorticity with the flow. Term (2) is stretching of
vorticity. Term (3) is the diffusion of vorticity. To build up an understand-
ing of the vorticity equation, we will examine in the following sections first
stretching, then diffusion, then balancing advection and diffusion, and finally
a combination of advection, stretching and diffusion.

Note with the assumption of conservative forces and ρ constant, there is
no source of vorticity in the interior of the flow.

6.2 Stretching vorticity

Also called the Ballerina effect, and important for tornadoes and hurricanes.
Recall the motion of a material line element δ` moving with the fluid.

The two ends at x and x + δ` move in δt with the flow according to

x → x + δtu(x, t),

x + δ` → x + δ`+ δtu(x + δ`, t)

Hence for small δ`
δ` → δ`+ δt (δ` · ∇)u.

or
d

dt
δ` = (δ` · ∇)u.

The component of the right hand side perpendicular to δ` rotates δ`, while
the component parallel stretches it. Comparing with the vorticity equation,
we see that vorticity is rotated and stretched just like a material line element.

The stretching is just the conservation of angular momentum. Consider
a cylinder of radius a1 and length `1 spinning at ω1 which becomes a2, `2 and
ω2
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t

ω

a

l

a

l

1

1

1

2

2

ω
2

Mass conservation gives
ρa2

1`1 = ρa2
2`2,

while angular momentum conservation gives

ρa2
1`1a

2
1ω1 = ρa2

2`2a
2
2ω2.

Hence

ω2 = ω1
`2

`1

.

6.3 Diffusion of vorticity

In §3.3 we studied a plate impulsively started, by solving the diffusion equa-
tion

∂u

∂t
= ν

∂2u

∂y2
,

and found that momentum diffused from the plate, influencing (u & 1
5
U) a

region next to the plate y .
√
νt.

Alternatively, we can view the initial condition as a discontinuity in u(y)
on the boundary, i.e. a delta function of vorticity ω = −∂u/∂y. So we could
say that vorticity was generate at the boundary at t = 0+ and then diffused
into the interior

∂ω

∂t
= ν

∂2ω

∂y2
.

In §3.4 we studied an oscillating plate, and found that alternating signed
momentum diffused into the interior to a depth y =

√
2ν/ω ≈

√
νt with

t = π/ω. Alternatively, we can view the flow as alternating signed vorticity
diffusing from the boundary into the interior.

In both cases, vorticity is generated at the boundary, not in the interior.
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6.4 Wall with suction

This is an artificial, but simple, example of the confinement of vorticity. It
does have some relevance to cross-flow filtration and boundary-layer control.

The boundary is a porous plate with a low pressure on its other side
which produces a suction of a volume flux V per unit area.

V

y

x

VU

Far from the wall, there is a cross-flow U and the suction V . We take F = 0
and ∇p = 0. We try a flow field u = (u(y),−V, 0) with u → U as y → ∞,
and no-slip u = 0 on y = 0.
With this assumed form of the flow, mass conservation ∇·u = 0 is automat-
ically satisfied. The x-momentum equation is

−ρV ∂u
∂y

= µ
∂2u

∂y2
,

with solution
u = U

(
1− e−V y/ν

)
.

Thus vorticity −∂u/∂y is confined to a region next to the wall, of thickness
δ = ν/V .

Vorticity diffuses away from the wall, in time t to a distance
√
νt, but is

advected back by the suction flow, moving a distance V t. Balancing diffusion
away with advection back occurs at

t = ν/V 2 i.e. at thickness δ = ν/V.

Alternatively one can balance terms in the momentum equation

−ρV ∂u
∂y

= O

(
ρV U

δ

)
, µ

∂2u

∂y2
= O(

(
µU

δ2

)
,

balancing gives δ = ν/V .
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6.5 Stagnation point flow on rigid boundary

This is a second example of the confinement of vorticity, in which there is
a balance between vorticity diffusing away from the boundary and being
advected back to it. For flow U past an obstacle size L, some flow will pass
one side and some the other. The dividing streamline reaches the obstacle
at a stagnation point where the velocity vanishes, and there the velocity
gradient (strain-rate) is E = O(U/L). In this example, we examine the
flow in the neighbourhood of the stagnation point, where we may take the
boundary to be flat. We also consider the two-dimensional case.

y

x

We take a pure straining field far from the plate

u→ (Ex,−Ey, 0) as y →∞,

with strain-rate E, and no slip u = 0 at y = 0. With a pure straining flow
at large distances, there is no vorticity there.

We estimate the thickness of the region of confined vorticity by balancing
terms in the vorticity equation

ρv
∂u

∂y
= O

(
ρEδ

Ex

δ

)
, µ

∂2u

∂y2
= O

(
µ
Ex

δ2

)
,

Hence

δ =

√
ν

E
.

This is just
√
νt again with t = 1/E. Because δ does not depend on x, we

will obtain an exact solution of the Navier-Stokes equation, which is quite
rare.

We non-dimensionalise the problem using δ to scale y, Ex to scale u, Eδ
to scale v, i.e. we seek a solution of the form

u = Exf(η), v = Eδg(η), with η = y/δ.
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Mass conservation gives

0 =
∂u

∂x
+
∂v

∂y
= Ef + Eδg′

1

δ
,

i.e. is satsified for all x and y if

f + g′ = 0.

The x-momentum equation is

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
,

ρ

(
Exf Ef + Eδg Exf ′

1

δ

)
= −∂p

∂x
,+µ

(
0 + Exf ′′

1

δ2

)
,

ρE2x
(
f 2 + gf ′ − f ′′

)
= −∂p

∂x
,

where we have used δ2 = ν/E. The y-momentum is

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
,

ρ

(
Exf 0 + Eδg Eδg′

1

δ

)
= −∂p

∂y
+ µ

(
0 + Eδg′′

1

δ2

)
,

ρE2δ (gg′ − g′′) = −∂p
∂y
.

Eliminating the pressure by cross-differentiating (forming the vorticity equa-
tion), one finds that both momentum equations can be satisfied for all x and
y if

(f 2 + gf ′ − f ′′)′ = 0,

as ∂x(py) = 0. The boundary and far conditions are

as η →∞, f → 1, g → −η, and at η = 0, f = 0, g = 0.

Then integrating once, using f → 1 as η →∞,

f 2 + gf ′ − f ′′ = 1.

Substituting in f = −g′, we have

g′2 − gg′′ + g′′′ = 1.

This has to be integrated numerically. One finds
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η

f,u

2.4

1

0.99

0.65

η

g

The horizontal velocity u is within 1% of the far field value by y = 2.4δ.
The behaviour g ∼ −(η − 0.65) as η →∞ means that the flow looks like an
inviscid pure straining with slip at a wall at y = 0.65δ. This is called the
displacement thickness, corresponding to a deficit in the volume flux because
of the fluid slowed down next to the wall.

The pressure is

p = 1
2
ρE2x2 + 1

2
E2δ2

∫ η

0

(g′′ − gg′) dη.

6.6 Burgers vortex

This is another exact solution of the Navier-Stokes equation. It is steady,
and has a balance between advection, stretching and diffusion of vorticity.

vorticity

stretching

advection

v

The flow is a combination of an axisymmetric swirling flow around an axis
and an axisymmetric straining motion, in polar coordinates

u = (0, v(r), 0) + α(−r, 0, 2z),
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or in Cartesian coordinates

u = (−y
r
v, x

r
v, 0) + α(−x,−y, 2z).

