Driven Cavity in  $\psi$ - $\omega$  formulation.

Finite Differences

Poisson problem. SOR.

Test against theoretical solution:  $O(\Delta x^2)$  error?

$$rac{\partial \omega}{\partial t} = -rac{\partial (\omega, \psi)}{\partial (x, y)} + rac{1}{Re} 
abla^2 \omega$$

with  $\omega = 0$  at t = 0.

$$rac{\partial \omega}{\partial t} = -rac{\partial (\omega, \psi)}{\partial (x, y)} + rac{1}{Re} 
abla^2 \omega$$

with  $\omega = 0$  at t = 0.

Forward time-step from  $t = n\Delta t$  to  $t = (n+1)\Delta t$ at interior points  $i = 1 \rightarrow N - 1$ ,  $j = 1 \rightarrow N - 1$ 

$$rac{\partial \omega}{\partial t} = -rac{\partial (\omega, \psi)}{\partial (x, y)} + rac{1}{Re} 
abla^2 \omega$$

with  $\omega = 0$  at t = 0.

Forward time-step from  $t = n\Delta t$  to  $t = (n+1)\Delta t$ at interior points  $i = 1 \rightarrow N - 1$ ,  $j = 1 \rightarrow N - 1$ 

$$\begin{split} \omega_{ij}^{n+1} &= \omega_{ij}^{n} + \Delta t \left[ -\frac{\psi_{ij+1}^{n} - \psi_{ij-1}^{n}}{2\Delta x} \frac{\omega_{i+1j}^{n} - \omega_{i-1j}^{n}}{2\Delta x} \right. \\ &+ \frac{\psi_{i+1j}^{n} - \psi_{i-1j}^{n}}{2\Delta x} \frac{\omega_{ij+1}^{n} - \omega_{ij-1}^{n}}{2\Delta x} \right] + \frac{\Delta t}{Re\Delta x^{2}} \begin{pmatrix} 1 & 1 \\ 1 & -4 & 1 \\ 1 & 1 \end{pmatrix} \omega_{ij}^{n} \end{split}$$

$$rac{\partial \omega}{\partial t} = -rac{\partial (\omega, \psi)}{\partial (x, y)} + rac{1}{Re} 
abla^2 \omega$$

with  $\omega = 0$  at t = 0.

Forward time-step from  $t = n\Delta t$  to  $t = (n+1)\Delta t$ at interior points  $i = 1 \rightarrow N - 1$ ,  $j = 1 \rightarrow N - 1$ 

$$\begin{split} \omega_{ij}^{n+1} &= \omega_{ij}^{n} + \Delta t \left[ -\frac{\psi_{ij+1}^{n} - \psi_{ij-1}^{n}}{2\Delta x} \frac{\omega_{i+1j}^{n} - \omega_{i-1j}^{n}}{2\Delta x} \right. \\ &+ \frac{\psi_{i+1j}^{n} - \psi_{i-1j}^{n}}{2\Delta x} \frac{\omega_{ij+1}^{n} - \omega_{ij-1}^{n}}{2\Delta x} \right] + \frac{\Delta t}{Re\Delta x^{2}} \begin{pmatrix} 1 & 1 \\ 1 & -4 & 1 \\ 1 & 1 \end{pmatrix} \omega_{ij}^{n} \end{split}$$

On boundary need  $\psi=$  0, and value of  $\omega$ 

For bottom y = 0:

$$u_{\frac{1}{2}} = \frac{\psi_{i1} - \psi_{i0}}{\Delta x}$$

For bottom y = 0:

$$u_{\frac{1}{2}} = \frac{\psi_{i1} - \psi_{i0}}{\Delta x}$$

SO

$$\omega_{\frac{1}{4}} = \frac{u_{\frac{1}{2}} - U_{\text{wall}}}{\frac{1}{2}\Delta x}$$

so

 $u_{\frac{1}{2}} = \frac{\psi_{i1} - \psi_{i0}}{\Delta x}$ 

$$\omega_{\frac{1}{4}} = \frac{u_{\frac{1}{2}} - U_{\text{wall}}}{\frac{1}{2}\Delta x}$$

