Computational Methods in Fluid Mechanics

John Hinch and Mahesh Tirumkudulu
Cambridge University and IIT Bombay

29 January - 9 February 2018

GIAN 171002M01 at IIT Bombay

with help from S.J.Cowley, P.J.Dellar \& P.D.Metcalfe

Course structure

Three parts:

- Simple Navier-Stokes problem by simple method
- accuracy, stability, pressure

Course structure

Three parts:

- Simple Navier-Stokes problem by simple method
- accuracy, stability, pressure
- Better treatment of general issues
- discretisation, time-stepping, linear algebra

Course structure

Three parts:

- Simple Navier-Stokes problem by simple method
- accuracy, stability, pressure
- Better treatment of general issues
- discretisation, time-stepping, linear algebra
- Collection of special topics
- demo FreeFem, hyperbolic, fast multipoles, free surface

1. The driven cavity

Incompressible Navier-Stokes

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \\
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\mu \nabla^{2} \mathbf{u}
\end{aligned}
$$

1. The driven cavity

Incompressible Navier-Stokes

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \\
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\mu \nabla^{2} \mathbf{u}
\end{aligned}
$$

2D, $L \times L$-box
$\mathbf{u}=0$ on $y=0$ and $0<x<L$, and on $x=0$ or L and $0<y<L$, and $\quad \mathbf{u}=(U(x), 0) \quad$ on $y=L$ and $0<x<L$.

1. The driven cavity

Incompressible Navier-Stokes

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \\
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\mu \nabla^{2} \mathbf{u}
\end{aligned}
$$

2D, $L \times L$-box
$\mathbf{u}=0$ on $y=0$ and $0<x<L$, and on $x=0$ or L and $0<y<L$, and $\quad \mathbf{u}=(U(x), 0) \quad$ on $y=L$ and $0<x<L$.

To find the force on the lid

$$
F=\left.\int_{0}^{L} \mu \frac{\partial u}{\partial y}\right|_{y=L} d x
$$

Know your physics

Before writing any code, need to think about physics

Know your physics

Before writing any code, need to think about physics Converse, thinking about coding can deepen understanding of physics

Know your physics

Before writing any code, need to think about physics Converse, thinking about coding can deepen understanding of physics

- $\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}$
info propagates at \mathbf{u}, i.e. $\delta x=u \delta t$.

Know your physics

Before writing any code, need to think about physics Converse, thinking about coding can deepen understanding of physics

- $\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}$
info propagates at \mathbf{u}, i.e. $\delta x=u \delta t$.
- $\rho \frac{\partial \mathbf{u}}{\partial t}=\mu \nabla^{2} \mathbf{u}$
info diffuses, diffusivity $\nu=\mu / \rho$, i.e. $\delta x=\sqrt{\nu \delta t}$.

Know your physics

Before writing any code, need to think about physics Converse, thinking about coding can deepen understanding of physics

- $\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}$
info propagates at \mathbf{u}, i.e. $\delta x=u \delta t$.
- $\rho \frac{\partial \mathbf{u}}{\partial t}=\mu \nabla^{2} \mathbf{u}$
info diffuses, diffusivity $\nu=\mu / \rho$, i.e. $\delta x=\sqrt{\nu \delta t}$.
- $\rho \frac{\partial \mathbf{u}}{\partial t}=-\nabla p$ with $\quad \nabla \cdot \mathbf{u}=0$ info at ∞ in 0 time, i.e. speed of sound $=\infty$.

Know your physics

Before writing any code, need to think about physics Converse, thinking about coding can deepen understanding of physics

- $\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}$
info propagates at \mathbf{u}, i.e. $\delta x=u \delta t$.
- $\rho \frac{\partial \mathbf{u}}{\partial t}=\mu \nabla^{2} \mathbf{u}$
info diffuses, diffusivity $\nu=\mu / \rho$, i.e. $\delta x=\sqrt{\nu \delta t}$.
- $\rho \frac{\partial \mathbf{u}}{\partial t}=-\nabla p$ with $\quad \nabla \cdot \mathbf{u}=0$ info at ∞ in 0 time, i.e. speed of sound $=\infty$.
- $\quad R e \ll 1$ must resolve fast diffusion of vorticity,
- $R e \gg 1$ must resolve thin boundary layers,
- we study $R e=10$.

Know your PDE

What is well-posed?

Know your PDE

What is well-posed? Equation $+\mathrm{BCs}+\mathrm{ICs}$.

Know your PDE

What is well-posed? Equation $+B C s+I C s$. Wrong $B C: \nexists$ solution

Know your PDE

What is well-posed? Equation $+B C s+I C s$. Wrong $B C: \nexists$ solution

- $\frac{\partial \phi}{\partial t}+u(x, t) \frac{\partial \phi}{\partial x}=f(x, t) \quad-$ first order hyperbolic

Well posed with
IC $\phi(x, 0)$ and inflow BC, e.g. at $x=a$ need $\phi(a, t)$ if $u(a, t)>0$.