This combination satisfies mass conservation, in polar coordinates

∇ · u =
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= −2α + 0 + 2α = 0,

or in Cartesian coordinates

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= −y
(v
r

)′ x
r
− α + x

(v
r

)′ y
r
− α + 2α = 0.

The vorticity comes only from the swirling motion, in polars

ω = ∇× u = (0, 0,
1

r

∂

∂r
(rv)) = (0, 0, ω(r)),

or in Cartesian the z-component is

ω =
∂

∂x

(x
r
v
)
− ∂

∂y

(
−y
r
v
)

=
2v

r
+
x2 + y2

r

∂

∂r

(v
r

)
=

1

r

∂

∂r
(rv).

The vorticity equation

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω

only has a non-zero component in the z-direction and ω only varies with r,
so

∂ω

∂t
0 steady

− αr
∂ω

∂r
advection

= ω
∂

∂z
(2αz)

stretching

+ ν
1

r

∂

∂r

(
r
∂ω

∂r

)
diffusion

,

i.e. multiplying by r

0 = αr2∂ω

∂r
+ 2αrω + ν

∂

∂r

(
r
∂ω

∂r

)
.

Integrating

0 = αr2ω + νr
∂ω

∂r
+ const.

The constant vanishes by requiring the vortex to decay at large distance,
ω → 0 as r →∞, so

ω = ω0e
−αr2/2ν .
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This distribution of vorticity represents a steady balance between advection,
stretching and diffusion.

Now we have above an expression relating the vorticity to the swirling
velocity

ω =
1

r

∂

∂r
(rv),

so integrating

v =
1

r

νω0

α

(
1− e−αr2/2nu

)
.

Here a constant of integration has been chosen so that v is finite as r → 0.
Near to the axis r � δ =

√
α/ν,

v ∼ 1
2
ω0r,

a solid body rotation, and far from the axis r � δ

v ∼ 1

r

νω0

α
,

the potential flow of a line vortex. Thus viscosity regularises the singular
core of a line vortex.

In the Burgers vortex, again vorticity is confined by advection in against
diffusion out

vr
∂ω

∂r
= O

(
αδ
ω

δ

)
, ν

∂2ω

∂r2
= O

(
ν
ω

δ2

)
,

balancing gives δ =
√
α/ν.

Exercise 6.1 (Channel with cross-flow) The walls of a channel are porous
and separated by a distance d. Fluid is driven through the channel by a pres-
sure gradient G = −∂p/∂x, and at the same time suction is applied to one
wall of the channel providing a cross flow with uniform transverse component
of velocity V , fluid being supplied at this rate at the other wall. Find and
sketch the steady velocity and vorticity distributions in the fluid (i) when
V d/ν � 1 and (ii) when V d/ν � 1.

Exercise 6.2 (Cylindrical annulus with cross-flow) Viscous fluid fills
an annulus a < r < b between a long stationary cylinder r = b and a
long cylinder r = a rotating at angular velocity Ω. Find the axisymmetric
velocity field, ignoring end effects.

Suppose now that the two cylinders are porous, and a pressure difference
is applied so that there is a radial flow −V a/r. Find the new steady flow
around the cylinder when V a/ν < 2 and V a/ν > 2. Comment on the flow
structure when V a/ν � 1.

Find the torque that must be applied to maintain the motion.
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Exercise 6.3 (Diffusion of vorticity in time) Starting from the Navier-
Stokes equations for incompressible viscous flow with conservative forces,
obtain the vorticity equation

Dω

Dt
= ω · ∇u + ν∇2ω.

Interpret the terms in the equation.
At time t = 0 a concentration of vorticity is created along the z-axis,

with the same circulation Γ around the axis at each z. The fluid is viscous
and incompressible, and for t > 0 has only an azimuthal velocity v, say.
Show that there is a similarity solution of the form vr/Γ = f(η), where
r = (x2 + y2)1/2 and η is a suitable similarity variable. Further show that all
conditions are satisfied by

f(η) =
1

2π
(1− e−η), η = r2/4νt.

Show also that the total vorticity in the flow remains constant at Γ for all
t > 0. Sketch v as a function of r.

Exercise 6.4 (Diffusion and stretching of vorticity in time) Calculate
the vorticity ω associated with the velocity field

u = (−αx− yf(r, t), −αy + xf(r, t), 2αz) ,

where α is a positive constant, and f(r, t) depends on r = (x2 + y2)1/2 and
time t. Hence show that the velocity field represents a dynamically possible
motion if f(r, t) satisfies

2f + r
∂f

∂r
= Aγ(t)e−γ(t)r2 ,

where
γ(t) =

α

2ν

(
1± e−2α(t−t0)

)−1
,

and A and t0 are constants.
Show that in the case where the minus sign is taken γ is approximately

1/(4ν(t − t0)) when t only just exceeds t0. Which terms in the vorticity
equation dominate when this approximation holds?
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Chapter 7

Boundary layers at high
Reynolds numbers

In this chapter we shall see vorticity confined to layers very close to the wall,
because in a fast flow it will not have time to diffuse far.

7.1 Euler and Prandtl limits

The full incompressible Navier-Stokes equations are

∇ · u = 0

ρ
Du

Dt
= F−∇p+ µ∇2u.

At high Reynolds numbers, Re = UL/ν � 1 for flow U past a body of size
L, one might argue that the viscous terms should be neglected, which would
lead to

ρ
Du

Dt
= F−∇p,

the Euler equation. This argument is dangerous . Mathematically, one has to
give up one boundary condition, the no-slip condition utang = 0 associated
with viscous stress being finite.

The Euler limit is OK sometimes, for water waves, implusive motion, and
lift on an aerofoil.

But not always. A major divergence had arisen in the 1900s between
experiments and “theoretical”, i.e. Euler-equation, studies. The paradox
was resolved by Prandtl in 1902.

The error in the argument is to assume that the flow adopts the length-
scale of the geometry, L. Instead one sees thin regions with large spatial
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gradients where µ∇2u (small µ, large ∇2) is comparable with ρ(u · ∇)u.
These thin layers permit one to apply the no-slip boundary condition.

The time to pass a body of length L at velocity U is t = L/U . During this
time, vorticity generated at the boundary diffuses by viscosity (the influence
of the no-slip boundary) a distance

δ =
√
νt =

√
νL/U = L

(
UL

ν

)−1/2

.

Thus at high Reynolds numbers Re = UL/ν � 1, the vorticity is confined to
a thin region (thin compared with the body). This chapter studies these thin
regions, called boundary layers , in what is called the Prandtl limit. Outside
these thin layers the Euler equation is OK. Occasionally these thin layers are
not on against the boundary, as in the example of a jet, see §7.5.

7.2 Matched Asymptotic Expansions

This section gives the mathematical background for the Euler/Prandtl limits,
providing the machinery to go beyond the leading order which we concen-
trated on in subsquent sections.

7.2.1 Model problem

To find y(x; ε) with small positive parameter ε

εy′ + y = e−x, x ≥ 0, and y = 0 at x = 0.

