
Resumé of lecture 2

Driven Cavity in ψ–ω formulation.

Finite Differences

Poisson problem. SOR.

Test against theoretical solution: O(∆x2) error?

2.7 Vorticity evolution

∂ω

∂t
= −∂(ω, ψ)

∂(x , y)
+

1

Re
∇2ω

with ω = 0 at t = 0.

Forward time-step from t = n∆t to t = (n + 1)∆t
at interior points i = 1→ N − 1, j = 1→ N − 1

ωn+1
i j = ωn

ij + ∆t

[
−
ψn
ij+1 − ψn

ij−1

2∆x

ωn
i+1j − ωn

i−1j

2∆x

+
ψn
i+1j − ψn

i−1j

2∆x

ωn
ij+1 − ωn

ij−1

2∆x

]
+

∆t

Re∆x2

 1
1 −4 1

1

ωn
ij

On boundary need ψ = 0, and value of ω

2.7 Vorticity evolution

∂ω

∂t
= −∂(ω, ψ)

∂(x , y)
+

1

Re
∇2ω

with ω = 0 at t = 0.

Forward time-step from t = n∆t to t = (n + 1)∆t
at interior points i = 1→ N − 1, j = 1→ N − 1

ωn+1
i j = ωn

ij + ∆t

[
−
ψn
ij+1 − ψn

ij−1

2∆x

ωn
i+1j − ωn

i−1j

2∆x

+
ψn
i+1j − ψn

i−1j

2∆x

ωn
ij+1 − ωn

ij−1

2∆x

]
+

∆t

Re∆x2

 1
1 −4 1

1

ωn
ij

On boundary need ψ = 0, and value of ω

2.7 Vorticity evolution

∂ω

∂t
= −∂(ω, ψ)

∂(x , y)
+

1

Re
∇2ω

with ω = 0 at t = 0.

Forward time-step from t = n∆t to t = (n + 1)∆t
at interior points i = 1→ N − 1, j = 1→ N − 1

ωn+1
i j = ωn

ij + ∆t

[
−
ψn
ij+1 − ψn

ij−1

2∆x

ωn
i+1j − ωn

i−1j

2∆x

+
ψn
i+1j − ψn

i−1j

2∆x

ωn
ij+1 − ωn

ij−1

2∆x

]
+

∆t

Re∆x2

 1
1 −4 1

1

ωn
ij

On boundary need ψ = 0, and value of ω

2.7 Vorticity evolution

∂ω

∂t
= −∂(ω, ψ)

∂(x , y)
+

1

Re
∇2ω

with ω = 0 at t = 0.

Forward time-step from t = n∆t to t = (n + 1)∆t
at interior points i = 1→ N − 1, j = 1→ N − 1

ωn+1
i j = ωn

ij + ∆t

[
−
ψn
ij+1 − ψn

ij−1

2∆x

ωn
i+1j − ωn

i−1j

2∆x

+
ψn
i+1j − ψn

i−1j

2∆x

ωn
ij+1 − ωn

ij−1

2∆x

]
+

∆t

Re∆x2

 1
1 −4 1

1

ωn
ij

On boundary need ψ = 0, and value of ω

Boundary condition on ω – so that ∂ψ
∂n = Uwall

For bottom y = 0:

u 1
2

=
ψi1 − ψi0

∆x
so

ω 1
4

=
u 1

2
− Uwall

1
2 ∆x

1st order BC

ω0 ≈ ω 1
4

=
ψi1−ψi0

∆x − Uwall

1
2 ∆x

2nd order, by linear extrapolation

ω0 ≈
4ω 1

4
− ω1

3
.

Starts at t = 0 as numerical delta function, then diffuses.

Boundary condition on ω – so that ∂ψ
∂n = Uwall

For bottom y = 0:

u 1
2

=
ψi1 − ψi0

∆x

so

ω 1
4

=
u 1

2
− Uwall

1
2 ∆x

1st order BC

ω0 ≈ ω 1
4

=
ψi1−ψi0

∆x − Uwall

1
2 ∆x

2nd order, by linear extrapolation

ω0 ≈
4ω 1

4
− ω1

3
.

