Resumé of lecture 2

Driven Cavity in $\psi-\omega$ formulation.

Finite Differences

Poisson problem. SOR.

Test against theoretical solution: $O\left(\Delta x^{2}\right)$ error?

2.7 Vorticity evolution

$$
\frac{\partial \omega}{\partial t}=-\frac{\partial(\omega, \psi)}{\partial(x, y)}+\frac{1}{R e} \nabla^{2} \omega
$$

with $\omega=0$ at $t=0$.

2.7 Vorticity evolution

$$
\frac{\partial \omega}{\partial t}=-\frac{\partial(\omega, \psi)}{\partial(x, y)}+\frac{1}{R e} \nabla^{2} \omega
$$

with $\omega=0$ at $t=0$.

Forward time-step from $t=n \Delta t$ to $t=(n+1) \Delta t$ at interior points $i=1 \rightarrow N-1, j=1 \rightarrow N-1$

2.7 Vorticity evolution

$$
\frac{\partial \omega}{\partial t}=-\frac{\partial(\omega, \psi)}{\partial(x, y)}+\frac{1}{R e} \nabla^{2} \omega
$$

with $\omega=0$ at $t=0$.

Forward time-step from $t=n \Delta t$ to $t=(n+1) \Delta t$ at interior points $i=1 \rightarrow N-1, j=1 \rightarrow N-1$

$$
\begin{aligned}
& \omega_{i j}^{n+1}=\omega_{i j}^{n}+\Delta t\left[-\frac{\psi_{i j+1}^{n}-\psi_{i j-1}^{n}}{2 \Delta x} \frac{\omega_{i+1 j}^{n}-\omega_{i-1 j}^{n}}{2 \Delta x}\right. \\
& \left.\quad+\frac{\psi_{i+1 j}^{n}-\psi_{i-1 j}^{n}}{2 \Delta x} \frac{\omega_{i j+1}^{n}-\omega_{i j-1}^{n}}{2 \Delta x}\right]+\frac{\Delta t}{\operatorname{Re} \Delta x^{2}}\left(\begin{array}{ccc}
1 & -4 & 1 \\
1
\end{array}\right) \omega_{i j}^{n}
\end{aligned}
$$

2.7 Vorticity evolution

$$
\frac{\partial \omega}{\partial t}=-\frac{\partial(\omega, \psi)}{\partial(x, y)}+\frac{1}{R e} \nabla^{2} \omega
$$

with $\omega=0$ at $t=0$.

Forward time-step from $t=n \Delta t$ to $t=(n+1) \Delta t$ at interior points $i=1 \rightarrow N-1, j=1 \rightarrow N-1$

$$
\left.\begin{array}{l}
\omega_{i j}^{n+1}=\omega_{i j}^{n}+\Delta t\left[-\frac{\psi_{i j+1}^{n}-\psi_{i j-1}^{n}}{2 \Delta x} \frac{\omega_{i+1 j}^{n}-\omega_{i-1 j}^{n}}{2 \Delta x}\right. \\
\left.\quad+\frac{\psi_{i+1 j}^{n}-\psi_{i-1 j}^{n}}{2 \Delta x} \frac{\omega_{i j+1}^{n}-\omega_{i j-1}^{n}}{2 \Delta x}\right]+\frac{\Delta t}{\operatorname{Re} \Delta x^{2}}\left(\begin{array}{cc}
1 \\
1 & -4 \\
1
\end{array}\right)
\end{array}\right) \omega_{i j}^{n} . l l
$$

On boundary need $\psi=0$, and value of ω

Boundary condition on ω - so that $\frac{\partial \psi}{\partial n}=U_{\text {wall }}$

Boundary condition on ω - so that $\frac{\partial \psi}{\partial n}=U_{\text {wall }}$

For bottom $y=0$:

$$
u_{\frac{1}{2}}=\frac{\psi_{i 1}-\psi_{i 0}}{\Delta x}
$$

Boundary condition on ω - so that $\frac{\partial \psi}{\partial n}=U_{\text {wall }}$