The key feature is a small parameter multiplying the highest derivative. The
simple model is chosen to have a simple exact solution

y =
1

1− ε
(
e−x − e−x/ε

)
.

y

x

1

ε
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7.2.2 OUTER

The asymptotic expansion for fixed x 6= 0 as ε → 0 is called the “Outer”
expansion

y ∼ e−x + εe−x + ε2e−x.

The e−x/ε term is exponentially small, i.e. after all powers εn in this expansion
for x fixed.

y

x

1

ε

7.2.3 INNER

The exponentially small term can be made visible by making an alternative
asymptotic expansion with ξ = x/ε fixed as ε → 0, in the so-called “Inner”
expansion

y =
1

1− ε
(
e−εξ − e−ξ

)
∼ (1− e−ξ) + ε(1− ξ − e−ξ).

y

1

ξ

We have obtained these two asymptotic expansions from the exact solu-
tion, which was available because the model problem was simple. Typically
in real problems, like the nonlinear partial differential Navier-Stokes equa-
tion, an exact solution is not available. For such problems, can one first
approximate the question in order to obtain an exact solution of an approx-
imate question instead of the above approximation of an exact solution to
the original unapproximated question.
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7.2.4 Seek the outer

To find the outer expansion, one seeks a solution for x 6= 0 by posing

y(x; ε) ∼ y0(x) + εy1(x).

Substituting into the governing equation and comparing terms with the same
powers of ε on the two sides of the equation, one has

At O(ε0): y0 = e−x, hence y0 = e−x,

At O(ε1): y′0 + y1 = 0, hence y1 = e−x.

Note that the boundary condition y = 0 at x = 0 cannot be applied because
x = 0 is not in the outer domain.

7.2.5 Seek the inner

To find the inner expansion where the boundary condition is applied, one
first introduces the stretched variable x = εξ. In terms of this variable the
original governing equation becomes

dy

dξ
+ y = eεξ ∼ 1− εξ

One then poses the expansion

y(x; ε) ∼ Y0(ξ) + εY1(ξ).

Substituting into the new form of the governing equation and comparing
terms with the same powers of ε on the two sides of the equation, one has

At O(ε0): Y ′0 + Y0 = 1, with Y0(0) = 0, hence Y0 = 1− e−ξ,
At O(ε1): Y ′1 + Y1 = −ξ, with Y1(0) = 0, hence Y1 = 1− ξ − e−ξ.

In more complicated problems, there are sometimes undetermined con-
stants of integration which have to be found by “matching”, i.e. looking at

OUTER
x→ 0

≡ INNER
ξ →∞

.
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7.3 Boundary layer eqautions

We consider the two-dimensional case.

y

x

L

u U(x,t)

δ (x)

Let the tangential velocity u vary in the flow x-direction on a lengthscale
L, and vary across the flow on the smaller lengthscale of the boundary layer
thickenss δ(x), i.e. we assume δ � L. As one comes out of the boundary
layer, y/δ → ∞, the tangentail velocity tends to a given free-stream flow
u(x, y, t) → U(x, t), while the transverse y-velocity “decays” (to be inter-
pretted later).
Within the boundary layer, the tangentail velocity will be u = O(U), but
the y-velocity will be much smaller. We can estimate its size from the in-
compressibility condition

0 =
∂u

∂x
+
∂v

∂y
→ U

L
=
v

δ
→ v = O

(
U
δ

L

)
.

In other words, v is U deflected through a small angle δ/L.

First boundary layer approximation We negelect
∂2

∂x2
compared with

∂2

∂y2
. Thus in the x-momentum equation becomes

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

∂2u

∂y2
.

• Note we keep v
∂u

∂y
because although v is small

∂

∂y
is large:

v
∂u

∂y
= O

(
U
δ

L

U

δ

)
= O

(
u
∂u

∂x

)
.
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• Note the need to balance viscous and inertial terms gives the boundary
layer thickness:

ρ
U2

L
= µ

U

δ2
→ δ =

(
νL

U

)1/2

= L

(
UL

ν

)−1/2

,

so that the boundary is thin when the Reynolds number is large.

• Outside the boundary layer, y/δ → ∞, u → U(x, t) and the equation
reduces to

ρ

(
∂U

∂t
+ U

∂U

∂x

)
= −∂p

∂x
.

This gives an estimate for the pressure variations along the flow

∆
x
p = O(ρU2)

Second boundary layer approximation Consider the y-momentum equa-
tion

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

∂2v

∂y2
.

This gives an estimate for the pressure variations across the flow

∆
y
p = O

(
ρU2 δ

2

L2

)
.

Hence the variation across the boundary layer is δ2/L2 smaller than along
the flow. Hence ∂p/∂x varies little across the boundary layer from its value
outside. Thus we have the governing boundary layer equations

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ρ

(
∂U

∂t
+ U

∂U

∂x

)
+ µ

∂2u

∂y2
,

∂u

∂x
+
∂v

∂y
= 0.

In three-dimensional flows, there are two momenta equations (quasi-
Cartesian) for the two directions within the locally flat layer, plus a mass
conservation equation (in proper curvilinear coordinates).

The missing
∂2

∂x2
term makes the steady boundary layer equation parabolic

in x instead of elliptic, so can be solved numerically by stepping downstream.
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7.4 Boundary layer on a flat plate

Blassius 1908. A simple application of the boundary layer equations, al-
though an important flow.

The plate starts at x = 0. The external flow U is constant.

δ (x)
y

x

x

With no x-length scale imposed in the definition of the problem, we take L =
x itself, so heading for a similarity solution. The estimate of the boundary
layer thickness of §7.3 gives

δ(x) =

√
νx

U
,

which is just
√
νt with t = x/U . To satisfy the mass conservation, we

introduce a streamfunction ψ(x, y) with

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Now u = O(U) and y = O(δ), so ψ = O(Uδ). Hence we seek a solution of
the (similarity) form

ψ = Uδ(x)f(η), where η =
y

δ(x)
.

We need (
∂δ

∂x

)
y

=
δ

2x
, and

(
∂η

∂x

)
y

= − η

2x
.

Then

u = Uf ′, v = −U δ

2x
f − Uδf ′−η

2x
=
Uδ

2x
(−f + ηf ′).

The steady boundary layer equation

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= ρU

∂U

∂x
=0

+ µ
∂2u

∂y2
,
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becomes

ρ

(
Uf ′Uf ′′

−η
2x

+
Uδ

2x
(−f + ηf ′)Uf ′′

1

δ

)
= µUf ′′′

1

δ2
.

With δ2 = µx/ρU , this equation is satisfied at all x and y if

−1
2
ff ′′ = f ′′′.

This is an ordinary differential equation to be solved subject to

f = f ′ = 0 at η = 0, and f ′ → 1 as η →∞.

The equation is solved numerically, shooting from η = 0 with f ′′(0) = 0.332.

1.5 2.5 4.9

0.5

0.75

0.99

1

f’

η

Plotted is f ′, i.e. u. Also

f ∼ η − 1.72 as η →∞.