For bottom y = 0:

$$\omega_0 \approx \omega_{\frac{1}{4}} = \frac{\frac{\psi_{i1} - \psi_{i0}}{\Delta x} - U_{\text{wall}}}{\frac{1}{2}\Delta x}$$

For bottom 
$$y = 0$$
:  
 $u_{\frac{1}{2}} = \frac{\psi_{i1} - \psi_{i0}}{\Delta x}$ 
so
 $u_{1} - U_{max}$ 

$$\omega_{\frac{1}{4}} = \frac{u_{\frac{1}{2}} - U_{\text{wall}}}{\frac{1}{2}\Delta x}$$

$$\omega_0 \approx \omega_{\frac{1}{4}} = \frac{\frac{\psi_{i1} - \psi_{i0}}{\Delta x} - U_{\text{wall}}}{\frac{1}{2}\Delta x}$$

2nd order, by linear extrapolation

$$\omega_0 \approx \frac{4\omega_{\frac{1}{4}} - \omega_1}{3}.$$

1st order BC

so

y = 0:  
$$u_{\frac{1}{2}} = \frac{\psi_{i1} - \psi_{i0}}{\Delta x}$$
$$u_{1} - U_{\text{wall}}$$

$$\omega_{\frac{1}{4}} = \frac{u_{\frac{1}{2}} - U_{\text{wall}}}{\frac{1}{2}\Delta x}$$

$$\omega_0 \approx \omega_{\frac{1}{4}} = \frac{\frac{\psi_{i1} - \psi_{i0}}{\Delta x} - U_{\text{wall}}}{\frac{1}{2}\Delta x}$$

2nd order, by linear extrapolation

$$\omega_0 \approx \frac{4\omega_{\frac{1}{4}} - \omega_1}{3}.$$

Starts at t = 0 as numerical delta function, then diffuses.

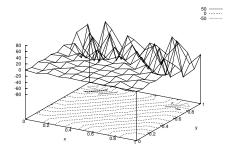
ordor PC

For bottom

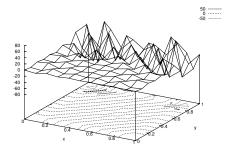
SO

plot  $\omega$  for Re = 10 at t = 0.525 with  $\Delta t = 0.035$  and  $\Delta x = 0.1$ 

plot  $\omega$  for Re = 10 at t = 0.525 with  $\Delta t = 0.035$  and  $\Delta x = 0.1$ 

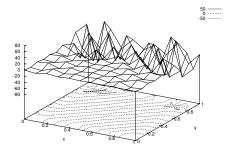


plot  $\omega$  for Re = 10 at t = 0.525 with  $\Delta t = 0.035$  and  $\Delta x = 0.1$ 



Numerical or physical instability?

plot  $\omega$  for Re = 10 at t = 0.525 with  $\Delta t = 0.035$  and  $\Delta x = 0.1$ 



Numerical or physical instability?

Not physically unstable at Re = 10 surely?

Checker board pattern.



Checker board pattern.



 $\omega_{ii}^n = (-)^{i+j} A_n,$ 

Checker board pattern.



$$\omega_{ij}^n = (-)^{i+j} A_n,$$

Diffusion terms in time-stepping algorithm

Checker board pattern.



$$\omega_{ij}^n = (-)^{i+j} A_n,$$

Diffusion terms in time-stepping algorithm

$$A_{n+1} = A_n + \frac{\Delta t}{Re\Delta x^2} \cdot - 8A_n$$

Checker board pattern.



$$\omega_{ij}^n = (-)^{i+j} A_n,$$

Diffusion terms in time-stepping algorithm

$$A_{n+1} = A_n + \frac{\Delta t}{Re\Delta x^2} - 8A_n$$

Stable if  $\Delta t < \frac{1}{4} Re \Delta x^2$ 

Checker board pattern.



$$\omega_{ij}^n = (-)^{i+j} A_n,$$

Diffusion terms in time-stepping algorithm

$$A_{n+1} = A_n + \frac{\Delta t}{Re\Delta x^2} - 8A_n$$

Stable if  $\Delta t < \frac{1}{4}Re\Delta x^2$  – at least one  $\Delta t$  to diffuse one  $\Delta x$ .

