
Spectral methods – a quick review

For very simple functions, C∞

in very simple geometries, Cartesian

Remarkably accurate

I error decreases like e−kN

I only 3 modes per wave for 1% accuracy

cf FD 40 pts at O(∆x2), 20 pts at O(∆x4)

Differentiation exact to shortest mode

Trivial Poisson solver

time consuming transform and nonlinear terms
Sometimes FAST transform + less modes needed → competitive



Spectral methods – a quick review

For very simple functions, C∞

in very simple geometries, Cartesian

Remarkably accurate

I error decreases like e−kN

I only 3 modes per wave for 1% accuracy

cf FD 40 pts at O(∆x2), 20 pts at O(∆x4)

Differentiation exact to shortest mode

Trivial Poisson solver

time consuming transform and nonlinear terms
Sometimes FAST transform + less modes needed → competitive



Spectral methods – a quick review

For very simple functions, C∞

in very simple geometries, Cartesian

Remarkably accurate

I error decreases like e−kN

I only 3 modes per wave for 1% accuracy

cf FD 40 pts at O(∆x2), 20 pts at O(∆x4)

Differentiation exact to shortest mode

Trivial Poisson solver

time consuming transform and nonlinear terms
Sometimes FAST transform + less modes needed → competitive



Spectral methods – a quick review

For very simple functions, C∞

in very simple geometries, Cartesian

Remarkably accurate

I error decreases like e−kN

I only 3 modes per wave for 1% accuracy

cf FD 40 pts at O(∆x2), 20 pts at O(∆x4)

Differentiation exact to shortest mode

Trivial Poisson solver

time consuming transform and nonlinear terms
Sometimes FAST transform + less modes needed → competitive



Spectral methods – a quick review

For very simple functions, C∞

in very simple geometries, Cartesian

Remarkably accurate

I error decreases like e−kN

I only 3 modes per wave for 1% accuracy

cf FD 40 pts at O(∆x2), 20 pts at O(∆x4)

Differentiation exact to shortest mode

Trivial Poisson solver

time consuming transform and nonlinear terms
Sometimes FAST transform + less modes needed → competitive



Spectral methods – a quick review

For very simple functions, C∞

in very simple geometries, Cartesian

Remarkably accurate

I error decreases like e−kN

I only 3 modes per wave for 1% accuracy

cf FD 40 pts at O(∆x2), 20 pts at O(∆x4)

Differentiation exact to shortest mode

Trivial Poisson solver

time consuming transform and nonlinear terms
Sometimes FAST transform + less modes needed → competitive



Spectral methods – a quick review

For very simple functions, C∞

in very simple geometries, Cartesian

Remarkably accurate

I error decreases like e−kN

I only 3 modes per wave for 1% accuracy

cf FD 40 pts at O(∆x2), 20 pts at O(∆x4)

Differentiation exact to shortest mode

Trivial Poisson solver

time consuming transform and nonlinear terms

Sometimes FAST transform + less modes needed → competitive



Spectral methods – a quick review

For very simple functions, C∞

in very simple geometries, Cartesian

Remarkably accurate

I error decreases like e−kN

I only 3 modes per wave for 1% accuracy

cf FD 40 pts at O(∆x2), 20 pts at O(∆x4)

Differentiation exact to shortest mode

Trivial Poisson solver

time consuming transform and nonlinear terms
Sometimes FAST transform + less modes needed → competitive



Two idea - as in FE

Spectral representation

u(x , t) =
N∑

ûn(t)φn(x)

with amplitudes un(t) and basis functions φn(x), e.g. Fourier

Galerkin approximation “weighted residuals”. For PDE

A(u) = f

require residue to be orthogonal to each φm:

〈A(u)− f , φm〉 = 0 for m = 1, . . . ,N



Two idea - as in FE

Spectral representation

u(x , t) =
N∑

ûn(t)φn(x)

with amplitudes un(t) and basis functions φn(x), e.g. Fourier

Galerkin approximation “weighted residuals”. For PDE

A(u) = f

require residue to be orthogonal to each φm:

〈A(u)− f , φm〉 = 0 for m = 1, . . . ,N



Local vs Global

E.g. for Fourier

u(x) =

∫
e ikx û(k) dk û(k) =

1

2π

∫
e−ikxu(x) dx

Differentiation - global operator in real space

d̂u

dx
= ikû(k) local in Fourier space

Exact to shortest mode, cf FD f ′i =
fi+1−fi−1

2∆x = 0 for fi = (−1)i .