One can apply the above local solution to a finite length plate. The drag
on each side (top and bottom) is per unit z-width∫ l

0

[
µ
∂u

∂y

∣∣∣∣
y=0

=
µUf ′′(0)

δ(x) =
√
νx/U

]
dx

= 2f ′′(0)µU

(
Ul

ν

)1/2

= 1
2
ρU2l

(
Ul

ν

)−1/2

4f ′′(0).

This is the correct leading order drag at Re � 1 on a finite plate. There
are corrections from the leading edge where x = δ(x), and bigger corrections
from the trailing edge where a local cusp in the velocity profile produces a
high acceleration and so a large pressure change.
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Note that

v =
Uδ

2x
(−f + ηf ′ → 1.72) as y/δ →∞.

As the boundary layer grows downstream, less fluid is moving at U , so an
excess must be pushed out of vertically. One says that the boundary layer
is “detraining”. There is an effective boundary to the inviscid outer flow at
y = 1.72δ(x). This is called the “displacement thickness”

δ∗ =

∫ ∞
0

(U − u) dy/U.

7.5 Two-dimensional momentum jet

Schlichting 1932. At high Reynolds numbers, one observes a jet with flow
confined to a thin region in which friction acts. Thus we shall use the bound-
ary layer equations as an approximation to the Navier-Stokes equation, even
though there is no boundary.

x

y

Force
δ (x) U (x)

We need to find the scalings of the thickness of the jet δ(x) and the centre
line velocity U(x). Balancing the inertial and viscous terms in the boundary
layer equations

ρU2

x
=
µU

δ2
,

where x is used for the length-scale along the flow, as no other length is
given. For a second relation between δ and U we use a global result that the
momentum flux (per unit z-width) in the jet is the same at each x, because

there is no friction from ∞ and we have dropped the
∂2

∂x2
terms, i.e. it is

claimed that

F =

∫ ∞
−∞

ρu2 dy is independent of x.

To check
dF

dx
= 2

∫ ∞
−∞

ρu
∂u

∂x
dy.
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Using the steady boundary layer equations

= 2

∫ ∞
−∞

(
−ρv∂u

∂y
− dp

dx
+ µ

∂2u

∂y2

)
dy.

Now by u→ 0 outside the jet as y →∞ we have dp/dx = 0. Then integrating
by parts

= −2ρvu

∣∣∣∣∞
−∞

+ 2

∫ ∞
−∞

ρ
∂v

∂y
u dy + µ

∂u

∂y

∣∣∣∣∞
−∞

.

Now u→ 0 and ∂u/∂y → 0 outside the jet, and by incompressibility ∂v/∂y =
−∂u/∂x. Hence

= −dF
dx
,

equal and opposite to the first expression, which must therefore vanish. Hence
we have a second relation between δ and U

F = ρU2δ.

Solving

δ =

(
ρx2ν2

F

)1/3

, U =

(
F 2

ρ2xν

)1/3

.

As in the previous section about a flat plate, we use a streamfunction ψ =
O(Uδ), and seek a similarity solution (self-similar profile of the jet)

ψ(x, y) = U(x)δ(x)f(η) with η =
y

δ(x)
.

We need (
∂(Uδ)

∂x

)
y

=
Uδ

3x
,

(
∂η

∂x

)
y

= −2η

3x
.

Then

u =
∂ψ

∂y
= Uf ′, v = −∂ψ

∂x
= −Uδ

3x
− Uδf ′−2η

3x
=
Uδ

x

(
−1

3
f + 2

3
ηf ′
)
.

The steady boundary layer equation

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −dp

dx
+ µ

∂2u

∂y2
,

becomes, with dp/dx = 0 from outside the jet,

ρ

(
Uf ′

(
−U
3x

f ′ + Uf ′′
−2η

3x

)
+
Uδ

x

(
−1

3
f + 2

3
ηf ′
)
uf ′′

1

δ

)
=
µU

δ2
f ′′′.
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With δ2 = xµ/ρU this equation is satisfied for all x and y if

−1
3
f ′2 − 1

3
ff ′′ = f ′′′.

This nonlinear ordinary differential equation is to be solved subject to

f ′ → 0 as η →∞, no flow outside jet,

f = 0 at η = 0, defines centre of jet,∫ ∞
−∞

f ′2 dy = 1, momentum flux normalisation.

Integrating once
−1

3
ff ′ = f ′′ + const.

The constant vanishes from conditions outside the jet. Integrating again
1
6

(
k2 − f 2

)
= f ′,

with constant k. Integrating again

f = k tanh
k

6
(η − η0),

with η0 = 0 from the centre line at η = 0. Now applying the momentum flux
normalisation

1 =

∫ ∞
−∞

f ′2 dy =

∫ ∞
−∞

f ′ 1
6
(k2 − f 2) dy = 1

6
(k2f − 1

3
f 3)
∣∣∣∞
−∞

= 2
9
k3,

so k = (9/2)1/3.

The mass flux in the jet (per unit z-width) is∫ ∞
−∞

ρu dy = ρUδ

∫ ∞
−∞

f ′ dη = 2kρU(x)δ(x) ∝ x1/3.

Thus the jet drags with it more and more fluid in a process of “entrainment”,
as in shower curtains.

The Reynolds number Re = Uδ/ν ∝ x1/3 increases, so at large x the jet be-
comes unstable. One can also solve the axisymmetric “round” jet, momentum
wakes behind towed objects, momentum-free wakes behind self-propelled ob-
jects, and shear layers.
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7.6 Effect of acceleration and deceleration of

the external stream

Falkner-Scan 1930. Consider a boundary layer on a rigid wall, starting at
x = 0, with flow outside the boundary layer

u(x) = U0(x/`)m.

This flow occurs in potential (irrotational) flow around a corner of angle
π/(m+ 1).

m = 1, angle = π
2 Stagnation flow, §6.5.

m = 0, angle = π
Flat plate, uniform
flow, §7.4.

m = −1
3
, angle = 3π

2

Flow decelerates from
x = 0 to ∞.

In the boundary layer equations, the pressure gradient is set by the ex-
ternal flow

−dp
dx

= ρU
dU

dx
= ρm

U2

x
.

Then balancing these inertial terms with the viscous terms

ρ
U2

x
= µ

U

δ2
,

gives the boundary layer thickness

δ(x) =

√
νx

U(x)
∝ x(1−m)/2.

We seek a similarity solution using a streamfunction of the form

ψ(x, y) = U(x)δ(x)f(η) with η =
y

δ(x)
.

We need
Uδ ∝ x(m+1)/2, η ∝ x(m−1)/2.
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Then

u =
∂ψ

∂y
= Uf ′, v = −∂ψ

∂x
= −m+ 1

2

Uδ

x
f − Uδf ′m− 1

2

η

x
.

Substituting into the boundary layer equation yields, after some cancellations

mf ′2 − 1
2
(m+ 1)ff ′′ = m+ f ′′′.

[Check m = 1 with §6.5, and m = 0 with §7.4.] This equation for f is to be
solved subject to

f = f ′ = 0 at η = 0, f ′ → 1 as η →∞.

This is solved numerically, shooting from η = 0 with f(0) = f ′(0) = 0 and a
guess for f ′′(0), adjusting the guess until f ′ → 1 as η →∞.