Checker board pattern.



$$\omega_{ij}^n = (-)^{i+j} A_n,$$

Diffusion terms in time-stepping algorithm

$$A_{n+1} = A_n + \frac{\Delta t}{Re\Delta x^2} - 8A_n$$

Stable if  $\Delta t < \frac{1}{4}Re\Delta x^2$  – at least one  $\Delta t$  to diffuse one  $\Delta x$ . EJH works at  $\frac{1}{5}$ .

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\rm max}$ 

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\text{max}}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\text{max}}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

Must resolve boundary layers

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\text{max}}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

Must resolve boundary layers Dimensional:  $U_{\max}\Delta x/\nu < 1 \Leftrightarrow$ 

# Advection instability $\rightarrow$ CFL condition (Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\text{max}}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

Must resolve boundary layers Dimensional:  $U_{\max}\Delta x/\nu < 1 \Leftrightarrow$  Nondimensional  $\Delta x < \frac{1}{Re}$ .

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\text{max}}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

Must resolve boundary layers Dimensional:  $U_{\max}\Delta x/\nu < 1 \Leftrightarrow$  Nondimensional  $\Delta x < \frac{1}{Re}$ . This + stable diffusion  $\Rightarrow$  stable advection

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\max}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

Must resolve boundary layers Dimensional:  $U_{\max}\Delta x/\nu < 1 \Leftrightarrow$  Nondimensional  $\Delta x < \frac{1}{Re}$ . This + stable diffusion  $\Rightarrow$  stable advection

Total cost to t = 1

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x/U_{\rm max}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

Must resolve boundary layers Dimensional:  $U_{\max}\Delta x/\nu < 1 \Leftrightarrow$  Nondimensional  $\Delta x < \frac{1}{Re}$ . This + stable diffusion  $\Rightarrow$  stable advection

Total cost to t = 1

$$\left(\# \ {
m time \ steps} {1\over \Delta t} \propto {\it N}^2 
ight) imes$$

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\max}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

Must resolve boundary layers Dimensional:  $U_{\max}\Delta x/\nu < 1 \Leftrightarrow$  Nondimensional  $\Delta x < \frac{1}{Re}$ . This + stable diffusion  $\Rightarrow$  stable advection

Total cost to t = 1

$$\left(\# \text{ time steps} rac{1}{\Delta t} \propto \textit{N}^2 
ight) imes ext{ (cost per time step (SOR)} \propto \textit{N}^3 ext{)}$$

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\text{max}}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

Must resolve boundary layers Dimensional:  $U_{\max}\Delta x/\nu < 1 \Leftrightarrow$  Nondimensional  $\Delta x < \frac{1}{Re}$ . This + stable diffusion  $\Rightarrow$  stable advection

Total cost to t = 1

$$\left(\# \mbox{ time steps} {1\over \Delta t} \propto {\it N}^2 
ight) imes \ (\mbox{cost per time step (SOR)} \propto {\it N}^3)$$
  $\propto {\it N}^5$ 

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

(Courant-Friedricks-Lewy)

Stable if  $\Delta t < \Delta x / U_{\text{max}}$  – at least one  $\Delta t$  to advect one  $\Delta x$ .

Must resolve boundary layers Dimensional:  $U_{\max}\Delta x/\nu < 1 \Leftrightarrow$  Nondimensional  $\Delta x < \frac{1}{Re}$ . This + stable diffusion  $\Rightarrow$  stable advection

Total cost to t = 1

$$\left(\# \text{ time steps} rac{1}{\Delta t} \propto N^2 
ight) imes ext{ (cost per time step (SOR) } \propto N^3 ext{)} \ \propto N^5$$

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

'Better' time step algorithms  $\rightarrow$  larger  $\Delta t$ , but more accurate?

#### 2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test

#### 2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test  $\rightarrow$  test code has designed accuracy  $O(\Delta t, \Delta x^2)$ .

#### 2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test  $\rightarrow$  test code has designed accuracy  $O(\Delta t, \Delta x^2)$ .

Forward differencing  $\rightarrow O(\Delta t)$  errors.

# 2.9 Accuracy consistency. a. Time-stepping

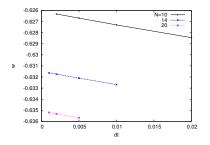
No analytic solution to test  $\rightarrow$  test code has designed accuracy  $O(\Delta t, \Delta x^2)$ .

