Computational Methods in Fluid Mechanics

John Hinch and Mahesh Tirumkudulu

Cambridge University and IIT Bombay

29 January - 9 February 2018

GIAN 171002M01 at IIT Bombay

Course structure

Three parts:

- ► Simple Navier-Stokes problem by simple method
 - accuracy, stability, pressure

Course structure

Three parts:

- Simple Navier-Stokes problem by simple method
 - accuracy, stability, pressure
- Better treatment of general issues
 - discretisation, time-stepping, linear algebra

Course structure

Three parts:

- Simple Navier-Stokes problem by simple method
 - accuracy, stability, pressure
- ▶ Better treatment of general issues
 - discretisation, time-stepping, linear algebra
- Collection of special topics
 - demo FreeFem, hyperbolic, fast multipoles, free surface

1. The driven cavity

Incompressible Navier-Stokes

$$\begin{split} \nabla \cdot \mathbf{u} &= 0, \\ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= -\nabla \rho + \mu \nabla^2 \mathbf{u}, \end{split}$$

1. The driven cavity

Incompressible Navier-Stokes

$$\begin{split} \nabla \cdot \mathbf{u} &= 0, \\ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= -\nabla \rho + \mu \nabla^2 \mathbf{u}, \end{split}$$

2D, $L \times L$ -box

$$\mathbf{u} = 0$$
 on $y = 0$ and $0 < x < L$, and on $x = 0$ or L and $0 < y < L$, and $\mathbf{u} = (U(x), 0)$ on $y = L$ and $0 < x < L$.

1. The driven cavity

Incompressible Navier-Stokes

$$\begin{split} \nabla \cdot \mathbf{u} &= 0, \\ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= -\nabla \rho + \mu \nabla^2 \mathbf{u}, \end{split}$$

2D, $L \times L$ -box

$$\mathbf{u}=0$$
 on $y=0$ and $0 < x < L$, and on $x=0$ or L and $0 < y < L$, and $\mathbf{u}=(U(x),0)$ on $y=L$ and $0 < x < L$.

To find the force on the lid

$$F = \int_0^L \mu \left. \frac{\partial u}{\partial y} \right|_{y=1} dx$$

Before writing any code, need to think about physics

▶
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$$

info propagates at \mathbf{u} , i.e. $\delta x = u \delta t$.

▶
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$$

info propagates at \mathbf{u} , i.e. $\delta x = u \delta t$.

$$\rho \frac{\partial \mathbf{u}}{\partial t} = \mu \nabla^2 \mathbf{u}$$
 info diffuses, diffusivity $\nu = \mu/\rho$, i.e. $\delta x = \sqrt{\nu \delta t}$.

- ▶ $\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$ info propagates at \mathbf{u} , i.e. $\delta x = u \delta t$.
- $\rho \frac{\partial \mathbf{u}}{\partial t} = \mu \nabla^2 \mathbf{u}$ info diffuses, diffusivity $\nu = \mu/\rho$, i.e. $\delta x = \sqrt{\nu \delta t}$.
- $\rho \frac{\partial \mathbf{u}}{\partial t} = -\nabla p \quad \text{with} \quad \nabla \cdot \mathbf{u} = 0$ info at ∞ in 0 time, i.e. speed of sound $= \infty$.

Before writing any code, need to think about physics Converse, thinking about coding can deepen understanding of physics

▶
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$$

info propagates at \mathbf{u} , i.e. $\delta x = u \delta t$.

$$\rho \frac{\partial \mathbf{u}}{\partial t} = \mu \nabla^2 \mathbf{u}$$
 info diffuses, diffusivity $\nu = \mu/\rho$, i.e. $\delta x = \sqrt{\nu \delta t}$.

▶
$$\rho \frac{\partial \mathbf{u}}{\partial t} = -\nabla p$$
 with $\nabla \cdot \mathbf{u} = 0$ info at ∞ in 0 time, i.e. speed of sound $= \infty$.

Re ≪ 1 must resolve fast diffusion of vorticity,
 Re ≫ 1 must resolve thin boundary layers,
 we study Re = 10.

What is well-posed?

What is well-posed? Equation + BCs + ICs.