Poisson problem

d2u

dx2
= ρ expensive global problem in real space

−k2û = ρ̂ local in Fourier space



Local vs Global

E.g. for Fourier

u(x) =

∫
e ikx û(k) dk û(k) =

1

2π

∫
e−ikxu(x) dx

Differentiation - global operator in real space

d̂u

dx
= ikû(k) local in Fourier space

Exact to shortest mode, cf FD f ′i =
fi+1−fi−1

2∆x = 0 for fi = (−1)i .

Poisson problem

d2u

dx2
= ρ expensive global problem in real space

−k2û = ρ̂ local in Fourier space



Local vs Global

E.g. for Fourier

u(x) =

∫
e ikx û(k) dk û(k) =

1

2π

∫
e−ikxu(x) dx

Differentiation - global operator in real space

d̂u

dx
= ikû(k) local in Fourier space

Exact to shortest mode, cf FD f ′i =
fi+1−fi−1

2∆x = 0 for fi = (−1)i .

Poisson problem

d2u

dx2
= ρ expensive global problem in real space

−k2û = ρ̂ local in Fourier space



Local vs Global

E.g. for Fourier

u(x) =

∫
e ikx û(k) dk û(k) =

1

2π

∫
e−ikxu(x) dx

Differentiation - global operator in real space

d̂u

dx
= ikû(k) local in Fourier space

Exact to shortest mode, cf FD f ′i =
fi+1−fi−1

2∆x = 0 for fi = (−1)i .

Poisson problem

d2u

dx2
= ρ expensive global problem in real space

−k2û = ρ̂ local in Fourier space



Local/Global continued

Nonlinear terms and spatially vary coefficients

u(x)v(x) local in real space

ûv(k) =
1

2π

∫
l+m=k

û(l)v̂(m) global in Fourier

Numerically

local = cheap global = expensive

Navier-Stokes has both local & global in real or Fourier – need
compromise



Local/Global continued

Nonlinear terms and spatially vary coefficients

u(x)v(x) local in real space

ûv(k) =
1

2π

∫
l+m=k

û(l)v̂(m) global in Fourier

Numerically

local = cheap global = expensive

Navier-Stokes has both local & global in real or Fourier – need
compromise



Local/Global continued

Nonlinear terms and spatially vary coefficients

u(x)v(x) local in real space

ûv(k) =
1

2π

∫
l+m=k

û(l)v̂(m) global in Fourier

Numerically

local = cheap global = expensive

Navier-Stokes has both local & global in real or Fourier – need
compromise



Pseudo-spectral
combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space
evaluate derivatives and invert the Poisson problem.

Needs three transforms →

û → u

û →∇̂u→∇u u · ∇u
↑ ↓
˙̂u ←p̂ ←û · ∇u

Choose real points optimally.

Alternative method of satisfying PDE at collocation points rather
than in Galerkin projection.



Pseudo-spectral
combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space
evaluate derivatives and invert the Poisson problem.
Needs three transforms →

û → u

û →∇̂u→∇u u · ∇u
↑ ↓
˙̂u ←p̂ ←û · ∇u

Choose real points optimally.

Alternative method of satisfying PDE at collocation points rather
than in Galerkin projection.



Pseudo-spectral
combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space
evaluate derivatives and invert the Poisson problem.
Needs three transforms →

û → u

û →∇̂u→∇u u · ∇u
↑ ↓
˙̂u ←p̂ ←û · ∇u

Choose real points optimally.

Alternative method of satisfying PDE at collocation points rather
than in Galerkin projection.