Starts at t = 0 as numerical delta function, then diffuses.

Boundary condition on ω – so that ∂ψ
∂n = Uwall

For bottom y = 0:

u 1
2

=
ψi1 − ψi0

∆x
so

ω 1
4

=
u 1

2
− Uwall

1
2 ∆x

1st order BC

ω0 ≈ ω 1
4

=
ψi1−ψi0

∆x − Uwall

1
2 ∆x

2nd order, by linear extrapolation

ω0 ≈
4ω 1

4
− ω1

3
.

Starts at t = 0 as numerical delta function, then diffuses.

Boundary condition on ω – so that ∂ψ
∂n = Uwall

For bottom y = 0:

u 1
2

=
ψi1 − ψi0

∆x
so

ω 1
4

=
u 1

2
− Uwall

1
2 ∆x

1st order BC

ω0 ≈ ω 1
4

=
ψi1−ψi0

∆x − Uwall

1
2 ∆x

2nd order, by linear extrapolation

ω0 ≈
4ω 1

4
− ω1

3
.

Starts at t = 0 as numerical delta function, then diffuses.

Boundary condition on ω – so that ∂ψ
∂n = Uwall

For bottom y = 0:

u 1
2

=
ψi1 − ψi0

∆x
so

ω 1
4

=
u 1

2
− Uwall

1
2 ∆x

1st order BC

ω0 ≈ ω 1
4

=
ψi1−ψi0

∆x − Uwall

1
2 ∆x

2nd order, by linear extrapolation

ω0 ≈
4ω 1

4
− ω1

3
.

Starts at t = 0 as numerical delta function, then diffuses.

Boundary condition on ω – so that ∂ψ
∂n = Uwall

For bottom y = 0:

u 1
2

=
ψi1 − ψi0

∆x
so

ω 1
4

=
u 1

2
− Uwall

1
2 ∆x

1st order BC

ω0 ≈ ω 1
4

=
ψi1−ψi0

∆x − Uwall

1
2 ∆x

2nd order, by linear extrapolation

ω0 ≈
4ω 1

4
− ω1

3
.

Starts at t = 0 as numerical delta function, then diffuses.

2.8 Time-step instability

plot ω for Re = 10 at t = 0.525 with ∆t = 0.035 and ∆x = 0.1

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-80

-60

-40

-20

 0

 20

 40

 60

 80

 50
 0

 -50

x

y

Numerical or physical instability?

Not physically unstable at Re = 10 surely?

2.8 Time-step instability

plot ω for Re = 10 at t = 0.525 with ∆t = 0.035 and ∆x = 0.1

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-80

-60

-40

-20

 0

 20

 40

 60

 80

 50
 0

 -50

x

y

Numerical or physical instability?

Not physically unstable at Re = 10 surely?

2.8 Time-step instability

plot ω for Re = 10 at t = 0.525 with ∆t = 0.035 and ∆x = 0.1

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-80

-60

-40

-20

 0

 20

 40

 60

 80

 50
 0

 -50

x

y

Numerical or physical instability?

Not physically unstable at Re = 10 surely?

2.8 Time-step instability

plot ω for Re = 10 at t = 0.525 with ∆t = 0.035 and ∆x = 0.1

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-80

-60

-40

-20

 0

 20

 40

 60

 80

 50
 0

 -50

x

y

Numerical or physical instability?

Not physically unstable at Re = 10 surely?

Time step instability 2

Checker board pattern.

+ − +

− + −

+ − +

ωn
ij = (−)i+jAn,

Diffusion terms in time-stepping algorithm

An+1 = An +
∆t

Re∆x2
.− 8An

Stable if ∆t < 1
4Re∆x2 – at least one ∆t to diffuse one ∆x .

