Resumé of lecture 1

Driven Cavity, with $u=\sin ^{2} \pi x$ on top.

Resumé of lecture 1

Driven Cavity, with $u=\sin ^{2} \pi x$ on top.

Streamfunction-vorticity formulation:

Resumé of lecture 1

Driven Cavity, with $u=\sin ^{2} \pi x$ on top. Streamfunction-vorticity formulation:

1. At each t given ω, find ψ :

$$
\nabla^{2} \psi=-\omega
$$

with $\psi=0$ all sides.

Resumé of lecture 1

Driven Cavity, with $u=\sin ^{2} \pi x$ on top.
Streamfunction-vorticity formulation:

1. At each t given ω, find ψ :

$$
\nabla^{2} \psi=-\omega
$$

with $\psi=0$ all sides.
2. With ω and now ψ known at t, find ω at $t+\Delta t$:

$$
\frac{\partial \omega}{\partial t}=-\frac{\partial(\psi, \omega)}{\partial(x, y)}+\frac{1}{R e} \nabla^{2} \omega
$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct

Resumé of lecture 1

Driven Cavity, with $u=\sin ^{2} \pi x$ on top.
Streamfunction-vorticity formulation:

1. At each t given ω, find ψ :

$$
\nabla^{2} \psi=-\omega
$$

with $\psi=0$ all sides.
2. With ω and now ψ known at t, find ω at $t+\Delta t$:

$$
\frac{\partial \omega}{\partial t}=-\frac{\partial(\psi, \omega)}{\partial(x, y)}+\frac{1}{R e} \nabla^{2} \omega
$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct
Physics of the Navier-Stokes equation, corner singularity, non-dimensional, classification PDEs, proper IC/BC

Resumé of lecture 1

Driven Cavity, with $u=\sin ^{2} \pi x$ on top.
Streamfunction-vorticity formulation:

1. At each t given ω, find ψ :

$$
\nabla^{2} \psi=-\omega
$$

with $\psi=0$ all sides.
2. With ω and now ψ known at t, find ω at $t+\Delta t$:

$$
\frac{\partial \omega}{\partial t}=-\frac{\partial(\psi, \omega)}{\partial(x, y)}+\frac{1}{R e} \nabla^{2} \omega
$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct
Physics of the Navier-Stokes equation, corner singularity, non-dimensional, classification PDEs, proper IC/BC

Attempting numerical solution reveals poor understanding of question (physics and maths).

2.2 Finite differences - simple

Later, Part II on more sophisticated finite differences, as well as finite elements and spectral representation.

2.2 Finite differences - simple

Later, Part II on more sophisticated finite differences, as well as finite elements and spectral representation.

Finite computer \rightarrow finite representation: spot data

2.2 Finite differences - simple

Later, Part II on more sophisticated finite differences, as well as finite elements and spectral representation.

Finite computer \rightarrow finite representation: spot data

$$
\begin{array}{r}
\omega_{i j}^{n} \approx \omega(x=i \Delta x, y=j \Delta x, t=n \Delta t) \\
\text { for } i=0,1, \ldots, N, j=0,1, \ldots, N \text { and } n=0,1,2 \ldots
\end{array}
$$

Square mesh with $\Delta y=\Delta x$.

Approximation of derivatives

Forward differencing $\quad f_{i}^{\prime}=\frac{f_{i+1}-f_{i}}{\Delta x}+O(\Delta x)$

Approximation of derivatives

Forward differencing $f_{i}^{\prime}=\frac{f_{i+1}-f_{i}}{\Delta x}+O(\Delta x)$
Backward differencing $f_{i}^{\prime}=\frac{f_{i}-f_{i-1}}{\Delta x}-O(\Delta x)$

Approximation of derivatives

Forward differencing $f_{i}^{\prime}=\frac{f_{i+1}-f_{i}}{\Delta x}+O(\Delta x)$
Backward differencing $f_{i}^{\prime}=\frac{f_{i}-f_{i-1}}{\Delta x}-O(\Delta x)$
Central differencing $f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 \Delta x}+O\left(\Delta x^{2}\right)$

Approximation of derivatives

Forward differencing $f_{i}^{\prime}=\frac{f_{i+1}-f_{i}}{\Delta x}+O(\Delta x)$
Backward differencing $f_{i}^{\prime}=\frac{f_{i}-f_{i-1}}{\Delta x}-O(\Delta x)$
Central differencing $f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 \Delta x}+O\left(\Delta x^{2}\right)$
Curvature error cancels in central difference