Pseudo-spectral
combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space
evaluate derivatives and invert the Poisson problem.
Needs three transforms →

û → u

û →∇̂u→∇u u · ∇u
↑ ↓
˙̂u ←p̂ ←û · ∇u

Choose real points optimally.

Alternative method of satisfying PDE at collocation points rather
than in Galerkin projection.



Choice of spectral basis function φn(x)

1. complete

2. orthogonal for some weight w

〈φnφm〉 =

∫
φnφmw(x) dx = Nnδnm

3. smooth

4. fast convergence

5. FAST transform

6. satisfy boundary conditions

Strongly recommend

I Fully periodic → Fourier, e inθ

I Finite interval → Chebyshev Tn(cos θ) = cos nθ



Choice of spectral basis function φn(x)

1. complete

2. orthogonal for some weight w

〈φnφm〉 =

∫
φnφmw(x) dx = Nnδnm

3. smooth

4. fast convergence

5. FAST transform

6. satisfy boundary conditions

Strongly recommend

I Fully periodic → Fourier, e inθ

I Finite interval → Chebyshev Tn(cos θ) = cos nθ



Chebyshev polynomials

Tn(cos θ) = cos nθ

Orthogonal with weight w(x) = 1/
√

1− x2

∫ 1

−1
Tm(x)Tn(x)w(x) dx =


0 if n 6= m

π if n = m = 0
π
2 if n = m 6= 0

T0(x) = 1, T1(x) = x , T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x , T4(x) = 8x4 − 8x2 + 1

(1− x2)T ′′n − x T ′n + n2 Tn = 0

Tn+1 = 2xTn − Tn−1

2Tn = 1
n+1T

′
n+1 − 1

n−1T
′
n−1



Chebyshev polynomials

Tn(cos θ) = cos nθ

Orthogonal with weight w(x) = 1/
√

1− x2

∫ 1

−1
Tm(x)Tn(x)w(x) dx =


0 if n 6= m

π if n = m = 0
π
2 if n = m 6= 0

T0(x) = 1, T1(x) = x , T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x , T4(x) = 8x4 − 8x2 + 1

(1− x2)T ′′n − x T ′n + n2 Tn = 0

Tn+1 = 2xTn − Tn−1

2Tn = 1
n+1T

′
n+1 − 1

n−1T
′
n−1



Chebyshev polynomials

Tn(cos θ) = cos nθ

Orthogonal with weight w(x) = 1/
√

1− x2

∫ 1

−1
Tm(x)Tn(x)w(x) dx =


0 if n 6= m

π if n = m = 0
π
2 if n = m 6= 0

T0(x) = 1, T1(x) = x , T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x , T4(x) = 8x4 − 8x2 + 1

(1− x2)T ′′n − x T ′n + n2 Tn = 0

Tn+1 = 2xTn − Tn−1

2Tn = 1
n+1T

′
n+1 − 1

n−1T
′
n−1



Chebyshev polynomials

Tn(cos θ) = cos nθ

Orthogonal with weight w(x) = 1/
√

1− x2

∫ 1

−1
Tm(x)Tn(x)w(x) dx =


0 if n 6= m

π if n = m = 0
π
2 if n = m 6= 0

T0(x) = 1, T1(x) = x , T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x , T4(x) = 8x4 − 8x2 + 1

(1− x2)T ′′n − x T ′n + n2 Tn = 0

Tn+1 = 2xTn − Tn−1

2Tn = 1
n+1T

′
n+1 − 1

n−1T
′
n−1



Fourier series

Fully periodic (really defined on a circle):

f (k)(0+) = f (k)(2π−) for all k

Then Fourier series

f (θ) =
∞∑

n=−∞
f̂ne

inθ

with

f̂n =
1

2π

∫ 2π

0
f (θ)e−inθ dθ

– awkward 1
2a0 if use sines and cosines.



Fourier series

Fully periodic (really defined on a circle):

f (k)(0+) = f (k)(2π−) for all k

Then Fourier series

f (θ) =
∞∑

n=−∞
f̂ne

inθ

with

f̂n =
1

2π

∫ 2π

0
f (θ)e−inθ dθ

– awkward 1
2a0 if use sines and cosines.