For bottom $y=0$:

$$
u_{\frac{1}{2}}=\frac{\psi_{i 1}-\psi_{i 0}}{\Delta x}
$$

SO

$$
\omega_{\frac{1}{4}}=\frac{u_{\frac{1}{2}}-U_{\mathrm{wall}}}{\frac{1}{2} \Delta x}
$$

Boundary condition on ω - so that $\frac{\partial \psi}{\partial n}=U_{\text {wall }}$

For bottom $y=0$:

$$
u_{\frac{1}{2}}=\frac{\psi_{i 1}-\psi_{i 0}}{\Delta x}
$$

SO

$$
\omega_{\frac{1}{4}}=\frac{u_{\frac{1}{2}}-U_{\text {wall }}}{\frac{1}{2} \Delta x}
$$

1st order BC

$$
\omega_{0} \approx \omega_{\frac{1}{4}}=\frac{\frac{\psi_{i 1}-\psi_{i 0}}{\Delta x}-U_{\mathrm{wall}}}{\frac{1}{2} \Delta x}
$$

Boundary condition on ω - so that $\frac{\partial \psi}{\partial n}=U_{\text {wall }}$

For bottom $y=0$:

$$
u_{\frac{1}{2}}=\frac{\psi_{i 1}-\psi_{i 0}}{\Delta x}
$$

so

$$
\omega_{\frac{1}{4}}=\frac{u_{\frac{1}{2}}-U_{\text {wall }}}{\frac{1}{2} \Delta x}
$$

1st order BC

$$
\omega_{0} \approx \omega_{\frac{1}{4}}=\frac{\frac{\psi_{i 1}-\psi_{i 0}}{\Delta x}-U_{\mathrm{wall}}}{\frac{1}{2} \Delta x}
$$

2nd order, by linear extrapolation

$$
\omega_{0} \approx \frac{4 \omega_{\frac{1}{4}}-\omega_{1}}{3}
$$

Boundary condition on ω - so that $\frac{\partial \psi}{\partial n}=U_{\text {wall }}$

For bottom $y=0$:

$$
u_{\frac{1}{2}}=\frac{\psi_{i 1}-\psi_{i 0}}{\Delta x}
$$

so

$$
\omega_{\frac{1}{4}}=\frac{u_{\frac{1}{2}}-U_{\text {wall }}}{\frac{1}{2} \Delta x}
$$

1st order BC

$$
\omega_{0} \approx \omega_{\frac{1}{4}}=\frac{\frac{\psi_{i 1}-\psi_{i 0}}{\Delta x}-U_{\mathrm{wall}}}{\frac{1}{2} \Delta x}
$$

2nd order, by linear extrapolation

$$
\omega_{0} \approx \frac{4 \omega_{\frac{1}{4}}-\omega_{1}}{3}
$$

Starts at $t=0$ as numerical delta function, then diffuses.

2.8 Time-step instability

plot ω for $\operatorname{Re}=10$ at $t=0.525$ with $\Delta t=0.035$ and $\Delta x=0.1$

2.8 Time-step instability

plot ω for $R e=10$ at $t=0.525$ with $\Delta t=0.035$ and $\Delta x=0.1$

2.8 Time-step instability

plot ω for $\operatorname{Re}=10$ at $t=0.525$ with $\Delta t=0.035$ and $\Delta x=0.1$

Numerical or physical instability?

2.8 Time-step instability

plot ω for $\operatorname{Re}=10$ at $t=0.525$ with $\Delta t=0.035$ and $\Delta x=0.1$

Numerical or physical instability?
Not physically unstable at $R e=10$ surely?

Time step instability 2

Checker board pattern.