EJH works at 1
5 .

Time step instability 2

Checker board pattern.

+ − +

− + −

+ − +

ωn
ij = (−)i+jAn,

Diffusion terms in time-stepping algorithm

An+1 = An +
∆t

Re∆x2
.− 8An

Stable if ∆t < 1
4Re∆x2 – at least one ∆t to diffuse one ∆x .

EJH works at 1
5 .

Time step instability 2

Checker board pattern.

+ − +

− + −

+ − +

ωn
ij = (−)i+jAn,

Diffusion terms in time-stepping algorithm

An+1 = An +
∆t

Re∆x2
.− 8An

Stable if ∆t < 1
4Re∆x2 – at least one ∆t to diffuse one ∆x .

EJH works at 1
5 .

Time step instability 2

Checker board pattern.

+ − +

− + −

+ − +

ωn
ij = (−)i+jAn,

Diffusion terms in time-stepping algorithm

An+1 = An +
∆t

Re∆x2
.− 8An

Stable if ∆t < 1
4Re∆x2 – at least one ∆t to diffuse one ∆x .

EJH works at 1
5 .

Time step instability 2

Checker board pattern.

+ − +

− + −

+ − +

ωn
ij = (−)i+jAn,

Diffusion terms in time-stepping algorithm

An+1 = An +
∆t

Re∆x2
.− 8An

Stable if ∆t < 1
4Re∆x2

– at least one ∆t to diffuse one ∆x .

EJH works at 1
5 .

Time step instability 2

Checker board pattern.

+ − +

− + −

+ − +

ωn
ij = (−)i+jAn,

Diffusion terms in time-stepping algorithm

An+1 = An +
∆t

Re∆x2
.− 8An

Stable if ∆t < 1
4Re∆x2 – at least one ∆t to diffuse one ∆x .

EJH works at 1
5 .

Time step instability 2

Checker board pattern.

+ − +

− + −

+ − +

ωn
ij = (−)i+jAn,

Diffusion terms in time-stepping algorithm

An+1 = An +
∆t

Re∆x2
.− 8An

Stable if ∆t < 1
4Re∆x2 – at least one ∆t to diffuse one ∆x .

EJH works at 1
5 .

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax

– at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .
This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .
This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers

Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1
Re .

This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔

Nondimensional ∆x < 1
Re .

This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .

This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .
This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .
This + stable diffusion ⇒ stable advection

Total cost to t = 1

(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .
This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×

(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .
This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)

∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .
This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax – at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .
This + stable diffusion ⇒ stable advection

Total cost to t = 1(
time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test

→ test code has designed accuracy
O(∆t,∆x2).

Forward differencing → O(∆t) errors.
Look at ω(x = 0.5, y = 0.5, t = 1) – exactly (0.5, 0.5, 1)
1st order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.636

-0.635

-0.634

-0.633

-0.632

-0.631

-0.63

-0.629

-0.628

-0.627

-0.626

 0 0.005 0.01 0.015 0.02

w

dt

N=10

14

20

Note: linear in ∆t, very very small ∆t (larger unstable),
Large errors in ∆x → 2nd order BC for ω0 better?

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test → test code has designed accuracy
O(∆t,∆x2).

Forward differencing → O(∆t) errors.
Look at ω(x = 0.5, y = 0.5, t = 1) – exactly (0.5, 0.5, 1)
1st order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.636

-0.635

-0.634

-0.633

-0.632

-0.631

-0.63

-0.629

-0.628

-0.627

-0.626

 0 0.005 0.01 0.015 0.02

w

dt

N=10

14

20

Note: linear in ∆t, very very small ∆t (larger unstable),
Large errors in ∆x → 2nd order BC for ω0 better?

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test → test code has designed accuracy
O(∆t,∆x2).

Forward differencing → O(∆t) errors.