Forward differencing  $\rightarrow O(\Delta t)$  errors. Look at  $\omega(x = 0.5, y = 0.5, t = 1) - \text{exactly} (0.5, 0.5, 1)$ 

# 2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test  $\rightarrow$  test code has designed accuracy  $O(\Delta t, \Delta x^2)$ .

Forward differencing  $\rightarrow O(\Delta t)$  errors. Look at  $\omega(x = 0.5, y = 0.5, t = 1) - \text{exactly} (0.5, 0.5, 1)$ 1st order BC for  $\omega_0$  with Re = 10 and N = 10, 14 and 20.

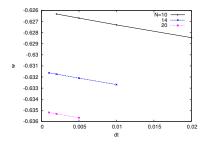


Note: linear in  $\Delta t$ , very very small  $\Delta t$  (larger unstable),

## 2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test  $\rightarrow$  test code has designed accuracy  $O(\Delta t, \Delta x^2)$ .

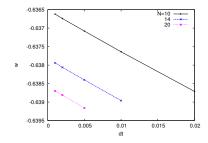
Forward differencing  $\rightarrow O(\Delta t)$  errors. Look at  $\omega(x = 0.5, y = 0.5, t = 1) - \text{exactly} (0.5, 0.5, 1)$ 1st order BC for  $\omega_0$  with Re = 10 and N = 10, 14 and 20.



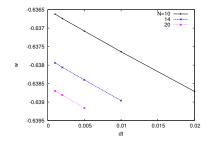
Note: linear in  $\Delta t$ , very very small  $\Delta t$  (larger unstable), Large errors in  $\Delta x \rightarrow 2$ nd order BC for  $\omega_0$  better?

2nd order BC for  $\omega_0$  with Re = 10 and N = 10, 14 and 20.

2nd order BC for  $\omega_0$  with Re = 10 and N = 10, 14 and 20.



2nd order BC for  $\omega_0$  with Re = 10 and N = 10, 14 and 20.



Much smaller errors from  $\Delta x$ .

### Errors for this problem are 2nd order in $\Delta x$ and 1st order in $\Delta t$ ,

Errors for this problem are 2nd order in  $\Delta x$  and 1st order in  $\Delta t$ ,

but stability has  $\Delta t = \frac{1}{5} Re \Delta x^2$ .

Errors for this problem are 2nd order in  $\Delta x$  and 1st order in  $\Delta t$ , but stability has  $\Delta t = \frac{1}{5} Re \Delta x^2$ .

Hence time errors  $O(\Delta t) \approx$  space errors  $O(\Delta x^2)$ 

Errors for this problem are 2nd order in  $\Delta x$  and 1st order in  $\Delta t$ , but stability has  $\Delta t = \frac{1}{5} Re \Delta x^2$ .

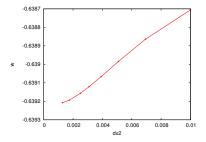
Hence time errors  $O(\Delta t) \approx$  space errors  $O(\Delta x^2)$ 

Hence no need for second-order time-stepping.

Set  $\Delta t = 0.2 Re \Delta x^2$ .

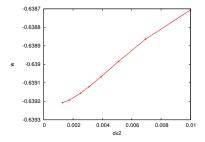
Set  $\Delta t = 0.2 Re \Delta x^2$ . Plot  $\omega(0.5, 0.5, 1)$  at Re = 10 for N = 10, 12, 14, 16, 18, 20, 24 and 28.

Set  $\Delta t = 0.2 Re \Delta x^2$ . Plot  $\omega(0.5, 0.5, 1)$  at Re = 10 for N = 10, 12, 14, 16, 18, 20, 24 and 28.



Linear in  $\Delta x^2$ . Result:  $\omega(0.5, 0.5, 1) = -0.63925 \pm 0.00005$ .

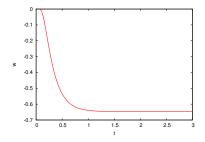
Set  $\Delta t = 0.2 Re \Delta x^2$ . Plot  $\omega(0.5, 0.5, 1)$  at Re = 10 for N = 10, 12, 14, 16, 18, 20, 24 and 28.