Time step instability 2

Checker board pattern.

$$
\omega_{i j}^{n}=(-)^{i+j} A_{n}
$$

Time step instability 2

Checker board pattern.

$$
\omega_{i j}^{n}=(-)^{i+j} A_{n}
$$

Diffusion terms in time-stepping algorithm

Time step instability 2

Checker board pattern.

$$
\omega_{i j}^{n}=(-)^{i+j} A_{n}
$$

Diffusion terms in time-stepping algorithm

$$
A_{n+1}=A_{n}+\frac{\Delta t}{R e \Delta x^{2}} \cdot-8 A_{n}
$$

Time step instability 2

Checker board pattern.

$$
\omega_{i j}^{n}=(-)^{i+j} A_{n}
$$

Diffusion terms in time-stepping algorithm

$$
A_{n+1}=A_{n}+\frac{\Delta t}{R e \Delta x^{2}} \cdot-8 A_{n}
$$

Stable if $\Delta t<\frac{1}{4} \operatorname{Re} \Delta x^{2}$

Time step instability 2

Checker board pattern.

$$
\omega_{i j}^{n}=(-)^{i+j} A_{n}
$$

Diffusion terms in time-stepping algorithm

$$
A_{n+1}=A_{n}+\frac{\Delta t}{R e \Delta x^{2}} \cdot-8 A_{n}
$$

Stable if $\Delta t<\frac{1}{4} \operatorname{Re} \Delta x^{2}$ - at least one Δt to diffuse one Δx.

Time step instability 2

Checker board pattern.

$$
\omega_{i j}^{n}=(-)^{i+j} A_{n}
$$

Diffusion terms in time-stepping algorithm

$$
A_{n+1}=A_{n}+\frac{\Delta t}{R e \Delta x^{2}} \cdot-8 A_{n}
$$

Stable if $\Delta t<\frac{1}{4} \operatorname{Re} \Delta x^{2}$ - at least one Δt to diffuse one Δx.
EJH works at $\frac{1}{5}$.

Advection instability \rightarrow CFL condition

(Courant-Friedricks-Lewy)

Stable if $\Delta t<\Delta x / U_{\max }$

Advection instability \rightarrow CFL condition

 (Courant-Friedricks-Lewy)Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.

Advection instability \rightarrow CFL condition

 (Courant-Friedricks-Lewy)Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.
Must resolve boundary layers

Advection instability \rightarrow CFL condition

 (Courant-Friedricks-Lewy)Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.
Must resolve boundary layers
Dimensional: $U_{\max } \Delta x / \nu<1 \Leftrightarrow$

Advection instability \rightarrow CFL condition

 (Courant-Friedricks-Lewy)Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.
Must resolve boundary layers
Dimensional: $U_{\max } \Delta x / \nu<1 \Leftrightarrow$ Nondimensional $\Delta x<\frac{1}{R e}$.

Advection instability \rightarrow CFL condition

 (Courant-Friedricks-Lewy)Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.
Must resolve boundary layers
Dimensional: $U_{\max } \Delta x / \nu<1 \Leftrightarrow$ Nondimensional $\Delta x<\frac{1}{R e}$.
This + stable diffusion \Rightarrow stable advection

Advection instability \rightarrow CFL condition

Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.
Must resolve boundary layers
Dimensional: $U_{\max } \Delta x / \nu<1 \Leftrightarrow$ Nondimensional $\Delta x<\frac{1}{R e}$.
This + stable diffusion \Rightarrow stable advection
Total cost to $t=1$

Advection instability \rightarrow CFL condition

Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.
Must resolve boundary layers
Dimensional: $U_{\max } \Delta x / \nu<1 \Leftrightarrow$ Nondimensional $\Delta x<\frac{1}{R e}$.
This + stable diffusion \Rightarrow stable advection
Total cost to $t=1$

$$
\left(\# \text { time steps } \frac{1}{\Delta t} \propto N^{2}\right) \times
$$

Advection instability \rightarrow CFL condition

(Courant-Friedricks-Lewy)

Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.
Must resolve boundary layers
Dimensional: $U_{\max } \Delta x / \nu<1 \Leftrightarrow$ Nondimensional $\Delta x<\frac{1}{R e}$.
This + stable diffusion \Rightarrow stable advection
Total cost to $t=1$

$$
\left(\# \text { time steps } \frac{1}{\Delta t} \propto N^{2}\right) \times\left(\text { cost per time step }(\mathrm{SOR}) \propto N^{3}\right)
$$