Know your PDE

What is well-posed? Equation $+B C s+I C s$. Wrong $B C: \nexists$ solution

- $\frac{\partial \phi}{\partial t}+u(x, t) \frac{\partial \phi}{\partial x}=f(x, t) \quad$ - first order hyperbolic

Well posed with
IC $\phi(x, 0)$ and
inflow BC , e.g. at $x=a$ need $\phi(a, t)$ if $u(a, t)>0$.

- $\frac{\partial^{2} \phi}{\partial t^{2}}=c^{2} \frac{\partial^{2} \phi}{\partial x^{2}} \quad$ - second order hyperbolic

Well posed with
IC $\phi(x, 0)$ and $\phi_{t}(x, 0)$ and
BC at both ends either ϕ or ϕ_{x} or mixed.

- $\nabla^{2} \phi=\rho \quad$ - Laplace/Poisson equation, elliptic Well posed with

BC ϕ or $\partial \phi / \partial n$ or mixed

- $\nabla^{2} \phi=\rho \quad$ - Laplace/Poisson equation, elliptic Well posed with

BC ϕ or $\partial \phi / \partial n$ or mixed

- $\frac{\partial \phi}{\partial t}=D \frac{\partial^{2} \phi}{\partial x^{2}} \quad$ - Diffusion equation, parabolic

Well posed with
IC $\phi(x, 0)$ and
BC at both ends either ϕ or ϕ_{x} or mixed.

- Naming from quadratic forms

$$
\begin{aligned}
& a x^{2}+b x y+c y^{2}+d x+f y+g=0 \\
& a \frac{\partial^{2} \phi}{\partial x^{2}}+b \frac{\partial^{2} \phi}{\partial x \partial y}+c \frac{\partial^{2} \phi}{\partial y^{2}}+d \frac{\partial \phi}{\partial x}+e \frac{\partial \phi}{\partial y}+f \phi=0
\end{aligned}
$$

- Naming from quadratic forms

$$
\begin{aligned}
& a x^{2}+b x y+c y^{2}+d x+f y+g=0 \\
& a \frac{\partial^{2} \phi}{\partial x^{2}}+b \frac{\partial^{2} \phi}{\partial x \partial y}+c \frac{\partial^{2} \phi}{\partial y^{2}}+d \frac{\partial \phi}{\partial x}+e \frac{\partial \phi}{\partial y}+f \phi=0
\end{aligned}
$$

- Numerically
- hyperbolic - tough
- elliptic - costly
- parabolic - safest

Special physics - the corner

- Constant lid velocity $\mathbf{u}=\left(U_{0}, 0\right)$

$$
\rightarrow \sigma \propto r^{-1} \quad \rightarrow F=\infty
$$

Special physics - the corner

- Constant lid velocity $\mathbf{u}=\left(U_{0}, 0\right)$

$$
\rightarrow \sigma \propto r^{-1} \quad \rightarrow F=\infty
$$

- Better $\mathbf{u}=\left(U_{0} \sin \pi x / L, 0\right)$
$\rightarrow \sigma \propto \ln r \rightarrow F$ difficult numerically

Special physics - the corner

- Constant lid velocity $\mathbf{u}=\left(U_{0}, 0\right)$

$$
\rightarrow \sigma \propto r^{-1} \quad \rightarrow F=\infty
$$

- Better $\mathbf{u}=\left(U_{0} \sin \pi x / L, 0\right)$
$\rightarrow \sigma \propto \ln r \rightarrow F$ difficult numerically
- Therefore we take $\mathbf{u}=\left(U_{0} \sin ^{2} \pi x / L, 0\right)$

Non-dimensionalisation

Engineers use dimensional variables in computations but scientists do NOT.

Non-dimensionalisation

Engineers use dimensional variables in computations but scientists do NOT.