What is well-posed? Equation + BCs + ICs. Wrong BC: \nexists solution

What is well-posed? Equation + BCs + ICs. Wrong BC: \nexists solution

▶ $\frac{\partial \phi}{\partial t} + u(x,t) \frac{\partial \phi}{\partial x} = f(x,t)$ — first order hyperbolic Well posed with

IC $\phi(x,0)$ and

inflow BC, e.g. at x = a need $\phi(a, t)$ if u(a, t) > 0.

What is well-posed? Equation + BCs + ICs. Wrong BC: \nexists solution

- $\begin{array}{l} \blacktriangleright \frac{\partial \phi}{\partial t} + u(x,t) \frac{\partial \phi}{\partial x} = f(x,t) \quad \text{ first order hyperbolic} \\ \text{Well posed with} \\ \text{IC } \phi(x,0) \text{ and} \\ \text{inflow BC, e.g. at } x = a \text{ need } \phi(a,t) \text{ if } u(a,t) > 0. \end{array}$
- $\frac{\partial^2 \phi}{\partial t^2} = c^2 \frac{\partial^2 \phi}{\partial x^2}$ second order hyperbolic Well posed with IC $\phi(x,0)$ and $\phi_t(x,0)$ and BC at both ends either ϕ or ϕ_x or mixed.

 $lackbox{}
abla^2\phi=
ho$ — Laplace/Poisson equation, elliptic

Well posed with

BC ϕ or $\partial \phi/\partial n$ or mixed

 $\nabla^2 \phi = \rho$ - Laplace/Poisson equation, elliptic Well posed with

BC
$$\phi$$
 or $\partial \phi/\partial n$ or mixed

 $ightharpoonup \frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2}$ – Diffusion equation, parabolic

BC at both ends either ϕ or ϕ_x or mixed.

IC $\phi(x,0)$ and

▶ Naming from quadratic forms

$$ax^2 + bxy + cy^2 + dx + fy + g =$$

$$ax^{2} + bxy + cy^{2} + dx + fy + g = 0$$

$$a\frac{\partial^{2}\phi}{\partial x^{2}} + b\frac{\partial^{2}\phi}{\partial x \partial y} + c\frac{\partial^{2}\phi}{\partial y^{2}} + d\frac{\partial\phi}{\partial x} + e\frac{\partial\phi}{\partial y} + f\phi = 0$$

Naming from quadratic forms

$$2x^2 + bxy + cy^2 + dy + fy + g$$

$$ax^2 + bxy + cy^2 + dx + fy + g$$

hyperbolic – tough ► elliptic – costly parabolic – safest

Numerically

$$ax^2 + bxy + cy^2 + dx + fy + g$$

 $ax^{2} + bxy + cy^{2} + dx + fy + g = 0$

 $a\frac{\partial^2 \phi}{\partial y^2} + b\frac{\partial^2 \phi}{\partial y \partial y} + c\frac{\partial^2 \phi}{\partial y^2} + d\frac{\partial \phi}{\partial y} + e\frac{\partial \phi}{\partial y} + f\phi = 0$

Special physics – the corner

• Constant lid velocity $\mathbf{u} = (U_0, 0)$

$$\rightarrow \sigma \propto r^{-1} \rightarrow F = \infty$$

Special physics – the corner

• Constant lid velocity $\mathbf{u} = (U_0, 0)$

$$\rightarrow \sigma \propto r^{-1} \rightarrow F = \infty$$

$$ightarrow \sigma \propto \ln r \quad
ightarrow F$$
 difficult numerically

Special physics – the corner

• Constant lid velocity $\mathbf{u} = (U_0, 0)$

$$\rightarrow \sigma \propto r^{-1} \rightarrow F = \infty$$

- ▶ Better $\mathbf{u} = (U_0 \sin \pi x / L, 0)$ $\rightarrow \sigma \propto \ln r \rightarrow F$ difficult numerically
- ► Therefore we take $\mathbf{u} = (U_0 \sin^2 \pi x / L, 0)$

Non-dimensionalisation

Engineers use dimensional variables in computations but scientists do NOT.

Non-dimensionalisation

Engineers use dimensional variables in computations but scientists do NOT.