Look at ω(x = 0.5, y = 0.5, t = 1) – exactly (0.5, 0.5, 1)
1st order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.636

-0.635

-0.634

-0.633

-0.632

-0.631

-0.63

-0.629

-0.628

-0.627

-0.626

 0 0.005 0.01 0.015 0.02

w

dt

N=10

14

20

Note: linear in ∆t, very very small ∆t (larger unstable),
Large errors in ∆x → 2nd order BC for ω0 better?

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test → test code has designed accuracy
O(∆t,∆x2).

Forward differencing → O(∆t) errors.
Look at ω(x = 0.5, y = 0.5, t = 1) – exactly (0.5, 0.5, 1)

1st order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.636

-0.635

-0.634

-0.633

-0.632

-0.631

-0.63

-0.629

-0.628

-0.627

-0.626

 0 0.005 0.01 0.015 0.02

w

dt

N=10

14

20

Note: linear in ∆t, very very small ∆t (larger unstable),
Large errors in ∆x → 2nd order BC for ω0 better?

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test → test code has designed accuracy
O(∆t,∆x2).

Forward differencing → O(∆t) errors.
Look at ω(x = 0.5, y = 0.5, t = 1) – exactly (0.5, 0.5, 1)
1st order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.636

-0.635

-0.634

-0.633

-0.632

-0.631

-0.63

-0.629

-0.628

-0.627

-0.626

 0 0.005 0.01 0.015 0.02

w

dt

N=10

14

20

Note: linear in ∆t, very very small ∆t (larger unstable),

Large errors in ∆x → 2nd order BC for ω0 better?

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test → test code has designed accuracy
O(∆t,∆x2).

Forward differencing → O(∆t) errors.
Look at ω(x = 0.5, y = 0.5, t = 1) – exactly (0.5, 0.5, 1)
1st order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.636

-0.635

-0.634

-0.633

-0.632

-0.631

-0.63

-0.629

-0.628

-0.627

-0.626

 0 0.005 0.01 0.015 0.02

w

dt

N=10

14

20

Note: linear in ∆t, very very small ∆t (larger unstable),
Large errors in ∆x → 2nd order BC for ω0 better?

2nd order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.6395

-0.639

-0.6385

-0.638

-0.6375

-0.637

-0.6365

 0 0.005 0.01 0.015 0.02

w

dt

N=10

14

20

Much smaller errors from ∆x .

2nd order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.6395

-0.639

-0.6385

-0.638

-0.6375

-0.637

-0.6365

 0 0.005 0.01 0.015 0.02

w

dt

N=10

14

20

Much smaller errors from ∆x .

2nd order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.6395

-0.639

-0.6385

-0.638

-0.6375

-0.637

-0.6365

 0 0.005 0.01 0.015 0.02

w

dt

N=10

14

20

Much smaller errors from ∆x .

Well matched design

Errors for this problem are 2nd order in ∆x and 1st order in ∆t,

but stability has ∆t = 1
5Re∆x2.

Hence time errors O(∆t) ≈ space errors O(∆x2)

Hence no need for second-order time-stepping.

Well matched design

Errors for this problem are 2nd order in ∆x and 1st order in ∆t,

but stability has ∆t = 1
5Re∆x2.

Hence time errors O(∆t) ≈ space errors O(∆x2)

Hence no need for second-order time-stepping.

Well matched design

Errors for this problem are 2nd order in ∆x and 1st order in ∆t,

but stability has ∆t = 1
5Re∆x2.

Hence time errors O(∆t) ≈ space errors O(∆x2)

Hence no need for second-order time-stepping.

Well matched design

Errors for this problem are 2nd order in ∆x and 1st order in ∆t,

but stability has ∆t = 1
5Re∆x2.

Hence time errors O(∆t) ≈ space errors O(∆x2)

Hence no need for second-order time-stepping.

Accuracy consistence. b. Overall O(∆x2)

Set ∆t = 0.2Re∆x2.

Plot ω(0.5, 0.5, 1) at Re = 10
for N = 10, 12, 14, 16, 18, 20, 24 and 28.

