
Resumé of lecture 1

Driven Cavity, with u = sin2 πx on top.

Streamfunction-vorticity formulation:
1. At each t given ω, find ψ:

∇2ψ = −ω

with ψ = 0 all sides.
2. With ω and now ψ known at t, find ω at t + ∆t:

∂ω

∂t
= −∂(ψ, ω)

∂(x , y)
+

1

Re
∇2ω

with ω on boundary so ∂ψ
∂n correct

Physics of the Navier-Stokes equation, corner singularity,
non-dimensional, classification PDEs, proper IC/BC

Attempting numerical solution reveals poor understanding of
question (physics and maths).

Resumé of lecture 1

Driven Cavity, with u = sin2 πx on top.
Streamfunction-vorticity formulation:

1. At each t given ω, find ψ:

∇2ψ = −ω

with ψ = 0 all sides.
2. With ω and now ψ known at t, find ω at t + ∆t:

∂ω

∂t
= −∂(ψ, ω)

∂(x , y)
+

1

Re
∇2ω

with ω on boundary so ∂ψ
∂n correct

Physics of the Navier-Stokes equation, corner singularity,
non-dimensional, classification PDEs, proper IC/BC

Attempting numerical solution reveals poor understanding of
question (physics and maths).

Resumé of lecture 1

Driven Cavity, with u = sin2 πx on top.
Streamfunction-vorticity formulation:
1. At each t given ω, find ψ:

∇2ψ = −ω

with ψ = 0 all sides.

2. With ω and now ψ known at t, find ω at t + ∆t:

∂ω

∂t
= −∂(ψ, ω)

∂(x , y)
+

1

Re
∇2ω

with ω on boundary so ∂ψ
∂n correct

Physics of the Navier-Stokes equation, corner singularity,
non-dimensional, classification PDEs, proper IC/BC

Attempting numerical solution reveals poor understanding of
question (physics and maths).

Resumé of lecture 1

Driven Cavity, with u = sin2 πx on top.
Streamfunction-vorticity formulation:
1. At each t given ω, find ψ:

∇2ψ = −ω

with ψ = 0 all sides.
2. With ω and now ψ known at t, find ω at t + ∆t:

∂ω

∂t
= −∂(ψ, ω)

∂(x , y)
+

1

Re
∇2ω

with ω on boundary so ∂ψ
∂n correct

Physics of the Navier-Stokes equation, corner singularity,
non-dimensional, classification PDEs, proper IC/BC

Attempting numerical solution reveals poor understanding of
question (physics and maths).

Resumé of lecture 1

Driven Cavity, with u = sin2 πx on top.
Streamfunction-vorticity formulation:
1. At each t given ω, find ψ:

∇2ψ = −ω

with ψ = 0 all sides.
2. With ω and now ψ known at t, find ω at t + ∆t:

∂ω

∂t
= −∂(ψ, ω)

∂(x , y)
+

1

Re
∇2ω

with ω on boundary so ∂ψ
∂n correct

Physics of the Navier-Stokes equation, corner singularity,
non-dimensional, classification PDEs, proper IC/BC

Attempting numerical solution reveals poor understanding of
question (physics and maths).

Resumé of lecture 1

Driven Cavity, with u = sin2 πx on top.
Streamfunction-vorticity formulation:
1. At each t given ω, find ψ:

∇2ψ = −ω

with ψ = 0 all sides.
2. With ω and now ψ known at t, find ω at t + ∆t:

∂ω

∂t
= −∂(ψ, ω)

∂(x , y)
+

1

Re
∇2ω

with ω on boundary so ∂ψ
∂n correct

Physics of the Navier-Stokes equation, corner singularity,
non-dimensional, classification PDEs, proper IC/BC

Attempting numerical solution reveals poor understanding of
question (physics and maths).

2.2 Finite differences – simple

Later, Part II on more sophisticated finite differences, as well as
finite elements and spectral representation.

Finite computer → finite representation: spot data

ωn
ij ≈ ω(x = i∆x , y = j∆x , t = n∆t).

for i = 0, 1, . . . ,N, j = 0, 1, . . . ,N and n = 0, 1, 2 . . .

Square mesh with ∆y = ∆x .

2.2 Finite differences – simple

Later, Part II on more sophisticated finite differences, as well as
finite elements and spectral representation.

Finite computer → finite representation: spot data

ωn
ij ≈ ω(x = i∆x , y = j∆x , t = n∆t).

for i = 0, 1, . . . ,N, j = 0, 1, . . . ,N and n = 0, 1, 2 . . .