Scale u on U_0 , x and y on L, t on L/U_0 and p on ρU_0^2 . Then

$$Re = \frac{\text{inertial terms } \rho U_0^2 / L}{\text{viscous terms } \mu U_0 / L^2} = \frac{U_0 L}{\nu}.$$

$$\begin{split} \nabla \cdot \mathbf{u} &= 0, \\ \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= - \nabla \rho + \frac{1}{Re} \nabla^2 \mathbf{u}, \end{split}$$

$$\begin{split} \nabla \cdot \mathbf{u} &= 0, \\ \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}, \end{split}$$

with BCs

$$\mathbf{u}=0$$
 on $y=0$ and $0 < x < 1$, and on $x=0$ or 1 and $0 < y < 1$ and $\mathbf{u}=(\sin^2(\pi x),0)$ on $y=1$ and $0 < x < 1$.

$$\begin{split} \nabla \cdot \mathbf{u} &= 0, \\ \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}, \end{split}$$

with BCs

$$\mathbf{u}=0$$
 on $y=0$ and $0 < x < 1$, and on $x=0$ or 1 and $0 < y < 1$ and $\mathbf{u}=(\sin^2(\pi x),0)$ on $y=1$ and $0 < x < 1$.

We take ICs

$$\mathbf{u}(x,0) = 0$$
 at $t = 0$ for $0 < x < 1$ and $0 < y < 1$.

$$\begin{split} \nabla \cdot \mathbf{u} &= 0, \\ \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= - \nabla \rho + \frac{1}{Re} \nabla^2 \mathbf{u}, \end{split}$$

with BCs

$$\mathbf{u}=0$$
 on $y=0$ and $0 < x < 1$, and on $x=0$ or 1 and $0 < y < 1$ and $\mathbf{u}=\left(\sin^2(\pi x),0\right)$ on $y=1$ and $0 < x < 1$.

We take ICs

$$\mathbf{u}(x,0) = 0$$
 at $t = 0$ for $0 < x < 1$ and $0 < y < 1$.

We seek solution at Re = 10.

$$\begin{split} \nabla \cdot \mathbf{u} &= 0, \\ \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}, \end{split}$$

with BCs

$${f u} = 0 \quad {\rm on} \ y = 0 \ {\rm and} \ 0 < x < 1, \ {\rm and} \ {\rm on} \ x = 0 \ {\rm or} \ 1 \ {\rm and} \ 0 < y < 1$$
 and ${f u} = (\sin^2(\pi x), 0) \quad {\rm on} \ y = 1 \ {\rm and} \ 0 < x < 1.$

We take ICs

$$\mathbf{u}(x,0) = 0$$
 at $t = 0$ for $0 < x < 1$ and $0 < y < 1$.

We seek solution at Re = 10.

Finally the force, scaled by μU_0

$$F = \int_0^1 \frac{\partial u}{\partial y} \bigg|_{y=1} dx.$$

EJH recommends IVP, linear.

 SS – nonlinear, might not exist, might be unstable.

EJH recommends IVP, linear.

SS - nonlinear, might not exist, might be unstable.

Extrapolate slow transients to zero (Richardson).

EJH recommends IVP, linear.

SS - nonlinear, might not exist, might be unstable.

Extrapolate slow transients to zero (Richardson).

Need not start from rest, but from SS of different $\it Re-crude$ parameter continuation.

EJH recommends IVP, linear.

SS - nonlinear, might not exist, might be unstable.

Extrapolate slow transients to zero (Richardson).

Need not start from rest, but from SS of different $\it Re-crude$ parameter continuation.

Methods for relaxing to SS \equiv pseudo time-stepping.

Idea: time-step $\mathbf{u}(x,t)$ from t to $t+\Delta t$ using $\partial \mathbf{u}/\partial t$ from the momentum equation

Idea: time-step $\mathbf{u}(x,t)$ from t to $t+\Delta t$ using $\partial \mathbf{u}/\partial t$ from the momentum equation But how to find ∇p ?

Idea: time-step $\mathbf{u}(x,t)$ from t to $t+\Delta t$ using $\partial \mathbf{u}/\partial t$ from the momentum equation But how to find ∇p ?

Pressure = "Lagrangian multiplier" associated with constraint $\nabla \cdot \mathbf{u} = 0$.

Idea: time-step $\mathbf{u}(x,t)$ from t to $t+\Delta t$ using $\partial \mathbf{u}/\partial t$ from the momentum equation But how to find ∇p ?

Pressure = "Lagrangian multiplier" associated with constraint $\nabla \cdot \mathbf{u} = 0$.