Advection instability \rightarrow CFL condition

(Courant-Friedricks-Lewy)

Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.
Must resolve boundary layers
Dimensional: $U_{\max } \Delta x / \nu<1 \Leftrightarrow$ Nondimensional $\Delta x<\frac{1}{R e}$.
This + stable diffusion \Rightarrow stable advection
Total cost to $t=1$

$$
\begin{aligned}
\left(\# \text { time steps } \frac{1}{\Delta t} \propto N^{2}\right) \times & \left(\text { cost per time step }(\mathrm{SOR}) \propto N^{3}\right) \\
& \propto N^{5}
\end{aligned}
$$

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

Advection instability \rightarrow CFL condition

(Courant-Friedricks-Lewy)

Stable if $\Delta t<\Delta x / U_{\max }$ - at least one Δt to advect one Δx.
Must resolve boundary layers
Dimensional: $U_{\max } \Delta x / \nu<1 \Leftrightarrow$ Nondimensional $\Delta x<\frac{1}{R e}$.
This + stable diffusion \Rightarrow stable advection
Total cost to $t=1$

$$
\begin{aligned}
\left(\# \text { time steps } \frac{1}{\Delta t} \propto N^{2}\right) \times & \left(\text { cost per time step }(\mathrm{SOR}) \propto N^{3}\right) \\
& \propto N^{5}
\end{aligned}
$$

Hence doubling N is 32 times longer, quadruple N is 1024 longer.
'Better' time step algorithms \rightarrow larger Δt, but more accurate?

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test \rightarrow test code has designed accuracy $O\left(\Delta t, \Delta x^{2}\right)$.

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test \rightarrow test code has designed accuracy $O\left(\Delta t, \Delta x^{2}\right)$.

Forward differencing $\rightarrow O(\Delta t)$ errors.

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test \rightarrow test code has designed accuracy $O\left(\Delta t, \Delta x^{2}\right)$.

Forward differencing $\rightarrow O(\Delta t)$ errors.
Look at $\omega(x=0.5, y=0.5, t=1)$ - exactly $(0.5,0.5,1)$

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test \rightarrow test code has designed accuracy $O\left(\Delta t, \Delta x^{2}\right)$.

Forward differencing $\rightarrow O(\Delta t)$ errors.
Look at $\omega(x=0.5, y=0.5, t=1)$ - exactly $(0.5,0.5,1)$ 1 st order BC for ω_{0} with $\operatorname{Re}=10$ and $N=10,14$ and 20 .

Note: linear in Δt, very very small Δt (larger unstable),

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test \rightarrow test code has designed accuracy $O\left(\Delta t, \Delta x^{2}\right)$.

Forward differencing $\rightarrow O(\Delta t)$ errors.
Look at $\omega(x=0.5, y=0.5, t=1)$ - exactly $(0.5,0.5,1)$ 1 st order BC for ω_{0} with $\operatorname{Re}=10$ and $N=10,14$ and 20 .

Note: linear in Δt, very very small Δt (larger unstable), Large errors in $\Delta x \rightarrow 2$ nd order BC for ω_{0} better?

2 nd order $B C$ for ω_{0} with $R e=10$ and $N=10,14$ and 20.

2nd order BC for ω_{0} with $R e=10$ and $N=10,14$ and 20 .

2nd order BC for ω_{0} with $R e=10$ and $N=10,14$ and 20 .

Much smaller errors from Δx.

Well matched design

Errors for this problem are 2 nd order in Δx and 1st order in Δt,

Well matched design

Errors for this problem are 2nd order in Δx and 1st order in Δt, but stability has $\Delta t=\frac{1}{5} \operatorname{Re} \Delta x^{2}$.

Well matched design

Errors for this problem are 2nd order in Δx and 1st order in Δt, but stability has $\Delta t=\frac{1}{5} \operatorname{Re} \Delta x^{2}$.