Square mesh with ∆y = ∆x .

2.2 Finite differences – simple

Later, Part II on more sophisticated finite differences, as well as
finite elements and spectral representation.

Finite computer → finite representation: spot data

ωn
ij ≈ ω(x = i∆x , y = j∆x , t = n∆t).

for i = 0, 1, . . . ,N, j = 0, 1, . . . ,N and n = 0, 1, 2 . . .

Square mesh with ∆y = ∆x .

Approximation of derivatives

Forward differencing f ′i =
fi+1 − fi

∆x
+ O(∆x)

Backward differencing f ′i =
fi − fi−1

∆x
− O(∆x)

Central differencing f ′i =
fi+1 − fi−1

2∆x
+ O(∆x2)

Curvature error cancels in central difference

Approximation of derivatives

Forward differencing f ′i =
fi+1 − fi

∆x
+ O(∆x)

Backward differencing f ′i =
fi − fi−1

∆x
− O(∆x)

Central differencing f ′i =
fi+1 − fi−1

2∆x
+ O(∆x2)

Curvature error cancels in central difference

Approximation of derivatives

Forward differencing f ′i =
fi+1 − fi

∆x
+ O(∆x)

Backward differencing f ′i =
fi − fi−1

∆x
− O(∆x)

Central differencing f ′i =
fi+1 − fi−1

2∆x
+ O(∆x2)

Curvature error cancels in central difference

Approximation of derivatives

Forward differencing f ′i =
fi+1 − fi

∆x
+ O(∆x)

Backward differencing f ′i =
fi − fi−1

∆x
− O(∆x)

Central differencing f ′i =
fi+1 − fi−1

2∆x
+ O(∆x2)

Curvature error cancels in central difference

Second derivative f ′′

f ′′i ≈

(
f ′
i+ 1

2

≈ fi+1 − fi
∆x

)
−
(
f ′
i− 1

2

≈ fi − fi−1
∆x

)
∆x

=
fi+1 − 2fi + fi−1

∆x2
+ O(∆x2).

Note

f ′′i 6=
(
f ′i
)′

=
fi+2 − 2fi + fi−2

4∆x2
.

– error 4 times as large.

Also
(ab)′i 6= a′ibi + aib

′
i .

Second derivative f ′′

f ′′i ≈

(
f ′
i+ 1

2

≈ fi+1 − fi
∆x

)
−
(
f ′
i− 1

2

≈ fi − fi−1
∆x

)
∆x

=
fi+1 − 2fi + fi−1

∆x2
+ O(∆x2).

Note

f ′′i 6=
(
f ′i
)′

=
fi+2 − 2fi + fi−2

4∆x2
.

– error 4 times as large.

Also
(ab)′i 6= a′ibi + aib

′
i .

Second derivative f ′′

f ′′i ≈

(
f ′
i+ 1

2

≈ fi+1 − fi
∆x

)
−
(
f ′
i− 1

2

≈ fi − fi−1
∆x

)
∆x

=
fi+1 − 2fi + fi−1

∆x2
+ O(∆x2).

Note

f ′′i 6=
(
f ′i
)′

=
fi+2 − 2fi + fi−2

4∆x2
.

– error 4 times as large.

Also
(ab)′i 6= a′ibi + aib

′
i .

Second derivative f ′′

f ′′i ≈

(
f ′
i+ 1

2

≈ fi+1 − fi
∆x

)
−
(
f ′
i− 1

2

≈ fi − fi−1
∆x

)
∆x

=
fi+1 − 2fi + fi−1

∆x2
+ O(∆x2).

Note

f ′′i 6=
(
f ′i
)′

=
fi+2 − 2fi + fi−2

4∆x2
.

– error 4 times as large.

Also
(ab)′i 6= a′ibi + aib

′
i .

Second derivative f ′′

f ′′i ≈

(
f ′
i+ 1

2

≈ fi+1 − fi
∆x

)
−
(
f ′
i− 1

2

≈ fi − fi−1
∆x

)
∆x

=
fi+1 − 2fi + fi−1

∆x2
+ O(∆x2).

Note

f ′′i 6=
(
f ′i
)′

=
fi+2 − 2fi + fi−2

4∆x2
.

– error 4 times as large.

Also
(ab)′i 6= a′ibi + aib

′
i .

Local error analysis

by Taylor series

fi+1 = f (x = i∆x + ∆x)

= fi + ∆xf ′i + 1
2∆x2fi

′′ + 1
6∆x3fi

′′′ + 1
24∆x4fi

′′′′ + . . .