Two options:

- ▶ Find the ∇p that ensures $\nabla \cdot \mathbf{u} = 0$
 - primitive variable formulation

Idea: time-step $\mathbf{u}(x,t)$ from t to $t+\Delta t$ using $\partial \mathbf{u}/\partial t$ from the momentum equation But how to find ∇p ?

Pressure = "Lagrangian multiplier" associated with constraint $\nabla \cdot \mathbf{u} = 0$.

Two options:

- ▶ Find the ∇p that ensures $\nabla \cdot \mathbf{u} = 0$
 - primitive variable formulation
- Eliminate p by forming the vorticity equation
 - streamfunction-vorticity formulation

2. Streamfunction-vorticity formulation

Automatically satisfy constraint $\nabla \cdot \mathbf{u} = 0$ by using the streamfunction representation $\psi(\mathbf{x}, \mathbf{y})$

$$u = \frac{\partial \psi}{\partial y}$$
 and $v = -\frac{\partial \psi}{\partial x}$.

2. Streamfunction-vorticity formulation

Automatically satisfy constraint $\nabla \cdot \mathbf{u} = 0$ by using the streamfunction representation $\psi(x,y)$

$$u = \frac{\partial \psi}{\partial y}$$
 and $v = -\frac{\partial \psi}{\partial x}$.

In 2D flow vorticity is

$$\omega = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} - \frac{\partial \mathbf{u}}{\partial \mathbf{v}} = -\nabla^2 \psi.$$

Take curl of momentum equation to eliminate p

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = 0 + \frac{1}{Re} \nabla^2 \omega$$

Take curl of momentum equation to eliminate p

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = 0 + \frac{1}{Re} \nabla^2 \omega$$

No stretching in 2D (first term on RHS)

$$\mathbf{u} \cdot \nabla \omega = \psi_y \omega_x - \psi_x \omega_y = \frac{\partial(\omega, \psi)}{\partial(x, y)}$$

Take curl of momentum equation to eliminate p

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = 0 + \frac{1}{Re} \nabla^2 \omega$$

No stretching in 2D (first term on RHS)

$$\mathbf{u} \cdot \nabla \omega = \psi_y \omega_x - \psi_x \omega_y = \frac{\partial (\omega, \psi)}{\partial (x, y)}$$

BC1:
$$\mathbf{u} \cdot \mathbf{n} = 0$$
 all sides \rightarrow sides = streamline $\rightarrow \psi = 0$.

Take curl of momentum equation to eliminate p

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = 0 + \frac{1}{Re} \nabla^2 \omega$$

No stretching in 2D (first term on RHS)

$$\mathbf{u} \cdot \nabla \omega = \psi_y \omega_x - \psi_x \omega_y = \frac{\partial(\omega, \psi)}{\partial(x, y)}$$

BC1:
$$\mathbf{u} \cdot \mathbf{n} = 0$$
 all sides

$$\rightarrow {\rm sides} = {\rm streamline} \quad \rightarrow \psi = 0.$$

$$\frac{\partial \psi}{\partial y} = \sin^2 \pi x$$
 on top $y = 1$, $0 < x < 1$

$$\frac{\partial \psi}{\partial y} = 0$$
 on bottom $y = 0$, $0 < x < 1$

$$\frac{\partial \psi}{\partial x} = 0$$
 on sides $x = 0$ and 1, $0 < y < 1$

Solve as decoupled pair

1. At each t given ω , find ψ :

$$\nabla^2 \psi = -\omega$$

with $\psi = 0$ all sides.

Solve as decoupled pair

1. At each t given ω , find ψ :

$$\nabla^2 \psi = -\omega$$

with $\psi = 0$ all sides.

2. With ω and now ψ known at t, find ω at $t + \Delta t$:

$$\frac{\partial \omega}{\partial t} = -\frac{\partial (\omega, \psi)}{\partial (x, y)} + \frac{1}{Re} \nabla^2 \omega$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct

Solve as decoupled pair

1. At each t given ω , find ψ :

$$\nabla^2 \psi = -\omega$$

with $\psi = 0$ all sides.

2. With ω and now ψ known at t, find ω at $t + \Delta t$:

$$\frac{\partial \omega}{\partial t} = -\frac{\partial (\omega, \psi)}{\partial (x, y)} + \frac{1}{Re} \nabla^2 \omega$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct \rightarrow not quite decoupled.