Hence time errors $O(\Delta t) \approx$ space errors $O\left(\Delta x^{2}\right)$

Well matched design

Errors for this problem are 2nd order in Δx and 1st order in Δt, but stability has $\Delta t=\frac{1}{5} \operatorname{Re} \Delta x^{2}$.

Hence time errors $O(\Delta t) \approx$ space errors $O\left(\Delta x^{2}\right)$
Hence no need for second-order time-stepping.

Accuracy consistence. b. Overall $O\left(\Delta x^{2}\right)$

Set $\Delta t=0.2 \operatorname{Re} \Delta x^{2}$.

Accuracy consistence. b. Overall $O\left(\Delta x^{2}\right)$

Set $\Delta t=0.2 \operatorname{Re} \Delta x^{2}$. Plot $\omega(0.5,0.5,1)$ at $\operatorname{Re}=10$ for $N=10,12,14,16,18,20,24$ and 28.

Accuracy consistence. b. Overall $O\left(\Delta x^{2}\right)$

Set $\Delta t=0.2 \operatorname{Re} \Delta x^{2}$. Plot $\omega(0.5,0.5,1)$ at $\operatorname{Re}=10$ for $N=10,12,14,16,18,20,24$ and 28.

Linear in Δx^{2}. Result: $\omega(0.5,0.5,1)=-0.63925 \pm 0.00005$.

Accuracy consistence. b. Overall $O\left(\Delta x^{2}\right)$

Set $\Delta t=0.2 \operatorname{Re} \Delta x^{2}$. Plot $\omega(0.5,0.5,1)$ at $\operatorname{Re}=10$ for $N=10,12,14,16,18,20,24$ and 28.

Linear in Δx^{2}. Result: $\omega(0.5,0.5,1)=-0.63925 \pm 0.00005$.
Note linear extrapolation in Δx^{2} from $N=10$ and 14 gives same accuracy as 28 at $\frac{1}{32}$ the CPU.

2.10 Results: time to evolve

Vorticity at centre of box as a function of time, with $N=20$ and $R e=10$.

2.10 Results: time to evolve

Vorticity at centre of box as a function of time, with $N=20$ and $R e=10$.

Steady to 10^{-4} by $t=2$, time to diffuse across box.

2.10 Results: time to evolve

Vorticity at centre of box as a function of time, with $N=20$ and $R e=10$.

Steady to 10^{-4} by $t=2$, time to diffuse across box.
For steady state, try reducing to 3 SOR per time step in place of N.

Results: steady streamfunction

At $t=3, \operatorname{Re}=10$ and $N=40$.

Results: steady streamfunction

At $t=3, \operatorname{Re}=10$ and $N=40$.

Fast near lid, slow deep into cavity.

Results: steady streamfunction

$$
\text { At } t=3, \operatorname{Re}=10 \text { and } N=40
$$

Fast near lid, slow deep into cavity.
Weak reversed circulations in bottom corners

Results: steady vorticity

At $t=3, \operatorname{Re}=10$ and $N=40$.

Results: steady vorticity

At $t=3, \operatorname{Re}=10$ and $N=40$.

Slight asymmetry downstream

Results: steady mid-section velocity $u(0.5, y)$

$$
u_{i j+\frac{1}{2}}=\frac{\psi_{i j+1}-\psi_{i j}}{\Delta x} \text { for } y=\left(j+\frac{1}{2}\right) \Delta x
$$

Results: steady mid-section velocity $u(0.5, y)$

$$
u_{i j+\frac{1}{2}}=\frac{\psi_{i j+1}-\psi_{i j}}{\Delta x} \text { for } y=\left(j+\frac{1}{2}\right) \Delta x
$$

At $R e=10$, with $N=10,14,20,28,40$.

Results: steady mid-section velocity $u(0.5, y)$

$$
u_{i j+\frac{1}{2}}=\frac{\psi_{i j+1}-\psi_{i j}}{\Delta x} \text { for } y=\left(j+\frac{1}{2}\right) \Delta x
$$

At $R e=10$, with $N=10,14,20,28,40$.