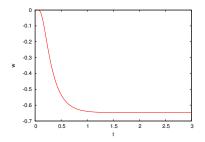
Linear in  $\Delta x^2$ . Result:  $\omega(0.5, 0.5, 1) = -0.63925 \pm 0.00005$ .

Note linear extrapolation in  $\Delta x^2$  from N = 10 and 14 gives same accuracy as 28 at  $\frac{1}{32}$  the CPU.

Vorticity at centre of box as a function of time, with N = 20 and Re = 10.

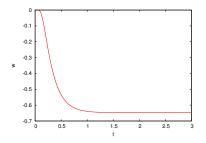


Vorticity at centre of box as a function of time, with N = 20 and Re = 10.



Steady to  $10^{-4}$  by t = 2, time to diffuse across box.

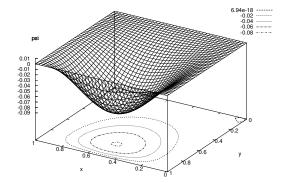
Vorticity at centre of box as a function of time, with N = 20 and Re = 10.



Steady to  $10^{-4}$  by t = 2, time to diffuse across box. For steady state, try reducing to 3 SOR per time step in place of N.

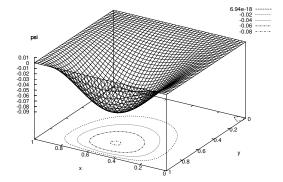
## Results: steady streamfunction

At t = 3, Re = 10 and N = 40.



# Results: steady streamfunction

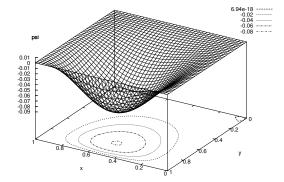
At t = 3, Re = 10 and N = 40.



Fast near lid, slow deep into cavity.

# Results: steady streamfunction

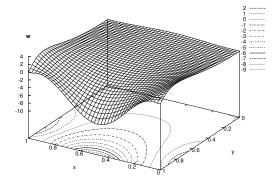
At t = 3, Re = 10 and N = 40.



Fast near lid, slow deep into cavity. Weak reversed circulations in bottom corners

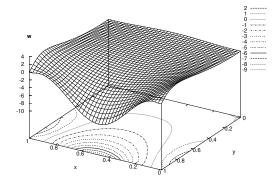
### Results: steady vorticity

At t = 3, Re = 10 and N = 40.



### Results: steady vorticity

At t = 3, Re = 10 and N = 40.



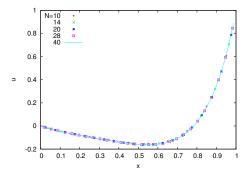
#### Slight asymmetry downstream

# Results: steady mid-section velocity u(0.5, y)

$$u_{ij+\frac{1}{2}} = \frac{\psi_{ij+1} - \psi_{ij}}{\Delta x}$$
 for  $y = (j + \frac{1}{2})\Delta x$ 

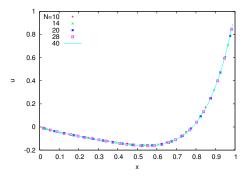
### Results: steady mid-section velocity u(0.5, y)

$$u_{ij+\frac{1}{2}} = \frac{\psi_{ij+1} - \psi_{ij}}{\Delta x}$$
 for  $y = (j + \frac{1}{2})\Delta x$   
At  $Re = 10$ , with  $N = 10$ , 14, 20, 28,40.



### Results: steady mid-section velocity u(0.5, y)

$$u_{ij+\frac{1}{2}} = \frac{\psi_{ij+1} - \psi_{ij}}{\Delta x}$$
 for  $y = (j + \frac{1}{2})\Delta x$   
At  $Re = 10$ , with  $N = 10$ , 14, 20, 28,40.