-0.6393

-0.6392

-0.6391

-0.639

-0.6389

-0.6388

-0.6387

 0 0.002 0.004 0.006 0.008 0.01

w

dx2

Linear in ∆x2. Result: ω(0.5, 0.5, 1) = −0.63925± 0.00005.

Note linear extrapolation in ∆x2 from N = 10 and 14 gives same
accuracy as 28 at 1

32 the CPU.

Accuracy consistence. b. Overall O(∆x2)

Set ∆t = 0.2Re∆x2. Plot ω(0.5, 0.5, 1) at Re = 10
for N = 10, 12, 14, 16, 18, 20, 24 and 28.

-0.6393

-0.6392

-0.6391

-0.639

-0.6389

-0.6388

-0.6387

 0 0.002 0.004 0.006 0.008 0.01

w

dx2

Linear in ∆x2. Result: ω(0.5, 0.5, 1) = −0.63925± 0.00005.

Note linear extrapolation in ∆x2 from N = 10 and 14 gives same
accuracy as 28 at 1

32 the CPU.

Accuracy consistence. b. Overall O(∆x2)

Set ∆t = 0.2Re∆x2. Plot ω(0.5, 0.5, 1) at Re = 10
for N = 10, 12, 14, 16, 18, 20, 24 and 28.

-0.6393

-0.6392

-0.6391

-0.639

-0.6389

-0.6388

-0.6387

 0 0.002 0.004 0.006 0.008 0.01

w

dx2

Linear in ∆x2. Result: ω(0.5, 0.5, 1) = −0.63925± 0.00005.

Note linear extrapolation in ∆x2 from N = 10 and 14 gives same
accuracy as 28 at 1

32 the CPU.

Accuracy consistence. b. Overall O(∆x2)

Set ∆t = 0.2Re∆x2. Plot ω(0.5, 0.5, 1) at Re = 10
for N = 10, 12, 14, 16, 18, 20, 24 and 28.

-0.6393

-0.6392

-0.6391

-0.639

-0.6389

-0.6388

-0.6387

 0 0.002 0.004 0.006 0.008 0.01

w

dx2

Linear in ∆x2. Result: ω(0.5, 0.5, 1) = −0.63925± 0.00005.

Note linear extrapolation in ∆x2 from N = 10 and 14 gives same
accuracy as 28 at 1

32 the CPU.

2.10 Results: time to evolve

Vorticity at centre of box as a function of time, with N = 20 and
Re = 10.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 0.5 1 1.5 2 2.5 3

w

t

Steady to 10−4 by t = 2, time to diffuse across box.
For steady state, try reducing to 3 SOR per time step in place of N.

2.10 Results: time to evolve

Vorticity at centre of box as a function of time, with N = 20 and
Re = 10.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 0.5 1 1.5 2 2.5 3

w

t

Steady to 10−4 by t = 2, time to diffuse across box.

For steady state, try reducing to 3 SOR per time step in place of N.

2.10 Results: time to evolve

Vorticity at centre of box as a function of time, with N = 20 and
Re = 10.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 0.5 1 1.5 2 2.5 3

w

t

Steady to 10−4 by t = 2, time to diffuse across box.
For steady state, try reducing to 3 SOR per time step in place of N.

Results: steady streamfunction

At t = 3, Re = 10 and N = 40.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01

psi

6.94e-18
 -0.02
 -0.04
 -0.06
 -0.08

x

y

psi

Fast near lid, slow deep into cavity.
Weak reversed circulations in bottom corners

Results: steady streamfunction

At t = 3, Re = 10 and N = 40.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01

psi

6.94e-18
 -0.02
 -0.04
 -0.06
 -0.08

x

y

psi

Fast near lid, slow deep into cavity.