Second derivative $f^{\prime \prime}$

$$
f^{\prime \prime}{ }_{i} \approx \frac{\left(f_{i+\frac{1}{2}}^{\prime} \approx \frac{f_{i+1}-f_{i}}{\Delta x}\right)-\left(f_{i-\frac{1}{2}}^{\prime} \approx \frac{f_{i}-f_{i-1}}{\Delta x}\right)}{\Delta x}
$$

Second derivative $f^{\prime \prime}$

$$
\begin{aligned}
f^{\prime \prime} ; & \approx \frac{\left(f_{i+\frac{1}{2}}^{\prime} \approx \frac{f_{i+1}-f_{i}}{\Delta x}\right)-\left(f_{i-\frac{1}{2}}^{\prime} \approx \frac{f_{i}-f_{i-1}}{\Delta x}\right)}{\Delta x} \\
& =\frac{f_{i+1}-2 f_{i}+f_{i-1}}{\Delta x^{2}}+O\left(\Delta x^{2}\right) .
\end{aligned}
$$

Second derivative $f^{\prime \prime}$

$$
\begin{aligned}
f_{i}^{\prime \prime} & \approx \frac{\left(f_{i+\frac{1}{2}}^{\prime} \approx \frac{f_{i+1}-f_{i}}{\Delta x}\right)-\left(f_{i-\frac{1}{2}}^{\prime} \approx \frac{f_{i}-f_{i-1}}{\Delta x}\right)}{\Delta x} \\
& =\quad \frac{f_{i+1}-2 f_{i}+f_{i-1}}{\Delta x^{2}}+O\left(\Delta x^{2}\right) .
\end{aligned}
$$

Note

$$
f^{\prime \prime}{ }_{i} \neq\left(f_{i}^{\prime}\right)^{\prime}=\frac{f_{i+2}-2 f_{i}+f_{i-2}}{4 \Delta x^{2}} .
$$

Second derivative $f^{\prime \prime}$

$$
\begin{aligned}
f_{i}^{\prime \prime} & \approx \frac{\left(f_{i+\frac{1}{2}}^{\prime} \approx \frac{f_{i+1}-f_{i}}{\Delta x}\right)-\left(f_{i-\frac{1}{2}}^{\prime} \approx \frac{f_{i}-f_{i-1}}{\Delta x}\right)}{\Delta x} \\
& =\frac{f_{i+1}-2 f_{i}+f_{i-1}}{\Delta x^{2}}+O\left(\Delta x^{2}\right) .
\end{aligned}
$$

Note

$$
f^{\prime \prime}{ }_{i} \neq\left(f_{i}^{\prime}\right)^{\prime}=\frac{f_{i+2}-2 f_{i}+f_{i-2}}{4 \Delta x^{2}} .
$$

- error 4 times as large.

Second derivative $f^{\prime \prime}$

$$
\begin{aligned}
f_{i}^{\prime \prime} & \approx \frac{\left(f_{i+\frac{1}{2}}^{\prime} \approx \frac{f_{i+1}-f_{i}}{\Delta x}\right)-\left(f_{i-\frac{1}{2}}^{\prime} \approx \frac{f_{i}-f_{i-1}}{\Delta x}\right)}{\Delta x} \\
& =\frac{f_{i+1}-2 f_{i}+f_{i-1}}{\Delta x^{2}}+O\left(\Delta x^{2}\right) .
\end{aligned}
$$

Note

$$
f^{\prime \prime}{ }_{i} \neq\left(f_{i}^{\prime}\right)^{\prime}=\frac{f_{i+2}-2 f_{i}+f_{i-2}}{4 \Delta x^{2}} .
$$

- error 4 times as large.