Hence
fi+1 − 2fi + fi−1 = ∆x2fi

′′ + 1
12∆x4fi

′′′′.

Try to use central differences, so O(∆x2) in spatial differentiation.

Forward time differencing adequate for driven cavity – see later.

Local error analysis

by Taylor series

fi+1 = f (x = i∆x + ∆x)

= fi + ∆xf ′i + 1
2∆x2fi

′′ + 1
6∆x3fi

′′′ + 1
24∆x4fi

′′′′ + . . .

Hence
fi+1 − 2fi + fi−1 = ∆x2fi

′′ + 1
12∆x4fi

′′′′.

Try to use central differences, so O(∆x2) in spatial differentiation.

Forward time differencing adequate for driven cavity – see later.

Local error analysis

by Taylor series

fi+1 = f (x = i∆x + ∆x)

= fi + ∆xf ′i + 1
2∆x2fi

′′ + 1
6∆x3fi

′′′ + 1
24∆x4fi

′′′′ + . . .

Hence
fi+1 − 2fi + fi−1 = ∆x2fi

′′ + 1
12∆x4fi

′′′′.

Try to use central differences, so O(∆x2) in spatial differentiation.

Forward time differencing adequate for driven cavity – see later.

Local error analysis

by Taylor series

fi+1 = f (x = i∆x + ∆x)

= fi + ∆xf ′i + 1
2∆x2fi

′′ + 1
6∆x3fi

′′′ + 1
24∆x4fi

′′′′ + . . .

Hence
fi+1 − 2fi + fi−1 = ∆x2fi

′′ + 1
12∆x4fi

′′′′.

Try to use central differences, so O(∆x2) in spatial differentiation.

Forward time differencing adequate for driven cavity – see later.

Local error analysis

by Taylor series

fi+1 = f (x = i∆x + ∆x)

= fi + ∆xf ′i + 1
2∆x2fi

′′ + 1
6∆x3fi

′′′ + 1
24∆x4fi

′′′′ + . . .

Hence
fi+1 − 2fi + fi−1 = ∆x2fi

′′ + 1
12∆x4fi

′′′′.

Try to use central differences, so O(∆x2) in spatial differentiation.

Forward time differencing adequate for driven cavity – see later.

Laplacian

(
∇2ψ

)
ij
≈
ψi+1 j − 2ψi j + ψi−1 j

∆x2
+
ψi j+1 − 2ψi j + ψi j−1

∆x2
,

written with a ‘numerical molecule’

≈ 1

∆x2

 1
1 −4 1

1

ψij .

Laplacian

(
∇2ψ

)
ij
≈
ψi+1 j − 2ψi j + ψi−1 j

∆x2
+
ψi j+1 − 2ψi j + ψi j−1

∆x2
,

written with a ‘numerical molecule’

≈ 1

∆x2

 1
1 −4 1

1

ψij .

2.3 Poisson problem: ∇2ψ = −ω

At interior points, i = 1→ N − 1, j = 1→ N − 1, solve

1

∆x2

 1
1 −4 1

1

ψij = −ωij ,

with boundary conditions

ψ = 0 for i = 0 & N, j = 0→ N and for j = 0 & N, i = 0→ N.

Large problem in linear algebra
90% CPU of most programs – worth a good method

2.3 Poisson problem: ∇2ψ = −ω

At interior points, i = 1→ N − 1, j = 1→ N − 1, solve

1

∆x2

 1
1 −4 1

1

ψij = −ωij ,

with boundary conditions

ψ = 0 for i = 0 & N, j = 0→ N and for j = 0 & N, i = 0→ N.

Large problem in linear algebra
90% CPU of most programs – worth a good method

2.3 Poisson problem: ∇2ψ = −ω

At interior points, i = 1→ N − 1, j = 1→ N − 1, solve

1

∆x2

 1
1 −4 1

1

ψij = −ωij ,

with boundary conditions

ψ = 0 for i = 0 & N, j = 0→ N and for j = 0 & N, i = 0→ N.

Large problem in linear algebra

90% CPU of most programs – worth a good method

2.3 Poisson problem: ∇2ψ = −ω

At interior points, i = 1→ N − 1, j = 1→ N − 1, solve

1

∆x2

 1
1 −4 1

1

ψij = −ωij ,

with boundary conditions

ψ = 0 for i = 0 & N, j = 0→ N and for j = 0 & N, i = 0→ N.