Weak reversed circulations in bottom corners

Results: steady streamfunction

At t = 3, Re = 10 and N = 40.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01

psi

6.94e-18
 -0.02
 -0.04
 -0.06
 -0.08

x

y

psi

Fast near lid, slow deep into cavity.
Weak reversed circulations in bottom corners

Results: steady vorticity

At t = 3, Re = 10 and N = 40.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-10

-8

-6

-4

-2

 0

 2

 4

w

 2
 1
 0
 -1
 -2
 -3
 -4
 -5
 -6
 -7
 -8
 -9

x

y

w

Slight asymmetry downstream

Results: steady vorticity

At t = 3, Re = 10 and N = 40.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-10

-8

-6

-4

-2

 0

 2

 4

w

 2
 1
 0
 -1
 -2
 -3
 -4
 -5
 -6
 -7
 -8
 -9

x

y

w

Slight asymmetry downstream

Results: steady mid-section velocity u(0.5, y)

ui j+ 1
2

=
ψi j+1 − ψi j

∆x
for y = (j + 1

2)∆x

At Re = 10, with N = 10, 14, 20, 28,40.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

N=10

14

20

28

40

Agree to visual accuracy

Results: steady mid-section velocity u(0.5, y)

ui j+ 1
2

=
ψi j+1 − ψi j

∆x
for y = (j + 1

2)∆x

At Re = 10, with N = 10, 14, 20, 28,40.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

N=10

14

20

28

40

Agree to visual accuracy

Results: steady mid-section velocity u(0.5, y)

ui j+ 1
2

=
ψi j+1 − ψi j

∆x
for y = (j + 1

2)∆x

At Re = 10, with N = 10, 14, 20, 28,40.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

x

N=10

14

20

28

40

Agree to visual accuracy

Force on lid

F =

∫ 1

0

∂u

∂y

∣∣∣∣
y=1

dx ≈
N∑
i=0

∂2ψ

∂y2

∣∣∣∣
j=N

∆x .

With O(∆x) error

∂2ψ

∂y2

∣∣∣∣
j=N

≈ ∂2ψ

∂y2

∣∣∣∣
j=N−1

=
ψi N − 2ψi N−1 + ψi ,N−2

∆x2
+ O(∆x).

For O(∆x2), linearly extrapolate to boundary

∂2ψ

∂y2

∣∣∣∣
j=N

≈ 2
∂2ψ

∂y2

∣∣∣∣
j=N−1

− ∂2ψ

∂y2

∣∣∣∣
j=N−2

=
2ψi N − 5ψi N−1 + 4ψi ,N−2 − ψi ,N−3

∆x2
+ O(∆x2).

Check: ψ = 1, y , y2, y3 → 0, 0, 2, 0

Force on lid

F =

∫ 1

0

∂u

∂y

∣∣∣∣
y=1

dx ≈
N∑
i=0

∂2ψ

∂y2

∣∣∣∣
j=N

∆x .

With O(∆x) error

∂2ψ

∂y2

∣∣∣∣
j=N

≈ ∂2ψ

∂y2

∣∣∣∣
j=N−1

=
ψi N − 2ψi N−1 + ψi ,N−2

∆x2
+ O(∆x).

For O(∆x2), linearly extrapolate to boundary

∂2ψ

∂y2

∣∣∣∣
j=N

≈ 2
∂2ψ

∂y2

∣∣∣∣
j=N−1

− ∂2ψ

∂y2

∣∣∣∣
j=N−2

=
2ψi N − 5ψi N−1 + 4ψi ,N−2 − ψi ,N−3

∆x2
+ O(∆x2).

Check: ψ = 1, y , y2, y3 → 0, 0, 2, 0

Force on lid

F =

∫ 1

0

∂u

∂y

∣∣∣∣
y=1

dx ≈
N∑
i=0

∂2ψ

∂y2

∣∣∣∣
j=N

∆x .

With O(∆x) error

∂2ψ

∂y2

∣∣∣∣
j=N

≈ ∂2ψ

∂y2

∣∣∣∣
j=N−1

=
ψi N − 2ψi N−1 + ψi ,N−2

∆x2
+ O(∆x).