Scale u on U_{0}, x and y on L, t on L / U_{0} and p on ρU_{0}^{2}. Then

$$
R e=\frac{\text { inertial terms } \rho U_{0}^{2} / L}{\text { viscous terms } \mu U_{0} / L^{2}}=\frac{U_{0} L}{\nu}
$$

The non-dimensionalised problem

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \\
\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\frac{1}{R e} \nabla^{2} \mathbf{u}
\end{aligned}
$$

The non-dimensionalised problem

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \\
\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\frac{1}{R e} \nabla^{2} \mathbf{u}
\end{aligned}
$$

with BCs

$$
\begin{array}{cl}
\mathbf{u}=0 & \text { on } y=0 \text { and } 0<x<1, \text { and on } x=0 \text { or } 1 \text { and } 0<y<1 \\
& \text { and } \mathbf{u}=\left(\sin ^{2}(\pi x), 0\right) \text { on } y=1 \text { and } 0<x<1 .
\end{array}
$$

The non-dimensionalised problem

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \\
\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\frac{1}{R e} \nabla^{2} \mathbf{u}
\end{aligned}
$$

with $B C$ s

$$
\begin{gathered}
\mathbf{u}=0 \quad \text { on } y=0 \text { and } 0<x<1, \text { and on } x=0 \text { or } 1 \text { and } 0<y<1 \\
\\
\text { and } \mathbf{u}=\left(\sin ^{2}(\pi x), 0\right) \text { on } y=1 \text { and } 0<x<1 .
\end{gathered}
$$

We take ICs

$$
\mathbf{u}(x, 0)=0 \quad \text { at } t=0 \text { for } 0<x<1 \text { and } 0<y<1
$$

The non-dimensionalised problem

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \\
\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\frac{1}{R e} \nabla^{2} \mathbf{u}
\end{aligned}
$$

with $B C$ s

$$
\begin{gathered}
\mathbf{u}=0 \quad \text { on } y=0 \text { and } 0<x<1, \text { and on } x=0 \text { or } 1 \text { and } 0<y<1 \\
\\
\text { and } \mathbf{u}=\left(\sin ^{2}(\pi x), 0\right) \text { on } y=1 \text { and } 0<x<1 .
\end{gathered}
$$

We take ICs

$$
\mathbf{u}(x, 0)=0 \quad \text { at } t=0 \text { for } 0<x<1 \text { and } 0<y<1
$$

We seek solution at $R e=10$.

The non-dimensionalised problem

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \\
\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\frac{1}{R e} \nabla^{2} \mathbf{u}
\end{aligned}
$$

with $B C$ s

$$
\begin{array}{cc}
\mathbf{u}=0 & \text { on } y=0 \text { and } 0<x<1, \text { and on } x=0 \text { or } 1 \text { and } 0<y<1 \\
& \text { and } \mathbf{u}=\left(\sin ^{2}(\pi x), 0\right) \text { on } y=1 \text { and } 0<x<1 .
\end{array}
$$

We take ICs

$$
\mathbf{u}(x, 0)=0 \quad \text { at } t=0 \text { for } 0<x<1 \text { and } 0<y<1
$$

We seek solution at $R e=10$.

Finally the force, scaled by μU_{0}

$$
F=\left.\int_{0}^{1} \frac{\partial u}{\partial y}\right|_{y=1} d x
$$

Steady State vs Initial Value Problem

EJH recommends IVP, linear.

SS - nonlinear, might not exist, might be unstable.

Steady State vs Initial Value Problem

EJH recommends IVP, linear.

SS - nonlinear, might not exist, might be unstable.

Extrapolate slow transients to zero (Richardson).

Steady State vs Initial Value Problem

EJH recommends IVP, linear.

SS - nonlinear, might not exist, might be unstable.

Extrapolate slow transients to zero (Richardson).

Need not start from rest, but from SS of different $R e$ - crude parameter continuation.

Steady State vs Initial Value Problem

EJH recommends IVP, linear.

SS - nonlinear, might not exist, might be unstable.

Extrapolate slow transients to zero (Richardson).

Need not start from rest, but from SS of different $R e$ - crude parameter continuation.

Methods for relaxing to $\mathrm{SS} \equiv$ pseudo time-stepping.

Pressure!

Idea: time-step $\mathbf{u}(x, t)$ from t to $t+\Delta t$ using $\partial \mathbf{u} / \partial t$ from the momentum equation

Pressure!

Idea: time-step $\mathbf{u}(x, t)$ from t to $t+\Delta t$ using $\partial \mathbf{u} / \partial t$ from the momentum equation
But how to find ∇p ?

Pressure!

Idea: time-step $\mathbf{u}(x, t)$ from t to $t+\Delta t$ using $\partial \mathbf{u} / \partial t$ from the momentum equation
But how to find ∇p ?

Pressure = "Lagrangian multiplier" associated with constraint $\nabla \cdot \mathbf{u}=0$.

Pressure!

Idea: time-step $\mathbf{u}(x, t)$ from t to $t+\Delta t$ using $\partial \mathbf{u} / \partial t$ from the momentum equation
But how to find ∇p ?

Pressure $=$ "Lagrangian multiplier" associated with constraint $\nabla \cdot \mathbf{u}=0$.

Two options:

- Find the ∇p that ensures $\nabla \cdot \mathbf{u}=0$
- primitive variable formulation

Pressure!