Fourier series

Fully periodic (really defined on a circle):

f (k)(0+) = f (k)(2π−) for all k

Then Fourier series

f (θ) =
∞∑

n=−∞
f̂ne

inθ

with

f̂n =
1

2π

∫ 2π

0
f (θ)e−inθ dθ

– awkward 1
2a0 if use sines and cosines.



Rates of convergence

If f (θ) has k-derivatives,

integrate by parts k times

f̂n =
1

2π

ik

nk

∫ 2π

0
f (k)(θ)e−inθ dθ

Thus series converges rapidly with f̂n = o(n−k) (RLL).

If f (k) has one discontinuity, f̂n = O(n−k−1)

If f ∈ C∞, f̂n = e−kn – exponential convergence

E.g.

f (θ) =
∞∑

m=−∞

1

(θ − 2πm)2 + a2
→ f̂n =

π

a
e−|n|a

– convergence controlled by singularity of f (θ) in complex θ-plane



Rates of convergence

If f (θ) has k-derivatives, integrate by parts k times

f̂n =
1

2π

ik

nk

∫ 2π

0
f (k)(θ)e−inθ dθ

Thus series converges rapidly with f̂n = o(n−k) (RLL).

If f (k) has one discontinuity, f̂n = O(n−k−1)

If f ∈ C∞, f̂n = e−kn – exponential convergence

E.g.

f (θ) =
∞∑

m=−∞

1

(θ − 2πm)2 + a2
→ f̂n =

π

a
e−|n|a

– convergence controlled by singularity of f (θ) in complex θ-plane



Rates of convergence

If f (θ) has k-derivatives, integrate by parts k times

f̂n =
1

2π

ik

nk

∫ 2π

0
f (k)(θ)e−inθ dθ

Thus series converges rapidly with f̂n = o(n−k) (RLL).

If f (k) has one discontinuity, f̂n = O(n−k−1)

If f ∈ C∞, f̂n = e−kn – exponential convergence

E.g.

f (θ) =
∞∑

m=−∞

1

(θ − 2πm)2 + a2
→ f̂n =

π

a
e−|n|a

– convergence controlled by singularity of f (θ) in complex θ-plane



Rates of convergence

If f (θ) has k-derivatives, integrate by parts k times

f̂n =
1

2π

ik

nk

∫ 2π

0
f (k)(θ)e−inθ dθ

Thus series converges rapidly with f̂n = o(n−k) (RLL).

If f (k) has one discontinuity, f̂n = O(n−k−1)

If f ∈ C∞, f̂n = e−kn – exponential convergence

E.g.

f (θ) =
∞∑

m=−∞

1

(θ − 2πm)2 + a2
→ f̂n =

π

a
e−|n|a

– convergence controlled by singularity of f (θ) in complex θ-plane



Rates of convergence

If f (θ) has k-derivatives, integrate by parts k times

f̂n =
1

2π

ik

nk

∫ 2π

0
f (k)(θ)e−inθ dθ

Thus series converges rapidly with f̂n = o(n−k) (RLL).

If f (k) has one discontinuity, f̂n = O(n−k−1)

If f ∈ C∞, f̂n = e−kn – exponential convergence

E.g.

f (θ) =
∞∑

m=−∞

1

(θ − 2πm)2 + a2
→ f̂n =

π

a
e−|n|a

– convergence controlled by singularity of f (θ) in complex θ-plane



Rates of convergence

If f (θ) has k-derivatives, integrate by parts k times

f̂n =
1

2π

ik

nk

∫ 2π

0
f (k)(θ)e−inθ dθ

Thus series converges rapidly with f̂n = o(n−k) (RLL).

If f (k) has one discontinuity, f̂n = O(n−k−1)

If f ∈ C∞, f̂n = e−kn – exponential convergence

E.g.

f (θ) =
∞∑

m=−∞

1

(θ − 2πm)2 + a2
→ f̂n =

π

a
e−|n|a

– convergence controlled by singularity of f (θ) in complex θ-plane



Rates of convergence

If f (θ) has k-derivatives, integrate by parts k times

f̂n =
1

2π

ik

nk

∫ 2π

0
f (k)(θ)e−inθ dθ

Thus series converges rapidly with f̂n = o(n−k) (RLL).