For O(∆x2), linearly extrapolate to boundary

∂2ψ

∂y2

∣∣∣∣
j=N

≈ 2
∂2ψ

∂y2

∣∣∣∣
j=N−1

− ∂2ψ

∂y2

∣∣∣∣
j=N−2

=
2ψi N − 5ψi N−1 + 4ψi ,N−2 − ψi ,N−3

∆x2
+ O(∆x2).

Check: ψ = 1, y , y2, y3 → 0, 0, 2, 0

Force on lid

F =

∫ 1

0

∂u

∂y

∣∣∣∣
y=1

dx ≈
N∑
i=0

∂2ψ

∂y2

∣∣∣∣
j=N

∆x .

With O(∆x) error

∂2ψ

∂y2

∣∣∣∣
j=N

≈ ∂2ψ

∂y2

∣∣∣∣
j=N−1

=
ψi N − 2ψi N−1 + ψi ,N−2

∆x2
+ O(∆x).

For O(∆x2), linearly extrapolate to boundary

∂2ψ

∂y2

∣∣∣∣
j=N

≈ 2
∂2ψ

∂y2

∣∣∣∣
j=N−1

− ∂2ψ

∂y2

∣∣∣∣
j=N−2

=
2ψi N − 5ψi N−1 + 4ψi ,N−2 − ψi ,N−3

∆x2
+ O(∆x2).

Check: ψ = 1, y , y2, y3 → 0, 0, 2, 0

Results: force on lid

At Re = 10 for N = 10, 14, 20, 28, 40 and 56.

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 0.02 0.04 0.06 0.08 0.1

f

dx

The final answer for the force is

F = 3.905± 0.002 at Re = 10.

Results: force on lid

At Re = 10 for N = 10, 14, 20, 28, 40 and 56.

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 0.02 0.04 0.06 0.08 0.1

f

dx

The final answer for the force is

F = 3.905± 0.002 at Re = 10.

Results: early times

Simple
√
νt solution. Plot F/

√
t/Re

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

f

t

N=320

160

80

40

for N = 40, 80, 160 and 320.

Failure: Code not designed for
√
t behaviour.

Note 0.33, 0.319, 0.307 → 1
2
√
π

= 0.281 with 0.4∆x1/2 error.

Results: early times

Simple
√
νt solution.

Plot F/
√
t/Re

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

f

t

N=320

160

80

40

for N = 40, 80, 160 and 320.

Failure: Code not designed for
√
t behaviour.

Note 0.33, 0.319, 0.307 → 1
2
√
π

= 0.281 with 0.4∆x1/2 error.

Results: early times

Simple
√
νt solution. Plot F/

√
t/Re

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

f

t

N=320

160

80

40

for N = 40, 80, 160 and 320.

Failure: Code not designed for
√
t behaviour.

Note 0.33, 0.319, 0.307 → 1
2
√
π

= 0.281 with 0.4∆x1/2 error.

Results: early times

Simple
√
νt solution. Plot F/

√
t/Re

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

f

t

N=320

160

80

40

for N = 40, 80, 160 and 320.

Failure: Code not designed for
√
t behaviour.

Note 0.33, 0.319, 0.307 → 1
2
√
π

= 0.281 with 0.4∆x1/2 error.

Results: early times

Simple
√
νt solution. Plot F/

√
t/Re

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

f

t

N=320

160

80

40

for N = 40, 80, 160 and 320.

Failure: Code not designed for
√
t behaviour.

Note 0.33, 0.319, 0.307 → 1
2
√
π

= 0.281 with 0.4∆x1/2 error.

Results: early times

Simple
√
νt solution. Plot F/

√
t/Re

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

f

t

N=320

160

80

40

for N = 40, 80, 160 and 320.

Failure: Code not designed for
√
t behaviour.

Note 0.33, 0.319, 0.307 → 1
2
√
π

= 0.281 with 0.4∆x1/2 error.