Results:

m f ′′(0)

1 1.233

0.5 0.900

0 0.322

−0.05 0.213

All with similar velocity profile.

f’

η

But also for small m < 0 there is a second solutions

e.g. m = −0.05 with f ′′(0) = −0.098.
with reverse flow near to the wall.

f’

η

The solutions with reverse flow are probably unstable and impossible to
set up in an experiment. The two branches come together at m = −0.0904,
corresponding to a wedge angle of 180◦ + 18◦.
In −1 < m < −0.0904, the profiles oscillate about f ′ → 1, with a range of
f ′′(0). In m < −1, the oscillations do not decay as η →∞. All m < −0.0904
are unrealistic.

The solutions are acceptable for accelerating external flows, m > 0, and
for slightly decelerating flows −0.0904 < m < 0. If the external flow is
slowing down,
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mass conservation gives an advection away from the wall. With advection
and diffusion away from the wall, it is not possible to confine the vorticity
near to the wall, so the boundary layer structure breaks down. Typically the
boundary layer separates from the wall and head off in the interior of the
flow.

7.7 Flow past a body at high Reynolds num-

ber

This section is entirely qualatitive, based on observations of experiments.

7.7.1 Streamline body at zero lift

U y x U(x)

l

0
boundary

layers

• Solve Euler problem for the potential flow, with u ·n = 0 but allow slip,
utang, to find the tangential velocity U(x) just outside the boundary
layer.

• Solve numerically the boundary layer equationns, with external pres-
sure gradient

−dp
dx

= ρU
dU

dx
,

to find the tangential viscous stress µ∂u/∂y evaluated on the boundary
y = 0. Integrate this stress over the boudary to obtain the “skin
friction” drag force (per unti z-width)

O

(
ρU2`

(
U`

ν

)−1/2
)
.
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7.7.2 Bluff body

A bluff body is a non-streamline body, such as a sphere or cylinder.

accelerate decelerate

U

U

max

0

The potential flow past the body has a maximum and afterwards decel-
erates. If one uses this potential flow as the external flow U(x) ∝ sin θ in the
boundary layer equations, one finds that the solution blows up at θ = 104.5◦.
One observes in experiments

U 0

boundary layer separates from body

quiet wake
instability

The separation point is roughly at θ = 80◦ when laminar at Re = 105−,
but moves to 120◦ at Re = 105+ when the flow becomes turbulent. The
turbulence reduces the cross-sction of the wake, which thus reduces the drag,
so trip-wires are used to trigger turbulence at lower Re.

Drag ∼ 1
2
ρU2

0ACD,

with A cross-sectionaal area of the body and CD a drag coefficient which
depends on the shape, 0.3 for a sphere.

7.7.3 Streamline body with lift

It is necessary to keep the “angle of attack” less than 18◦, §7.6, so that there
is only slight deceleration, so that the boundary layer remains attached.
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U0
u+, p−

u−, p+

lift

A clockwise circulation makes the flow faster along the top surface than along
the bottom. By Bernoilli (in the potential flow) the pressure is lower on the
top surface than on the bottom surface. Hence there is an upward lift force.

If the angle of attack is large, the aerofoil “stalls”, and the flow is like a
bluff body.

quiet wake

The drag jumps by a factor of Re1/2 and lift is lost.

7.8 Flow in a wedge
θ=α

θ=−α

Volume flux Q

Q>0 for out

Jeffery-Hamel 1914. In §4.4 we looked at a source flow in a wedge at
low Reynolds numbers. There is an exact (similarity) solution of the Navier-
Stokes equation at all Reynolds numbers with a radial flow, which we shall
now derive before considering the behaviour at high Reynolds numbers.

Consider the flow in two dimensions with a volume flux (per unit z-width).
We use a streamfunction for the radial flow

ψ = Qf(θ), so ur =
1

r

∂ψ

∂θ
=
Q

r
f ′, uθ = −∂ψ

∂r
= 0,
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The vorticity is ω = (0, 0, ω) with

ω = −∇2ψ =
Q

r2
f ′′.

The vorticity equation is

∂ω

∂t
=0, steady

+ (u · ∇)ω = (ω · ∇)u
=0, 2D

+ ν∇2ω,

becomes

ur
∂ω

∂r
= ν∇2ω, i.e. − 2Q

ν
f ′f ′′ = f ′′′′ + 4f ′′.

The Reynolds number is Q/ν. The vorticity equation is to be solved subject
to boundary conditions

f ′(±α) = 0 no slip,

f(α)− f(−α) = 1 volume flux normalisation,

f(−α) = 0 additive constant.

The problem can be solved numerically by shooting from θ = −α with f =
f ′ = 0 and guesses for f ′′ and f ′′′. These guesses are adjusted until f ′(α) = 0
and f(α) = 1. From the solution one can evaluate the maximum velocity,
f ′(θ) maximising over θ. Alternatively, one can integrate once, then multiply
by f ′′ to integrate a second time, then invert to produce an elliptic integral
of f ′ for θ.

At low Reynolds numbers, |Q/ν| � 1, one recovers the solutions of §4.4,
with vaguely parabolic velocity profiles whether the flow is out, Q > 0, or in,
Q < 0.

Q>0
Q<0

At high Reynolds numbers with in flow Q < 0, there is away from the
walls (Euler limit) a uniform potential flow ur = −|Q|/2αr. Near the walls
there are boundary layers. These boundary layers are governed by

f ′′′ +
Q

ν

(
f ′2 − 1

4α2

)
= 0,
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where we have ignored a 4f ′′ term compared with f ′′′′ and then integrated
once. The equation can be integrated further to find near the boundary
θ = α

f ′ =
1

2α

(
1− 3 sech2

(√
−Q
2αν

(α− θ) + sech−1 1√
3

))
.

bl

bl

potential

flow

At high Reynolds numbers with out flow Q > 0, a central jet develops at
moderate Re, with reverse flow near the walls as Re increases.

α = 0.5, Q/ν = 10 α = 0.5, Q/ν = 20

There are also asymmetric solutions, many.
The radial out flow is decelerating, so it cannot confine the vorticity to

be near to the walls. The type of jet depends on the details of the nozzle.
The flow often does not take the assumed similarity form.

7.9 Boundary layer on a free surface

Consider the free surface between air and water. Because µair � µwater and
ρair � ρwater, the air exerts only a constant pressure p0 (unless there are
strong winds) on the water. Hence the boundary conditions on the water
flow are

Mass: unormal = u · n = normal velocity of moving interface,

Momentum: σ · n = −p0n (+surface tension effects).
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Thus the rigid boundary condition utang = 0 is replaced by the free boundary
condition (σ · n)tang = 0.

Potential flow next to a free surface will not satify this condition, so we
need a boundary layer, a new simpler type of boundary layer. One can show
in general that for steady potential flow with tangential velocity U

σtang = 2µ
U

R
,

where R is the radius of curvature of the surface.

v ∼ U
x

R y

R

x

Irrotational flow gives

∂u

∂y
=
∂v

∂x
so =

U

R
, hence result.

The failure of the potential flow to satisfy the stress-free boundary con-
dition σtang = 0 is corrected by a thin boundary layer. Only a small change
∆U in the velocity U is required to correct the value of the tangential stress.