Also

$$
(a b)_{i}^{\prime} \neq a_{i}^{\prime} b_{i}+a_{i} b_{i}^{\prime} .
$$

Local error analysis

by Taylor series

$$
f_{i+1}=f(x=i \Delta x+\Delta x)
$$

Local error analysis

by Taylor series

$$
\begin{aligned}
f_{i+1} & =f(x=i \Delta x+\Delta x) \\
& =f_{i}+\Delta x f_{i}^{\prime}+\frac{1}{2} \Delta x^{2} f_{i}^{\prime \prime}+\frac{1}{6} \Delta x^{3} f_{i}^{\prime \prime \prime}+\frac{1}{24} \Delta x^{4} f_{i}^{\prime \prime \prime \prime}+\ldots
\end{aligned}
$$

Local error analysis

by Taylor series

$$
\begin{aligned}
f_{i+1} & =f(x=i \Delta x+\Delta x) \\
& =f_{i}+\Delta x f_{i}^{\prime}+\frac{1}{2} \Delta x^{2} f_{i}^{\prime \prime}+\frac{1}{6} \Delta x^{3} f_{i}^{\prime \prime \prime}+\frac{1}{24} \Delta x^{4} f_{i}^{\prime \prime \prime \prime}+\ldots
\end{aligned}
$$

Hence

$$
f_{i+1}-2 f_{i}+f_{i-1}=\Delta x^{2} f_{i}^{\prime \prime}+\frac{1}{12} \Delta x^{4} f_{i}^{\prime \prime \prime \prime} .
$$

Local error analysis

by Taylor series

$$
\begin{aligned}
f_{i+1} & =f(x=i \Delta x+\Delta x) \\
& =f_{i}+\Delta x f_{i}^{\prime}+\frac{1}{2} \Delta x^{2} f_{i}^{\prime \prime}+\frac{1}{6} \Delta x^{3} f_{i}^{\prime \prime \prime}+\frac{1}{24} \Delta x^{4} f_{i}^{\prime \prime \prime \prime}+\ldots
\end{aligned}
$$

Hence

$$
f_{i+1}-2 f_{i}+f_{i-1}=\Delta x^{2} f_{i}^{\prime \prime}+\frac{1}{12} \Delta x^{4} f_{i}^{\prime \prime \prime \prime} .
$$

Try to use central differences, so $O\left(\Delta x^{2}\right)$ in spatial differentiation.

Local error analysis

by Taylor series

$$
\begin{aligned}
f_{i+1} & =f(x=i \Delta x+\Delta x) \\
& =f_{i}+\Delta x f_{i}^{\prime}+\frac{1}{2} \Delta x^{2} f_{i}^{\prime \prime}+\frac{1}{6} \Delta x^{3} f_{i}^{\prime \prime \prime}+\frac{1}{24} \Delta x^{4} f_{i}^{\prime \prime \prime \prime}+\ldots
\end{aligned}
$$

Hence

$$
f_{i+1}-2 f_{i}+f_{i-1}=\Delta x^{2} f_{i}^{\prime \prime}+\frac{1}{12} \Delta x^{4} f_{i}^{\prime \prime \prime \prime}
$$

Try to use central differences, so $O\left(\Delta x^{2}\right)$ in spatial differentiation.
Forward time differencing adequate for driven cavity - see later.

Laplacian

$$
\left(\nabla^{2} \psi\right)_{i j} \approx \frac{\psi_{i+1 j}-2 \psi_{i j}+\psi_{i-1 j}}{\Delta x^{2}}+\frac{\psi_{i j+1}-2 \psi_{i j}+\psi_{i j-1}}{\Delta x^{2}}
$$

Laplacian

$$
\left(\nabla^{2} \psi\right)_{i j} \approx \frac{\psi_{i+1 j}-2 \psi_{i j}+\psi_{i-1 j}}{\Delta x^{2}}+\frac{\psi_{i j+1}-2 \psi_{i j}+\psi_{i j-1}}{\Delta x^{2}}
$$

written with a 'numerical molecule'

$$
\approx \frac{1}{\Delta x^{2}}\left(\begin{array}{ccc}
1 & \\
1 & -4 & 1 \\
& 1 &
\end{array}\right) \psi_{i j}
$$

2.3 Poisson problem: $\nabla^{2} \psi=-\omega$

At interior points, $i=1 \rightarrow N-1, j=1 \rightarrow N-1$, solve

$$
\frac{1}{\Delta x^{2}}\left(\begin{array}{ccc}
& 1 \\
1 & -4 & 1 \\
& 1
\end{array}\right) \psi_{i j}=-\omega_{i j}
$$