Agree to visual accuracy

Force on lid

$$
F=\left.\left.\int_{0}^{1} \frac{\partial u}{\partial y}\right|_{y=1} d x \approx \sum_{i=0}^{N} \frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N} \Delta x
$$

Force on lid

$$
F=\left.\left.\int_{0}^{1} \frac{\partial u}{\partial y}\right|_{y=1} d x \approx \sum_{i=0}^{N} \frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N} \Delta x
$$

With $O(\Delta x)$ error

$$
\left.\left.\frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N} \approx \frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N-1}=\frac{\psi_{i N}-2 \psi_{i N-1}+\psi_{i, N-2}}{\Delta x^{2}}+O(\Delta x)
$$

Force on lid

$$
F=\left.\left.\int_{0}^{1} \frac{\partial u}{\partial y}\right|_{y=1} d x \approx \sum_{i=0}^{N} \frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N} \Delta x
$$

With $O(\Delta x)$ error

$$
\left.\left.\frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N} \approx \frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N-1}=\frac{\psi_{i N}-2 \psi_{i N-1}+\psi_{i, N-2}}{\Delta x^{2}}+O(\Delta x)
$$

For $O\left(\Delta x^{2}\right)$, linearly extrapolate to boundary

$$
\begin{aligned}
\left.\frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N} & \left.\approx 2 \frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N-1}-\left.\frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N-2} \\
& =\frac{2 \psi_{i N}-5 \psi_{i N-1}+4 \psi_{i, N-2}-\psi_{i, N-3}}{\Delta x^{2}}+O\left(\Delta x^{2}\right)
\end{aligned}
$$

Force on lid

$$
F=\left.\left.\int_{0}^{1} \frac{\partial u}{\partial y}\right|_{y=1} d x \approx \sum_{i=0}^{N} \frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N} \Delta x
$$

With $O(\Delta x)$ error

$$
\left.\left.\frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N} \approx \frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N-1}=\frac{\psi_{i N}-2 \psi_{i N-1}+\psi_{i, N-2}}{\Delta x^{2}}+O(\Delta x)
$$

For $O\left(\Delta x^{2}\right)$, linearly extrapolate to boundary

$$
\begin{aligned}
\left.\frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N} & \left.\approx 2 \frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N-1}-\left.\frac{\partial^{2} \psi}{\partial y^{2}}\right|_{j=N-2} \\
& =\frac{2 \psi_{i N}-5 \psi_{i N-1}+4 \psi_{i, N-2}-\psi_{i, N-3}}{\Delta x^{2}}+O\left(\Delta x^{2}\right)
\end{aligned}
$$

Check: $\psi=1, y, y^{2}, y^{3} \rightarrow 0,0,2,0$

Results: force on lid

At $R e=10$ for $N=10,14,20,28,40$ and 56 .

Results: force on lid

At $R e=10$ for $N=10,14,20,28,40$ and 56 .

The final answer for the force is

$$
F=3.905 \pm 0.002 \text { at } R e=10 .
$$

Results: early times

Results: early times

Simple $\sqrt{\nu t}$ solution.

Results: early times

Simple $\sqrt{\nu t}$ solution. Plot $F / \sqrt{t / R e}$

Results: early times

Simple $\sqrt{\nu t}$ solution. Plot $F / \sqrt{t / R e}$

for $N=40,80,160$ and 320 .
Failure: Code not designed for \sqrt{t} behaviour.

Results: early times

Simple $\sqrt{\nu t}$ solution. Plot $F / \sqrt{t / R e}$

for $N=40,80,160$ and 320 .
Failure: Code not designed for \sqrt{t} behaviour.

Results: early times

Simple $\sqrt{\nu t}$ solution. Plot $F / \sqrt{t / R e}$

for $N=40,80,160$ and 320 .
Failure: Code not designed for \sqrt{t} behaviour.
Note $0.33,0.319,0.307 \rightarrow \frac{1}{2 \sqrt{\pi}}=0.281$ with $0.4 \Delta x^{1 / 2}$ error.