δ

∆ UU
free

liquid

potential flow R

The tangential stress in the potential flow µU/R is corrected by +µ∆U/δ
to go to zero on the boundary. Hence

∆U = O

(
U
δ

R

)
,

with boundary layer thickness δ =
√
νt =

√
νR/U . Because ∆U � U , the

boundary layer equations can be linearised to leading order, and additionally
the boundary layer will not separate.
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The leading order boundary layer equations yield zero drag, so one has
to look to the corrections. Fortunately there is a trick which bypasses the
boundary layer calculation – one uses dissipation. For example, for a bubble
rising under gravity, the total rate of dissipation is equal to the rate of working
by gravity against the drag force∫

2µeijeij dV = −Fdrag ·Vrise.

Now the strain-rate in the boundary layer is the same size as in the potential
flow, while the volume of the boundary layer is much smaller than the volume
of potential flow. Hence one can ignore the boundary layer in the left hand
side integral and just use the potential flow to calculate the dissipation.

7.10 Rise velocity of a spherical bubble at

Re� 1

To keep the bubble spherical, one needs surface tension, which means the
diameter needs to be less than 5 mm in water.

First we need to find the potential flow u = ∇φ for a spherical bubble of
radius a rising at V through a fluid at rest.

∇2φ = 0 in r ≥ a,

∂φ

∂r
= V · n = V · x/a on r = a,

φ→ 0 as r →∞.

The solution is

φ = −(V · x)a3

2r3
,

so

u = −V
a3

2r3
+ (V · x)x

3a3

2r5
.

Direct calculation of dissipation. Messy, with long steps skipped.

ui = −Vi
a3

2r3
+ Vnxnxi

3a3

2r5
,

eij =
a3

2r5

(
3Vixj + 3Vjxi + 3Vnxnδij − 15Vnxnxixj/r

2
)
,

eijeij =
9a6

4r10

(
2V 2r2 + 4(V · x)2

)
.
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Integrating, using dV = dΩr2dr,
∫

xx dΩ = (4πr2/3)I,∫
2µeijeij dV = 2µ

9a6

4
(2V 2 + 4V 2 1

3
)

4π

5a5
= 12πµaV 2.

Hence the drag force is
−12πµaV.

This is for Re� 1. Recall the results for Re� 1, 6πµaV for a rigid sphere,
and 4πµaV for a free sphere.

Extra theory for less algebra

ui =
∂φ

∂xi
,

eij = 1
2

(
∂ii
∂xj

+
∂uj
∂xi

)
=

∂2φ

∂xi∂xj
,

2µeijeij = µ

[
∂2

∂x2
i

(
∂φ

∂xj

∂φ

∂xj

)
− 2

∂φ

∂xj

∂2

∂x2
i

(
∂φ

∂xj

)]
.

The last term vanishes by ∇2φ = 0, so ∂2
i (∂jφ) = 0. And for the first term

∂i∂i is a divergence of a gradient, so we can use the divergence theorem for
the general result in potential flow∫

V

2µeijeij dV =

∫
S

µ
∂

∂n

(
|∇φ|2

)
dS.

For the potential flow for a rising sphere

u2 =
a6

4r6

(
V 2 + 3(V · x)2/r2

)
.

Then remembering the normal out of the fluid volume is the negative radial
direction,

∂u2

∂n
= −∂u

2

∂r
=

6u2

r
.

The dissipation is then∫
r=a

µ
6a6

4a7

(
V 2 + 3(V · x)2/r2

)
= µ

6

4a
V 2(1 + 31

3
)4πa2 = 12πµaV 2,

again!
As an example, a = 1

3
mm, water, Re � 1 theory gives V = 10−1 m/s,

and Re = 30. Gas bubbles exapnd as they rise, so go faster, so expand
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faster, and so champagne explodes out of a bottle. In the potential flow past
a sphere, there is a lower pressure at the equator by Bernoulli, which makes
larger bubbles become oblates. Larger ones oscillate from side to side as they
rise, spin round helices, become spherical cap bubbles.

Exercise 7.1 (Wind over a lake) Wind blowing over a reservoir exerts at
the water surface a uniform tangential stress S which is normal to, and away
from, a straight side of the reservoir. Use dimensional analysis, based both
on balancing the inertial and viscous forces in a thin boundary layer and
on the imposed boundary condition, to find order-of-magnitude estimates
for the boundary-layer thickness δ(x) and the surface velocity U(x) as func-
tions of distance x from the shore. Using the boundary-layer equations, find
the ordinary differential equation governing the non-dimensional function f
defined by

ψ(x, y) = U(x)δ(x)f(η), where η = y/δ(x).

What are the boundary conditions on f?

Exercise 7.2 (Wall jet) A steady two-dimensional jet of fluid runs along a
plane rigid wall, the fluid being at rest far from the wall. Use the boundary-
layer equations to show that the quantity

P =

∫ ∞
0

u(y)

(∫ ∞
y

u(y′)2 dy′
)
dy

is independent of the distance x along the wall. Find order-of-magnitude
estimates for the boundary-layer thickness and velocity as functions of x.

Show that in the analogous axisymmetric wall jet spreading out radially
the velocity varies like r−3/2.

Exercise 7.3 (Another stress driven flow) A tangential stress is applied
to the boundary of an incompressible viscous fluid in y > 0, which is other-
wise at rest,

µ
∂u

∂y
= −Kx2 at y = 0 for x > 0

with K > 0.
Find order-of-magnitude estimates for the boundary layer thickness δ(x)

and tangential surface velocity U(x).
Using the boundary-layer equations, find the ordinary differential equa-

tion governing the non-dimensional function f defined in the streamfunction

ψ(x, y) = U(x)δ(x)f(η), where η = y/δ(x).

What are the boundary conditions on f?
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Exercise 7.4 (Corner flow) Show that the streamfunction ψ(r, θ) for a
steady two-dimensional flow satisfies

−1

r

∂(ψ,∇2ψ)

∂(r, θ)
= ν∇4ψ.

Show further that this equation admits solutions of the form

ψ = Qf(θ),

if f satisfies

f ′′′′ + 4f ′′ +
2Q

ν
f ′f ′′ = 0.

Exercise 7.5 (Decay of vibration of a drop) Show that the rate of dis-
sipation of mechanical energy in an incompressible fluid is 2µeijeij per unit
volume, where eij is the rate-of-strain tensor and µ is the viscosity.

A finite mass of incompressible fluid, of viscosity µ and density ρ is held
in the shape of a sphere r < a by surface tension. It is set into a mode of
small oscillations in which the velocity field may be taken to have Cartesian
components

u = βx, v = −βy, w = 0.

where β ∝ exp(−εt) sinωt. Assuming that ε � ω, calculate the dissipation
rate averaged over a cycle (ignoring the slowly varying factor exp(−εt)) and
hence show that ε = 5µ/ρa2. You may assume that the total energy of
the oscillation is twice the kinetic energy averaged over a cycle. Why is is
permissible to ignore the details of the boundary layer near r = a?
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Chapter 8

Stability of a unidirectional
inviscid flow

Many steady laminar flows at Re� 1 are unstable, and breakdown to turbu-
lence which is a time-dependent flow with many spatial scales. The subject
of hydrodynamical stability is huge and complicated, so here we have one
simple example plus a few extensions.