2.3 Poisson problem: $\nabla^{2} \psi=-\omega$

At interior points, $i=1 \rightarrow N-1, j=1 \rightarrow N-1$, solve

$$
\frac{1}{\Delta x^{2}}\left(\begin{array}{ccc}
& 1 \\
1 & -4 & 1 \\
& 1 &
\end{array}\right) \psi_{i j}=-\omega_{i j}
$$

with boundary conditions

$$
\psi=0 \text { for } i=0 \& N, j=0 \rightarrow N \text { and for } j=0 \& N, i=0 \rightarrow N
$$

2.3 Poisson problem: $\nabla^{2} \psi=-\omega$

At interior points, $i=1 \rightarrow N-1, j=1 \rightarrow N-1$, solve

$$
\frac{1}{\Delta x^{2}}\left(\begin{array}{ccc}
& 1 \\
1 & -4 & 1 \\
& 1
\end{array}\right) \psi_{i j}=-\omega_{i j}
$$

with boundary conditions

$$
\psi=0 \text { for } i=0 \& N, j=0 \rightarrow N \text { and for } j=0 \& N, i=0 \rightarrow N
$$

Large problem in linear algebra

2.3 Poisson problem: $\nabla^{2} \psi=-\omega$

At interior points, $i=1 \rightarrow N-1, j=1 \rightarrow N-1$, solve

$$
\frac{1}{\Delta x^{2}}\left(\begin{array}{ccc}
& 1 \\
1 & -4 & 1 \\
& 1
\end{array}\right) \psi_{i j}=-\omega_{i j}
$$

with boundary conditions

$$
\psi=0 \text { for } i=0 \& N, j=0 \rightarrow N \text { and for } j=0 \& N, i=0 \rightarrow N
$$

Large problem in linear algebra 90% CPU of most programs - worth a good method

Simplest - Gauss-Seidel

Sweep through interior

$$
\begin{array}{ll}
j=1: & i=1 \rightarrow N-1 \\
j=2: & i=1 \rightarrow N-1
\end{array}
$$

$$
\downarrow
$$

$j=N-1: \quad i=1 \rightarrow N-1$
and then repeat.

Simplest - Gauss-Seidel

Sweep through interior

$$
\begin{aligned}
& \qquad \begin{aligned}
j=1: & i=1 \rightarrow N-1 \\
j=2: & i=1 \rightarrow N-1 \\
\downarrow & \\
j=N-1: & i=1 \rightarrow N-1
\end{aligned} \\
& \text { and then repeat. }
\end{aligned}
$$

$$
\psi_{i j}^{\text {new }}=\frac{1}{4}\left(\psi_{i+1 j}^{\text {old }}+\psi_{i-1 j}^{\text {new }}+\psi_{i j+1}^{\text {old }}+\psi_{i j-1}^{\text {new }}+\Delta x^{2} \omega_{i j}\right)
$$

Simplest - Gauss-Seidel

Sweep through interior

$$
\begin{array}{ll}
j=1: & i=1 \rightarrow N-1 \\
j=2: & i=1 \rightarrow N-1
\end{array}
$$

$$
\downarrow
$$

$j=N-1: \quad i=1 \rightarrow N-1$
and then repeat.

$$
\psi_{i j}^{\text {new }}=\frac{1}{4}\left(\psi_{i+1 j}^{\text {old }}+\psi_{i-1 j}^{\text {new }}+\psi_{i j+1}^{\text {old }}+\psi_{i j-1}^{\text {new }}+\Delta x^{2} \omega_{i j}\right)
$$

To converge need $O\left(N^{2}\right)$ iterations/compete sweeps $\rightarrow O\left(N^{4}\right)$ operations.

A little better - Successive Over Relaxation

$$
\psi_{i j}^{\text {new }}=(1-r) \psi_{i j}^{\text {old }}+r\left\{\text { above expression for } \psi_{i j}^{\text {new }}\right\} .
$$

A little better - Successive Over Relaxation

$$
\psi_{i j}^{\text {new }}=(1-r) \psi_{i j}^{\text {old }}+r\left\{\text { above expression for } \psi_{i j}^{\text {new }}\right\}
$$

$$
\begin{array}{rc}
0<r & <1 \\
r & \text { under-relax } \\
1<1 & \text { Gauss-Seidel } \\
1<2 & \text { over-relax } \\
r \geq 2 & \text { unstable }
\end{array}
$$