Agree to visual accuracy

$$F = \int_0^1 \left. \frac{\partial u}{\partial y} \right|_{y=1} dx \approx \sum_{i=0}^N \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N} \Delta x.$$

$$F = \int_0^1 \left. \frac{\partial u}{\partial y} \right|_{y=1} dx \approx \sum_{i=0}^N \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N} \Delta x.$$

With  $O(\Delta x)$  error

$$\frac{\partial^2 \psi}{\partial y^2}\Big|_{j=N} \approx \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-1} = \left. \frac{\psi_{iN} - 2\psi_{iN-1} + \psi_{iN-2}}{\Delta x^2} + O(\Delta x). \right.$$

$$F = \int_0^1 \left. \frac{\partial u}{\partial y} \right|_{y=1} dx \approx \sum_{i=0}^N \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N} \Delta x.$$

With  $O(\Delta x)$  error

$$\frac{\partial^2 \psi}{\partial y^2}\Big|_{j=N} \approx \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-1} = \left. \frac{\psi_{iN} - 2\psi_{iN-1} + \psi_{iN-2}}{\Delta x^2} + O(\Delta x). \right.$$

For  $O(\Delta x^2)$ , linearly extrapolate to boundary

$$\begin{aligned} \frac{\partial^2 \psi}{\partial y^2} \Big|_{j=N} &\approx 2 \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-1} - \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-2} \\ &= \left. \frac{2\psi_{i\,N} - 5\psi_{i\,N-1} + 4\psi_{i,N-2} - \psi_{i,N-3}}{\Delta x^2} + O(\Delta x^2). \end{aligned}$$

$$F = \int_0^1 \left. \frac{\partial u}{\partial y} \right|_{y=1} dx \approx \sum_{i=0}^N \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N} \Delta x.$$

With  $O(\Delta x)$  error

$$\frac{\partial^2 \psi}{\partial y^2}\Big|_{j=N} \approx \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-1} = \left. \frac{\psi_{iN} - 2\psi_{iN-1} + \psi_{iN-2}}{\Delta x^2} + O(\Delta x). \right.$$

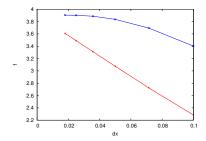
For  $O(\Delta x^2)$ , linearly extrapolate to boundary

$$\begin{split} \frac{\partial^2 \psi}{\partial y^2} \bigg|_{j=N} &\approx 2 \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-1} - \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-2} \\ &= \left. \frac{2\psi_{i\,N} - 5\psi_{i\,N-1} + 4\psi_{i,N-2} - \psi_{i,N-3}}{\Delta x^2} + O(\Delta x^2). \end{split}$$

Check:  $\psi = 1, y, y^2, y^3 \rightarrow 0, 0, 2, 0$ 

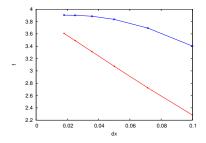
# Results: force on lid

At Re = 10 for N = 10, 14, 20, 28, 40 and 56.



# Results: force on lid

At Re = 10 for N = 10, 14, 20, 28, 40 and 56.



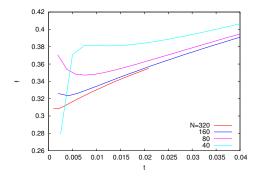
The final answer for the force is

$$F = 3.905 \pm 0.002$$
 at  $Re = 10$ .

Simple  $\sqrt{\nu t}$  solution.

Simple  $\sqrt{\nu t}$  solution. Plot  $F/\sqrt{t/Re}$ 

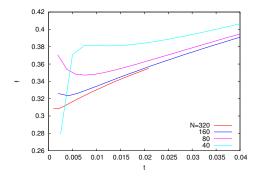
Simple  $\sqrt{\nu t}$  solution. Plot  $F/\sqrt{t/Re}$ 



for N = 40, 80, 160 and 320.

Failure: Code not designed for  $\sqrt{t}$  behaviour.

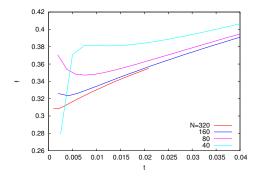
Simple  $\sqrt{\nu t}$  solution. Plot  $F/\sqrt{t/Re}$ 



for N = 40, 80, 160 and 320.

Failure: Code not designed for  $\sqrt{t}$  behaviour.

Simple  $\sqrt{\nu t}$  solution. Plot  $F/\sqrt{t/Re}$ 



for N = 40, 80, 160 and 320.

Failure: Code not designed for  $\sqrt{t}$  behaviour. Note 0.33, 0.319,  $0.307 \rightarrow \frac{1}{2\sqrt{\pi}} = 0.281$  with  $0.4\Delta x^{1/2}$  error.