Large problem in linear algebra
90% CPU of most programs – worth a good method

Simplest – Gauss-Seidel

Sweep through interior

j = 1 : i = 1→ N − 1

j = 2 : i = 1→ N − 1

↓
j = N − 1 : i = 1→ N − 1

and then repeat.

-XXXXXy
-XXXy

XXXy -

b rb r
b

ψnew
i j =

1

4

(
ψold
i+1 j + ψnew

i−1 j + ψold
i j+1 + ψnew

i j−1 + ∆x2ωij

)
.

To converge need O(N2) iterations/compete sweeps
→ O(N4) operations.

Simplest – Gauss-Seidel

Sweep through interior

j = 1 : i = 1→ N − 1

j = 2 : i = 1→ N − 1

↓
j = N − 1 : i = 1→ N − 1

and then repeat.

-XXXXXy
-XXXy

XXXy -

b rb r
b

ψnew
i j =

1

4

(
ψold
i+1 j + ψnew

i−1 j + ψold
i j+1 + ψnew

i j−1 + ∆x2ωij

)
.

To converge need O(N2) iterations/compete sweeps
→ O(N4) operations.

Simplest – Gauss-Seidel

Sweep through interior

j = 1 : i = 1→ N − 1

j = 2 : i = 1→ N − 1

↓
j = N − 1 : i = 1→ N − 1

and then repeat.

-XXXXXy
-XXXy

XXXy -

b rb r
b

ψnew
i j =

1

4

(
ψold
i+1 j + ψnew

i−1 j + ψold
i j+1 + ψnew

i j−1 + ∆x2ωij

)
.

To converge need O(N2) iterations/compete sweeps
→ O(N4) operations.

A little better – Successive Over Relaxation

ψnew
i j = (1− r)ψold

i j + r{above expression for ψnew
i j }.

0 < r < 1 under-relax

r = 1 Gauss-Seidel

1 < r < 2 over-relax

r ≥ 2 unstable

Optimal (for this problem and large N)

r =
2

1 + π
N

.

With optimal r need 2N iterations for 4 figure accuracy
→ total cost O(N3) operations.

A little better – Successive Over Relaxation

ψnew
i j = (1− r)ψold

i j + r{above expression for ψnew
i j }.

0 < r < 1 under-relax

r = 1 Gauss-Seidel

1 < r < 2 over-relax

r ≥ 2 unstable

Optimal (for this problem and large N)

r =
2

1 + π
N

.

With optimal r need 2N iterations for 4 figure accuracy
→ total cost O(N3) operations.

A little better – Successive Over Relaxation

ψnew
i j = (1− r)ψold

i j + r{above expression for ψnew
i j }.

0 < r < 1 under-relax

r = 1 Gauss-Seidel

1 < r < 2 over-relax

r ≥ 2 unstable

Optimal (for this problem and large N)

r =
2

1 + π
N

.

With optimal r need 2N iterations for 4 figure accuracy
→ total cost O(N3) operations.

A little better – Successive Over Relaxation

ψnew
i j = (1− r)ψold

i j + r{above expression for ψnew
i j }.

0 < r < 1 under-relax

r = 1 Gauss-Seidel

1 < r < 2 over-relax

r ≥ 2 unstable

Optimal (for this problem and large N)

r =
2

1 + π
N

.

With optimal r need 2N iterations for 4 figure accuracy
→ total cost O(N3) operations.

2.4 Test code

1. ω = 0 → ψ = 0?

I Check loops – range-checking option of compiler
I Compile of two types of machine – uninitialised variables

2. ω = 2π2 sinπx sinπy → ψ = sinπx sinπy?
I Plot ψ(x , y) – shape OK? magnitude correct?

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

psi

 1
 0.8
 0.6
 0.4
 0.2

x

y

psi

2.4 Test code

1. ω = 0 → ψ = 0?
I Check loops – range-checking option of compiler

I Compile of two types of machine – uninitialised variables

2. ω = 2π2 sinπx sinπy → ψ = sinπx sinπy?
I Plot ψ(x , y) – shape OK? magnitude correct?

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

psi

 1
 0.8
 0.6
 0.4
 0.2

x

y

psi

2.4 Test code

1. ω = 0 → ψ = 0?
I Check loops – range-checking option of compiler
I Compile of two types of machine – uninitialised variables

2. ω = 2π2 sinπx sinπy → ψ = sinπx sinπy?
I Plot ψ(x , y) – shape OK? magnitude correct?