A little better - Successive Over Relaxation

$$
\psi_{i j}^{\text {new }}=(1-r) \psi_{i j}^{\text {old }}+r\left\{\text { above expression for } \psi_{i j}^{\text {new }}\right\}
$$

$$
\begin{array}{rc}
0<r & <1 \\
r & \text { under-relax } \\
1<1 & \text { Gauss-Seidel } \\
1<2 & \text { over-relax } \\
r \geq 2 & \text { unstable }
\end{array}
$$

Optimal (for this problem and large N)

$$
r=\frac{2}{1+\frac{\pi}{N}}
$$

A little better - Successive Over Relaxation

$$
\psi_{i j}^{\text {new }}=(1-r) \psi_{i j}^{\text {old }}+r\left\{\text { above expression for } \psi_{i j}^{\text {new }}\right\}
$$

$$
\begin{array}{rc}
0<r<1 & \text { under-relax } \\
r & =1 \\
\text { Gauss-Seidel } \\
1<r<2 & \text { over-relax } \\
r \geq 2 & \text { unstable }
\end{array}
$$

Optimal (for this problem and large N)

$$
r=\frac{2}{1+\frac{\pi}{N}}
$$

With optimal r need $2 N$ iterations for 4 figure accuracy \rightarrow total cost $O\left(N^{3}\right)$ operations.

2.4 Test code

1. $\omega=0 \rightarrow \psi=0$?

2.4 Test code

1. $\omega=0 \rightarrow \psi=0$?

- Check loops - range-checking option of compiler

2.4 Test code

1. $\omega=0 \rightarrow \psi=0$?

- Check loops - range-checking option of compiler
- Compile of two types of machine - uninitialised variables

2.4 Test code

1. $\omega=0 \rightarrow \psi=0$?

- Check loops - range-checking option of compiler
- Compile of two types of machine - uninitialised variables

2. $\omega=2 \pi^{2} \sin \pi x \sin \pi y \rightarrow \psi=\sin \pi x \sin \pi y$?

2.4 Test code

1. $\omega=0 \rightarrow \psi=0$?

- Check loops - range-checking option of compiler
- Compile of two types of machine - uninitialised variables

2. $\omega=2 \pi^{2} \sin \pi x \sin \pi y \rightarrow \psi=\sin \pi x \sin \pi y$?

- Plot $\psi(x, y)$ - shape OK? magnitude correct?

2.4 Test code

1. $\omega=0 \rightarrow \psi=0$?

- Check loops - range-checking option of compiler
- Compile of two types of machine - uninitialised variables

2. $\omega=2 \pi^{2} \sin \pi x \sin \pi y \rightarrow \psi=\sin \pi x \sin \pi y$?

- Plot $\psi(x, y)$ - shape OK? magnitude correct?

Test code 2

- $\psi\left(\frac{1}{2}, \frac{1}{2}\right)$ vs number of iterations

Test code 2

- $\psi\left(\frac{1}{2}, \frac{1}{2}\right)$ vs number of iterations

Test code 2

- $\psi\left(\frac{1}{2}, \frac{1}{2}\right)$ vs number of iterations

For $N=20$ Gauss-Seidel needs 500 iterations, whereas SOR with optimal $r \approx 1.75$ needs 20 .

Test code 3

3. Variation with Δx of maximum error

$$
\text { Error }=\max _{\text {grid }}\left|\psi_{i j}^{\text {numerical }}-\psi^{\text {theory }}(i \Delta x, j \Delta)\right|,
$$

Test code 3

3. Variation with Δx of maximum error

$$
\text { Error }=\max _{\text {grid }}\left|\psi_{i j}^{\text {numerical }}-\psi^{\text {theory }}(i \Delta x, j \Delta)\right|
$$

Test code 4

For this test problem, max error $\approx 0.85 \Delta x^{2}$

Test code 4

For this test problem, max error $\approx 0.85 \Delta x^{2}$
Hence

$$
\begin{aligned}
1 \% \text { error (normal working) } & \text { at } N=10 \\
10^{-3} \text { error (if really needed) } & \text { at } N=28
\end{aligned}
$$

Test code 4

For this test problem, max error $\approx 0.85 \Delta x^{2}$
Hence

$$
\begin{aligned}
1 \% \text { error (normal working) } & \text { at } N=10 \\
10^{-3} \text { error (if really needed) } & \text { at } N=28
\end{aligned}
$$