One starts with a steady base flow, and then adds small perturbations.
Do any of the perturbations grow or do they all decay.

Here we shall make a linear stability calculation in which we ignore quan-
tities quadratic or higher in the small perturbations. There are some impor-
tant recent developments in which strictly nonlinear instabilities have been
found in linearly stable flows.

We shall consider an inviscid two-dimensional flow of a unidirectional base
flow.

8.1 Kelvin-Helmholtz instability

This problem is very like the water waves in the earlier IB course. At one
stage it was thought that this instability might explain the generation of
water waves on the sea. Now we understand that it does not.
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8.1.1 The problem

U

U

1

2

y

x

Take the base flow to be a shear layer, ignoring a thin viscous boundary layer
where the discontinuity is smoothed out.
Perturb the interface between the two streams to

y = η(x, t).

The small perturbation requires that the slope is small,

∣∣∣∣∂η∂x
∣∣∣∣� 1

Now add velocity perturbations on both sides. The inviscid flow is irro-
tational, so the perturbations are potential flows

u =

{
(U1, 0) +∇φ1, in y > η,

(U2, 0) +∇φ2, in y < η.

Mass conservation ∇ · u = 0 gives

∇2φ1 = 0 in y > η, (8.1)

∇2φ2 = 0 in y < η. (8.2)

The perturbations decaying at infinity gives

φ1 → 0 as y → +∞, (8.3)

φ2 → 0 as y → −∞. (8.4)

The kinematic boundary condition (mass conservation) is that y = η(x, t)
remains a material surface

D

Dt
(η − y) = 0,

i.e.
∂η

∂t
+

(
U +

∂φ

∂x

)
∂η

∂x
=
∂φ

∂y
, on y = η.
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The second term in the bracket is a quadratic term, so is ignored. We now
move the evaluation of the term on the right hand side from y = η to y = 0
using a Taylor series

∂φ

∂y

∣∣∣∣
η

=
∂φ

∂y

∣∣∣∣
0

+ η
∂2φ

∂y2

∣∣∣∣
0

+ 1
2
η2 ∂

3φ

∂y3

∣∣∣∣
0

+ · · · .

We can ignore the second quadratic and subsequent higher order terms.
Hence

∂η

∂t
+ U1

∂η

∂x
=
∂φ1

∂y

∣∣∣∣
0

, (8.5)

∂η

∂t
+ U2

∂η

∂x
=
∂φ2

∂y

∣∣∣∣
0

. (8.6)

Note different v = ∂φ/∂y on two sides,
because different U .
This is just mass conservation. U

v

η
x

The dynamic boundary condition is that the pressure is continuous across
the interface. We find the pressure from the IB expression for pressure in a
potential flow. Euler’s equation for the inviscid flow is

ρ

(
∂u

∂t
+∇2(1

2
u2)− u× ω

)
= −∇p−∇Φ.

where for the conservative force we take gravity Φ = ρgy. In irrotational
flow, the vorticity vanishes ω ≡ 0. In the time derivative we put u = ∇φ.
Then all the terms are a gradient, so we can integrate to

ρ

(
∂φ

∂t
+ 1

2
u2

)
+ p+ Φ = f(t), independent of x.

Linearising

u2 = U2 + 2U
∂φ

∂x
+

(
∂φ

∂x

)2

,

where we can ignore the last quadratic term. Moving the evaluation from
y = η to y = 0 using a Taylor series and ignoring nonlinear terms, the
condition that pressure is continuous on y = η is

ρ1

(
∂φ1

∂t

∣∣∣∣
0

+ U1
∂φ1

∂x

∣∣∣∣
0

+ gη

)
= ρ2

(
∂φ2

∂t

∣∣∣∣
0

+ U2
∂φ2

∂x

∣∣∣∣
0

+ gη

)
+ f(t). (8.7)

Equations (8.1–8.7) constitute the problem to solve in order to find whether
the perturbations grow or decay. We first consider the case of ρ1 = ρ2.
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8.1.2 Growth rate

Now the governing equations involve derivatives
∂

∂t
and

∂

∂x
and no special

value of t and of x, unlike
∂

∂y
which has the privileged value y = 0. Hence

we can Fourier transform in t and x, looking for solutions proportional to

eikx+σt,

with wavenumber k (the wavelength is 2π/k) and growth-rate σ. The growth-
rate may be complex, in which case Re(σ) gives the growth and Im(σ) gives
the propagation of the perturbations as waves. Fourier transforming turns
the differentials to algebra. The problem reduces to finding the eigenvalue
relationship

σ(k),

called the dispersion relation.
Let

η = Aeikx+σt.

Then the potentials will vary similarly in x and t. Equations (8.1) and (8.2),
then give e±ky variations. The decay conditions (8.2) and (8.4) then give

φ1 = Beikx+σte−ky in y > η,

φ2 = Ceikx+σte+ky in y < η.

The kinematic boundary conditions (8.5) and (8.6) then relate the coefficients
B and C to A

(σ + ikU1)A = −kB,
(σ + ikU2)A = kC.

Finally in the dynamic boundary condition (8.7) the function f(t) (indepen-
dent of x) has no variation like eikx+σt, so

(σ + ikU1)B = (σ + ikU2)C.

Substituting B and C in terms of A yields

(σ + ikU1)2 + (σ + ikU2)2 = 0.

Solving we have finally the dispersion relation

σ(k) = −ikU1 + U2

2
± kU1 − U2

2
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This means disturbances vary as

eik(x− 1
2
(U1 + U2)t) e±

1
2
(U1 − U2)kt.

The first factor shows the disturbance propagating with the mean velocity
1
2
(U1 + U2), while the second factor shows two modes, one growing and one

decaying. That there is one growing mode means that the flow is unstable.
Worse, there is a problem as k →∞, which we shall return to later.

8.1.3 The physical mechanism

We switch to a frame moving with the mean velocity, in which the interface
is not propagating.

1
(U − U )/2

2

1
(U − U )/2

2

u+, p−

u−, p+

u−, p+

u+, p−

The crowding of the streamlines over the peaks, increases the flow, with
a corresponding decrease in the troughs. The need to accelerate to the peak
and decelerate after requires a pressure minimum on the peak – Bernoulli.
Similarly there is a pressure maximum in the troughs.

p−

p+

p+

p−

accelerate

accelerate

These pressures generate an acceleration of the fluid, which grow the
perturbation of the interface. Hence the flow is unstable.

Actually there are two modes, one growing and one decaying. The grow-
ing one is explained by the figures above. So is the decaying mode, but more
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subtly. In the decaying mode, the velocity of the (left) peak is downwards.
An upward acceleration of a downward velocity is a decreasing velocity, i.e. a
decaying mode.

An alternative description of the mechanism uses vorticity. The jump in
the base velocity across the interface makes the interface a sheet of vorticity.

advected

advected

accumulate

Again switch to a frame moving with the mean velocity. In this frame, the
vorticity in the interface at the (left) peak is advected to the right, while
the vorticity at the (right) trough is advected to the left. This leads to an
accumulation of vorticity at mid-point between the peak and the trough.
This vorticity spins the interface to the left upwards and the interface to the
right downwards. Hence the disturbance grows. There is the same subtly
issue of using this picture to explain the decaying mode.