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

psi

 1
 0.8
 0.6
 0.4
 0.2

x

y

psi

2.4 Test code

1. ω = 0 → ψ = 0?
I Check loops – range-checking option of compiler
I Compile of two types of machine – uninitialised variables

2. ω = 2π2 sinπx sinπy → ψ = sinπx sinπy?

I Plot ψ(x , y) – shape OK? magnitude correct?

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

psi

 1
 0.8
 0.6
 0.4
 0.2

x

y

psi

2.4 Test code

1. ω = 0 → ψ = 0?
I Check loops – range-checking option of compiler
I Compile of two types of machine – uninitialised variables

2. ω = 2π2 sinπx sinπy → ψ = sinπx sinπy?
I Plot ψ(x , y) – shape OK? magnitude correct?

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

psi

 1
 0.8
 0.6
 0.4
 0.2

x

y

psi

2.4 Test code

1. ω = 0 → ψ = 0?
I Check loops – range-checking option of compiler
I Compile of two types of machine – uninitialised variables

2. ω = 2π2 sinπx sinπy → ψ = sinπx sinπy?
I Plot ψ(x , y) – shape OK? magnitude correct?

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

psi

 1
 0.8
 0.6
 0.4
 0.2

x

y

psi

Test code 2

I ψ(12 ,
1
2) vs number of iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

p
s
i

iteration

1.0
1.7

1.75
1.8

For N = 20 Gauss-Seidel needs 500 iterations,
whereas SOR with optimal r ≈ 1.75 needs 20.

Test code 2

I ψ(12 ,
1
2) vs number of iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

p
s
i

iteration

1.0
1.7

1.75
1.8

For N = 20 Gauss-Seidel needs 500 iterations,
whereas SOR with optimal r ≈ 1.75 needs 20.

Test code 2

I ψ(12 ,
1
2) vs number of iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

p
s
i

iteration

1.0
1.7

1.75
1.8

For N = 20 Gauss-Seidel needs 500 iterations,
whereas SOR with optimal r ≈ 1.75 needs 20.

Test code 3

3. Variation with ∆x of maximum error

Error = max
grid

∣∣∣ψnumerical
ij − ψtheory(i∆x , j∆)

∣∣∣ ,

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

e
rr

o
r

Dx2

Test code 3

3. Variation with ∆x of maximum error

Error = max
grid

∣∣∣ψnumerical
ij − ψtheory(i∆x , j∆)

∣∣∣ ,

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

e
rr

o
r

Dx2

Test code 4

For this test problem, max error ≈ 0.85∆x2

Hence

1% error (normal working) at N = 10

10−3 error (if really needed) at N = 28

But CPU28 ≈ 20CPU10

Test code 4

For this test problem, max error ≈ 0.85∆x2

Hence

1% error (normal working) at N = 10

10−3 error (if really needed) at N = 28

But CPU28 ≈ 20CPU10

Test code 4

For this test problem, max error ≈ 0.85∆x2

Hence

1% error (normal working) at N = 10

10−3 error (if really needed) at N = 28

But CPU28 ≈ 20CPU10

2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks

Production code:

I Comments on most lines

I Test for problems, halt with helpful message

I Bullet-proof – no indirect action

I Fast and efficient

EG avoid repeating same calculation, so first set r1 = 1− r ,
r025 = 0.25r and h2wij = h2ωij . Then

ψij = r1ψij + r025

 1
1 1

1

ψij + h2wij

 ,
Packages: NAG, LAPACK, matrix routines

2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks
Production code:

I Comments on most lines

I Test for problems, halt with helpful message

I Bullet-proof – no indirect action

I Fast and efficient

EG avoid repeating same calculation, so first set r1 = 1− r ,
r025 = 0.25r and h2wij = h2ωij . Then

ψij = r1ψij + r025

 1
1 1

1

ψij + h2wij

 ,
Packages: NAG, LAPACK, matrix routines

2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks
Production code:

I Comments on most lines

I Test for problems, halt with helpful message

I Bullet-proof – no indirect action

I Fast and efficient

EG avoid repeating same calculation, so first set r1 = 1− r ,
r025 = 0.25r and h2wij = h2ωij . Then

ψij = r1ψij + r025

 1
1 1

1

ψij + h2wij

 ,
Packages: NAG, LAPACK, matrix routines

2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks
Production code:

I Comments on most lines

I Test for problems, halt with helpful message

I Bullet-proof – no indirect action

I Fast and efficient

EG avoid repeating same calculation, so first set r1 = 1− r ,
r025 = 0.25r and h2wij = h2ωij . Then