Idea: time-step $\mathbf{u}(x, t)$ from t to $t+\Delta t$ using $\partial \mathbf{u} / \partial t$ from the momentum equation
But how to find ∇p ?

Pressure $=$ "Lagrangian multiplier" associated with constraint $\nabla \cdot \mathbf{u}=0$.

Two options:

- Find the ∇p that ensures $\nabla \cdot \mathbf{u}=0$
- primitive variable formulation
- Eliminate p by forming the vorticity equation
- streamfunction-vorticity formulation

2. Streamfunction-vorticity formulation

Automatically satisfy constraint $\nabla \cdot \mathbf{u}=0$ by using the streamfunction representation $\psi(x, y)$

$$
u=\frac{\partial \psi}{\partial y} \quad \text { and } \quad v=-\frac{\partial \psi}{\partial x}
$$

2. Streamfunction-vorticity formulation

Automatically satisfy constraint $\nabla \cdot \mathbf{u}=0$ by using the streamfunction representation $\psi(x, y)$

$$
u=\frac{\partial \psi}{\partial y} \quad \text { and } \quad v=-\frac{\partial \psi}{\partial x}
$$

In 2D flow vorticity is

$$
\omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=-\nabla^{2} \psi
$$

Vorticity equation

Take curl of momentum equation to eliminate p

$$
\frac{\partial \omega}{\partial t}+\mathbf{u} \cdot \nabla \omega=0+\frac{1}{R e} \nabla^{2} \omega
$$

Vorticity equation

Take curl of momentum equation to eliminate p

$$
\frac{\partial \omega}{\partial t}+\mathbf{u} \cdot \nabla \omega=0+\frac{1}{R e} \nabla^{2} \omega
$$

No stretching in 2D (first term on RHS)

$$
\mathbf{u} \cdot \nabla \omega=\psi_{y} \omega_{x}-\psi_{x} \omega_{y}=\frac{\partial(\omega, \psi)}{\partial(x, y)}
$$

Vorticity equation

Take curl of momentum equation to eliminate p

$$
\frac{\partial \omega}{\partial t}+\mathbf{u} \cdot \nabla \omega=0+\frac{1}{R e} \nabla^{2} \omega
$$

No stretching in 2D (first term on RHS)

$$
\mathbf{u} \cdot \nabla \omega=\psi_{y} \omega_{x}-\psi_{x} \omega_{y}=\frac{\partial(\omega, \psi)}{\partial(x, y)}
$$

$\mathrm{BC1}: \mathbf{u} \cdot \mathbf{n}=0$ all sides
\rightarrow sides $=$ streamline $\quad \rightarrow \psi=0$.

Vorticity equation

Take curl of momentum equation to eliminate p

$$
\frac{\partial \omega}{\partial t}+\mathbf{u} \cdot \nabla \omega=0+\frac{1}{R e} \nabla^{2} \omega
$$

No stretching in 2D (first term on RHS)

$$
\mathbf{u} \cdot \nabla \omega=\psi_{y} \omega_{x}-\psi_{x} \omega_{y}=\frac{\partial(\omega, \psi)}{\partial(x, y)}
$$

$\mathrm{BC1}: \mathbf{u} \cdot \mathbf{n}=0$ all sides
\rightarrow sides $=$ streamline $\quad \rightarrow \psi=0$.
BC2: tangential velocity

$$
\begin{aligned}
& \frac{\partial \psi}{\partial y}=\sin ^{2} \pi x \text { on top } y=1,0<x<1 \\
& \frac{\partial \psi}{\partial y}=0 \text { on bottom } y=0,0<x<1 \\
& \frac{\partial \psi}{\partial x}=0 \text { on sides } x=0 \text { and } 1,0<y<1
\end{aligned}
$$

Solve as decoupled pair

1. At each t given ω, find ψ :

$$
\nabla^{2} \psi=-\omega
$$

with $\psi=0$ all sides.

Solve as decoupled pair

1. At each t given ω, find ψ :

$$
\nabla^{2} \psi=-\omega
$$

with $\psi=0$ all sides.
2. With ω and now ψ known at t, find ω at $t+\Delta t$:

$$
\frac{\partial \omega}{\partial t}=-\frac{\partial(\omega, \psi)}{\partial(x, y)}+\frac{1}{R e} \nabla^{2} \omega
$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct

Solve as decoupled pair

1. At each t given ω, find ψ :

$$
\nabla^{2} \psi=-\omega
$$

with $\psi=0$ all sides.
2. With ω and now ψ known at t, find ω at $t+\Delta t$:

$$
\frac{\partial \omega}{\partial t}=-\frac{\partial(\omega, \psi)}{\partial(x, y)}+\frac{1}{R e} \nabla^{2} \omega
$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct
\rightarrow not quite decoupled.