In a nonlinear development, the vorticity accumulates further at the mid-
points to form strong vortices. These vortices later pair up, and the vorticity
within them merging to from a new larger vortex.

8.1.4 Spatial growth

The analysis in §8.1.4 was for temporal growth, in which one starts with a
perturbation sinusoidal in space and asks if it grows in time. However the
typical experiment for a shear layer is to introduce a perturbation sinusoidal
in time at x = 0 and look to see if it grows is space.

splitter plate

oscillate in time perturbation

growing in space
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To investigate the spatial stability, one sets σ = iω with ω real and k
becomes complex.
We have the same governing equations, and so they result in the same dis-
persion relation, i.e. changing σ to iω

(iω + ikU1)2 + (iω + ikU2)2 = 0.

Solving for k

k = −ω U1 + U2

U2
1 + U2

2

± iω U1 − U2

U2
1 + U2

2

.

This means disturbances vary as

e
iω

(
t− x U1 + U2

U2
1 + U2

2

)
e
∓ωx U1 − U2

U2
1 + U2

2 .

Again the second factor gives one growing and one decaying mode. Hence
the flow is unstable.

Note that the propagation speed (U2
1 +U2

2 )/(U1 +U2) has a different value
to the temporal analysis 1

2
(U1+U2). This “propagation” is for the wave crests.

A later course about waves will show that the disturbance energy propagates
with ∂ω/∂k rather than ω/k. Usually disturbances propagate as they grow,
called a “convective instability”, so decay in time at any fixed point. Those
that do not convect are called “absolute instabilities”.

8.1.5 Ultra-violet divergence

Returning to the the temporal analysis, the growth rate was found to be

σr = Re(σ) = 1
2
k(U1 − U2).

This grows without bound as k →∞ (short waves). This makes the original
problem ill-posed.

However for short waves, one cannot ignore the viscous boundary layer
that smooths the velocity discontinuity. Hence our analysis is limited to

k <
U

ν
.

A full analysis requires the smoothed velocity profile plus the viscous equa-
tions for the perturbations. One finds that the increasing growth rate levels
off at O(U2/ν).
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8.1.6 Stabilisation of long waves by gravity

So far we have studied the case of equal density fluids. To bring in gravity,
we must make the densities different. We consider the case of a light fluid
above a heavy one, ρ1 < ρ2.

The temporal stability analysis gives

ρ1(σ + ikU1)2 + ρ(σ + ikU2)2 + (ρ2 + ρ1)gk = 0.

Solving

σ =
−ik(ρ1U1 + ρ2U2)±

√
ρ1ρ2(U1 − U2)2k2 − (ρ1 + ρ2)(ρ2 − ρ1)gk

ρ1 + ρ2

.

Hence for sufficiently long waves

k <
(ρ1 + ρ2)(ρ2 − ρ1)

ρ1ρ2

g

(U1 − U2)2
,

both roots are purely imaginary and there is no growth or decay.

8.1.7 Stabilisation by gravity (for long waves) and by
surface tension (for short waves)

For two immiscible fluids, there will be an interfacial tension (surface en-
ergy). which generates a jump in the pressure across the interface (dynamic
boundary condition) equal to the value of the surface tension, γ, multiplied
by the curvature of the surface, which in the small slope limit is ∂2η/∂x2, i.e.

ρ1

(
∂φ1

∂t

∣∣∣∣
0

+ U1
∂φ1

∂x

∣∣∣∣
0

+ gη

)
= ρ2

(
∂φ2

∂t

∣∣∣∣
0

+ U2
∂φ2

∂x

∣∣∣∣
0

+ gη

)
+ γ

∂2η

∂x2
.

This leads to a dispersion relation

σ =

−ik(ρ1U1 + ρ2U2)± k
√
ρ1ρ2(U1 − U2)2 − (ρ1 + ρ2)

[
(ρ2−ρ1)g

k
+ γk

]
ρ1 + ρ2

.

The square bracket has a minimum value of
√

(ρ2 − ρ1)gγ at k2 = (ρ2 −
ρ1)g/γ. Hence σ will be purely imaginary (no growing mode) for all wavenum-
bers k if the velocity difference is smaller than a critical value

(U1 − U2)2 <
(ρ1 + ρ2)

√
(ρ2 − ρ1)gγ

ρ1ρ2

,

i.e. the flow is stable if |U1 − U2| is below this critical value.
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8.2 Other instabilities

This chapter has consider the stability of just one flow. There are many
others which have been studied. A quick extension of our analysis of the
Kelvin-Helmholtz instability is to the Raleigh-Taylor instability, in which
there is no base flow, U1 = 0 = U2, and there is heavy fluid above light,
ρ1 > ρ2.

One can study the Raleigh-Plateau instability of a jet in which surface
tension tries to reduce the surface area/energy of a cylinder by producing a
line of spherical drops.

In the Hele-Shaw geometry, if a low viscosity fluid pushes out a high
viscosity fluid, perturbations to a plane interface develop a viscous fingering
instability which enables the mobile low viscosity fluid to bypass the sluggish
high viscosity fluid.

Flow in the Couette apparatus of an annular gap between two coaxial
cylinders is unstable through a centrifugal instability if the inner cylinder
rotates faster than the outer one.

Poiseuille flow in a pipe is unstable at high Reynolds numbers. This in-
stability needs viscosity, although small. The instability is strictly nonlinear.

There are many other instabilities. Adding new physics brings new insta-
bilities. Thus allowing the density to vary with temperature and including
gravity, one has the possibility of hot fluid rising and cold sinking. Thus if
one heats sufficiently strongly the bottom flat horizontal plate below a layer
of fluid, heat is transferred across the layer more efficiently by flow compared
with molecular conduction.

Exercise 8.1 (Jet next to a wall) A vortex sheet of strength U is located
at a distance h above a rigid wall y = 0 and is parallel to it, so that the fluid
velocity (u, 0, 0) is

u =

{
U in 0 < y < h,

0 in y > h.

Suppose now that the sheet is perturbed slightly to the position y = h +
η0e

ik(x−ct) where k > 0 is real but c may be complex. Show that

c = U/(1± i
√

tanh kh).

Deduce that

• the sheet is unstable to disturbances of all wavelengths;
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• for short waves (kh� 1) the growth rate kIm(c) is 1
2
Uk and the wave

propagation speed Re(c) is 1
2
U , as if the wall were absent;

• for long waves (kh � 1) the growth rate is Uk
√
kh (so that the wall

inhibits the growth of long waves) and the propagation speed is U .

Exercise 8.2 (Free jet) A two-dimensional jet in the x-direction has ve-
locity profile

u =


0 in y > h,

U in − h < y < h,

0 in y < −h.

The vortex sheets at y = ±h are perturbed to

y =

{
+h+ η1e

ik(x−ct),

−h+ η2e
ik(x−ct).

Show that the jet is unstable to a ‘varicose’ instability for which η1 = −η2

(identical to that of question 5), and also to a ‘sinuous’ instability for which
η1 = η2 and

c = U/(1± i
√

coth kh).

[The growth rates at small kh are again Uk
√
kh. Hence thin jets (e.g. smoke

filaments) can suffer rather slowly growing sinuous instabilities.]

105