But $\mathrm{CPU}_{28} \approx 20 \mathrm{CPU}_{10}$

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks Production code:

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks Production code:

- Comments on most lines

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks Production code:

- Comments on most lines
- Test for problems, halt with helpful message

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks Production code:

- Comments on most lines
- Test for problems, halt with helpful message
- Bullet-proof - no indirect action

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks Production code:

- Comments on most lines
- Test for problems, halt with helpful message
- Bullet-proof - no indirect action
- Fast and efficient

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks Production code:

- Comments on most lines
- Test for problems, halt with helpful message
- Bullet-proof - no indirect action
- Fast and efficient

EG avoid repeating same calculation, so first set $r 1=1-r$, $r 025=0.25 r$ and $h 2 w_{i j}=h^{2} \omega_{i j}$.

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks Production code:

- Comments on most lines
- Test for problems, halt with helpful message
- Bullet-proof - no indirect action
- Fast and efficient

EG avoid repeating same calculation, so first set $r 1=1-r$, $r 025=0.25 r$ and $h 2 w_{i j}=h^{2} \omega_{i j}$. Then

$$
\psi_{i j}=r 1 \psi_{i j}+r 025\left[\left(\begin{array}{ccc}
& 1 & \\
1 & & 1 \\
& 1 &
\end{array}\right) \psi_{i j}+h 2 w_{i j}\right]
$$

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks Production code:

- Comments on most lines
- Test for problems, halt with helpful message
- Bullet-proof - no indirect action
- Fast and efficient

EG avoid repeating same calculation, so first set $r 1=1-r$, $r 025=0.25 r$ and $h 2 w_{i j}=h^{2} \omega_{i j}$. Then

$$
\psi_{i j}=r 1 \psi_{i j}+r 025\left[\left(\begin{array}{ccc}
& 1 & \\
1 & & 1 \\
& 1 &
\end{array}\right) \psi_{i j}+h 2 w_{i j}\right]
$$

Packages: NAG, LAPACK, matrix routines

2.6 Simple graphing

Program writes out table: on ith line x_{i}, y_{i}, and z_{i} if contouring.

2.6 Simple graphing

Program writes out table: on i th line x_{i}, y_{i}, and z_{i} if contouring.
Pipe output to a results file a.out $>$ res.

2.6 Simple graphing

Program writes out table: on i th line x_{i}, y_{i}, and z_{i} if contouring.
Pipe output to a results file a.out $>$ res.
Public domain simple graphs gnuplot.

2.6 Simple graphing

Program writes out table: on i th line x_{i}, y_{i}, and z_{i} if contouring.
Pipe output to a results file a.out $>$ res.
Public domain simple graphs gnuplot.
Line diagrams $y(x):>$ plot $^{\prime} r e s^{\prime}$ with lines

2.6 Simple graphing

Program writes out table: on i th line x_{i}, y_{i}, and z_{i} if contouring.
Pipe output to a results file a.out $>$ res.
Public domain simple graphs gnuplot.
Line diagrams $y(x):>$ plot $^{\prime} r e s^{\prime}$ with lines

- (auto)scale, label, logs, multiple plots

2.6 Simple graphing

Program writes out table: on i th line x_{i}, y_{i}, and z_{i} if contouring.
Pipe output to a results file a.out $>$ res.
Public domain simple graphs gnuplot.
Line diagrams $y(x):>$ plot 'res' with lines

- (auto)scale, label, logs, multiple plots

Contour plots $z(x, y):>$ splot 'res' w I

2.6 Simple graphing

Program writes out table: on i th line x_{i}, y_{i}, and z_{i} if contouring.
Pipe output to a results file a.out $>$ res.
Public domain simple graphs gnuplot.
Line diagrams $y(x):>$ plot 'res' with lines

- (auto)scale, label, logs, multiple plots

Contour plots $z(x, y):>$ splot 'res' w I
Many options: list with egs: >help.

2.6 Simple graphing

Program writes out table: on i th line x_{i}, y_{i}, and z_{i} if contouring.
Pipe output to a results file a.out $>$ res.
Public domain simple graphs gnuplot.
Line diagrams $y(x):>$ plot $^{\prime} r e s^{\prime}$ with lines

- (auto)scale, label, logs, multiple plots

Contour plots $z(x, y):>$ splot 'res' w I
Many options: list with egs: $>$ help.
End: > quit

