
Resumé of lecture 2

Driven Cavity in ψ–ω formulation.

Finite Differences

Poisson problem. SOR.

Test against theoretical solution: O(∆x2) error?



2.7 Vorticity evolution
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Boundary condition on ω – so that ∂ψ
∂n = Uwall

For bottom y = 0:

u 1
2

=
ψi1 − ψi0

∆x
so

ω 1
4

=
u 1

2
− Uwall

1
2 ∆x

1st order BC

ω0 ≈ ω 1
4

=
ψi1−ψi0

∆x − Uwall

1
2 ∆x

2nd order, by linear extrapolation

ω0 ≈
4ω 1

4
− ω1

3
.

Starts at t = 0 as numerical delta function, then diffuses.
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2.8 Time-step instability

plot ω for Re = 10 at t = 0.525 with ∆t = 0.035 and ∆x = 0.1
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Numerical or physical instability?

Not physically unstable at Re = 10 surely?
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Time step instability 2

Checker board pattern.

+ − +

− + −

+ − +

ωn
ij = (−)i+jAn,

Diffusion terms in time-stepping algorithm

An+1 = An +
∆t

Re∆x2
.− 8An

Stable if ∆t < 1
4Re∆x2 – at least one ∆t to diffuse one ∆x .

EJH works at 1
5 .
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Advection instability → CFL condition
(Courant-Friedricks-Lewy)

Stable if ∆t < ∆x/Umax

– at least one ∆t to advect one ∆x .

Must resolve boundary layers
Dimensional: Umax∆x/ν < 1 ⇔ Nondimensional ∆x < 1

Re .
This + stable diffusion ⇒ stable advection

Total cost to t = 1(
# time steps

1

∆t
∝ N2

)
×
(
cost per time step (SOR) ∝ N3

)
∝ N5

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

’Better’ time step algorithms → larger ∆t, but more accurate?
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2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test

→ test code has designed accuracy
O(∆t,∆x2).

Forward differencing → O(∆t) errors.
Look at ω(x = 0.5, y = 0.5, t = 1) – exactly (0.5, 0.5, 1)
1st order BC for ω0 with Re = 10 and N = 10, 14 and 20.

-0.636

-0.635

-0.634

-0.633

-0.632

-0.631

-0.63

-0.629

-0.628

-0.627

-0.626

 0  0.005  0.01  0.015  0.02

w

dt

N=10

14

20

Note: linear in ∆t, very very small ∆t (larger unstable),
Large errors in ∆x → 2nd order BC for ω0 better?
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2nd order BC for ω0 with Re = 10 and N = 10, 14 and 20.
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Much smaller errors from ∆x .
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Well matched design

Errors for this problem are 2nd order in ∆x and 1st order in ∆t,

but stability has ∆t = 1
5Re∆x2.

Hence time errors O(∆t) ≈ space errors O(∆x2)

Hence no need for second-order time-stepping.
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Accuracy consistence. b. Overall O(∆x2)

Set ∆t = 0.2Re∆x2.

Plot ω(0.5, 0.5, 1) at Re = 10
for N = 10, 12, 14, 16, 18, 20, 24 and 28.

-0.6393

-0.6392

-0.6391

-0.639

-0.6389

-0.6388

-0.6387

 0  0.002  0.004  0.006  0.008  0.01

w

dx2

Linear in ∆x2. Result: ω(0.5, 0.5, 1) = −0.63925± 0.00005.

Note linear extrapolation in ∆x2 from N = 10 and 14 gives same
accuracy as 28 at 1

32 the CPU.
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2.10 Results: time to evolve

Vorticity at centre of box as a function of time, with N = 20 and
Re = 10.
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Results: steady streamfunction

At t = 3, Re = 10 and N = 40.
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Results: steady vorticity

At t = 3, Re = 10 and N = 40.
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Results: steady mid-section velocity u(0.5, y)

ui j+ 1
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=
ψi j+1 − ψi j

∆x
for y = (j + 1

2 )∆x
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Force on lid

F =

∫ 1

0

∂u

∂y

∣∣∣∣
y=1

dx ≈
N∑
i=0

∂2ψ

∂y2

∣∣∣∣
j=N

∆x .

With O(∆x) error

∂2ψ

∂y2

∣∣∣∣
j=N

≈ ∂2ψ

∂y2

∣∣∣∣
j=N−1

=
ψi N − 2ψi N−1 + ψi ,N−2

∆x2
+ O(∆x).

For O(∆x2), linearly extrapolate to boundary
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2ψi N − 5ψi N−1 + 4ψi ,N−2 − ψi ,N−3

∆x2
+ O(∆x2).

Check: ψ = 1, y , y2, y3 → 0, 0, 2, 0
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Results: force on lid

At Re = 10 for N = 10, 14, 20, 28, 40 and 56.
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