ψij = r1ψij + r025

 1
1 1

1

ψij + h2wij

 ,
Packages: NAG, LAPACK, matrix routines

2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks
Production code:

I Comments on most lines

I Test for problems, halt with helpful message

I Bullet-proof – no indirect action

I Fast and efficient

EG avoid repeating same calculation, so first set r1 = 1− r ,
r025 = 0.25r and h2wij = h2ωij . Then

ψij = r1ψij + r025

 1
1 1

1

ψij + h2wij

 ,
Packages: NAG, LAPACK, matrix routines

2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks
Production code:

I Comments on most lines

I Test for problems, halt with helpful message

I Bullet-proof – no indirect action

I Fast and efficient

EG avoid repeating same calculation, so first set r1 = 1− r ,
r025 = 0.25r and h2wij = h2ωij . Then

ψij = r1ψij + r025

 1
1 1

1

ψij + h2wij

 ,
Packages: NAG, LAPACK, matrix routines

2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks
Production code:

I Comments on most lines

I Test for problems, halt with helpful message

I Bullet-proof – no indirect action

I Fast and efficient

EG avoid repeating same calculation, so first set r1 = 1− r ,
r025 = 0.25r and h2wij = h2ωij .

Then

ψij = r1ψij + r025

 1
1 1

1

ψij + h2wij

 ,
Packages: NAG, LAPACK, matrix routines

2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks
Production code:

I Comments on most lines

I Test for problems, halt with helpful message

I Bullet-proof – no indirect action

I Fast and efficient

EG avoid repeating same calculation, so first set r1 = 1− r ,
r025 = 0.25r and h2wij = h2ωij . Then

ψij = r1ψij + r025

 1
1 1

1

ψij + h2wij

 ,

Packages: NAG, LAPACK, matrix routines

2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks
Production code:

I Comments on most lines

I Test for problems, halt with helpful message

I Bullet-proof – no indirect action

I Fast and efficient

EG avoid repeating same calculation, so first set r1 = 1− r ,
r025 = 0.25r and h2wij = h2ωij . Then

ψij = r1ψij + r025

 1
1 1

1

ψij + h2wij

 ,
Packages: NAG, LAPACK, matrix routines

2.6 Simple graphing

Program writes out table: on ith line xi , yi , and zi if contouring.

Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot ′res ′ with lines

– (auto)scale, label, logs, multiple plots

Contour plots z(x , y): > splot ′res ′ w l

Many options: list with egs: > help.
End: > quit

2.6 Simple graphing

Program writes out table: on ith line xi , yi , and zi if contouring.

Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot ′res ′ with lines

– (auto)scale, label, logs, multiple plots

Contour plots z(x , y): > splot ′res ′ w l

Many options: list with egs: > help.
End: > quit

2.6 Simple graphing

Program writes out table: on ith line xi , yi , and zi if contouring.

Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot ′res ′ with lines

– (auto)scale, label, logs, multiple plots

Contour plots z(x , y): > splot ′res ′ w l

Many options: list with egs: > help.
End: > quit

2.6 Simple graphing

Program writes out table: on ith line xi , yi , and zi if contouring.

Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot ′res ′ with lines

– (auto)scale, label, logs, multiple plots

Contour plots z(x , y): > splot ′res ′ w l

Many options: list with egs: > help.
End: > quit

2.6 Simple graphing

Program writes out table: on ith line xi , yi , and zi if contouring.

Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot ′res ′ with lines

– (auto)scale, label, logs, multiple plots

Contour plots z(x , y): > splot ′res ′ w l

Many options: list with egs: > help.
End: > quit

2.6 Simple graphing

Program writes out table: on ith line xi , yi , and zi if contouring.

Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot ′res ′ with lines

– (auto)scale, label, logs, multiple plots

Contour plots z(x , y): > splot ′res ′ w l

Many options: list with egs: > help.
End: > quit

2.6 Simple graphing

Program writes out table: on ith line xi , yi , and zi if contouring.

Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot ′res ′ with lines

– (auto)scale, label, logs, multiple plots

Contour plots z(x , y): > splot ′res ′ w l

Many options: list with egs: > help.

End: > quit

2.6 Simple graphing

Program writes out table: on ith line xi , yi , and zi if contouring.

Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot ′res ′ with lines

– (auto)scale, label, logs, multiple plots

Contour plots z(x , y): > splot ′res ′ w l

Many options: list with egs: > help.
End: > quit