If f (k) has one discontinuity, f̂n = O(n−k−1)

If f ∈ C∞, f̂n = e−kn – exponential convergence

E.g.

f (θ) =
∞∑

m=−∞

1

(θ − 2πm)2 + a2
→ f̂n =

π

a
e−|n|a

– convergence controlled by singularity of f (θ) in complex θ-plane



Gibbs phenomenon

Discontinuity → poor
∑ ±1

n convergence

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

6 terms

11 terms

21 terms

with point-wise convergence
but 14% overshoot within 1

N of discontinuity



Gibbs phenomenon

Discontinuity → poor
∑ ±1

n convergence

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

6 terms

11 terms

21 terms

with point-wise convergence
but 14% overshoot within 1

N of discontinuity



Finite interval

If f (k)(0+) 6= f (k)(2π−), then hidden discontinuity at boundary
→ Gibbs problem, with slow convergence.

Use Chebyshev Tn(x) = cos nθ

Stretch x = cos θ makes odd derivatives vanish

f̃ (θ) = f (cos θ) → df̃

dθ
= sin f ′

Hence function | x | on −1 < x < 1
becomes fully 2π periodic in −π < θ < 0



Finite interval

If f (k)(0+) 6= f (k)(2π−), then hidden discontinuity at boundary
→ Gibbs problem, with slow convergence.

Use Chebyshev Tn(x) = cos nθ

Stretch x = cos θ makes odd derivatives vanish

f̃ (θ) = f (cos θ) → df̃

dθ
= sin f ′

Hence function | x | on −1 < x < 1
becomes fully 2π periodic in −π < θ < 0



Finite interval

If f (k)(0+) 6= f (k)(2π−), then hidden discontinuity at boundary
→ Gibbs problem, with slow convergence.

Use Chebyshev Tn(x) = cos nθ

Stretch x = cos θ makes odd derivatives vanish

f̃ (θ) = f (cos θ) → df̃

dθ
= sin f ′

Hence function | x | on −1 < x < 1
becomes fully 2π periodic in −π < θ < 0



Finite interval

If f (k)(0+) 6= f (k)(2π−), then hidden discontinuity at boundary
→ Gibbs problem, with slow convergence.

Use Chebyshev Tn(x) = cos nθ

Stretch x = cos θ makes odd derivatives vanish

f̃ (θ) = f (cos θ) → df̃

dθ
= sin f ′

Hence function | x | on −1 < x < 1
becomes fully 2π periodic in −π < θ < 0



Discrete Fourier Transform (DFT)

Odd N = 2M + 1.
Equi-spaced collocation points θj = 2πj

N for j = 1, . . . ,N

Discrete approximation f̃n to Fourier f̂n

f̃n =
1

N

N∑
j=1

f (θj)e
−inθj n = −M, . . . ,M

Note for later: e−i(N+k)θj ) ≡ e−ikθj , so fN+k = fk

Let ω = e i2π/N the N-th root of 1, so
∑M
−M ωn = 0

Then

M∑
n=−M

f̃ne
inθ =

N∑
j=1

f (θj)

[
1

N

M∑
n=−M

e in(θ−θj ) =

{
1 if θ = θj

0 if θ = θk 6= θj

]
= f (θj) if θ = θj



Discrete Fourier Transform (DFT)

Odd N = 2M + 1.
Equi-spaced collocation points θj = 2πj

N for j = 1, . . . ,N

Discrete approximation f̃n to Fourier f̂n

f̃n =
1

N

N∑
j=1

f (θj)e
−inθj n = −M, . . . ,M

Note for later: e−i(N+k)θj ) ≡ e−ikθj , so fN+k = fk

Let ω = e i2π/N the N-th root of 1, so
∑M
−M ωn = 0

Then

M∑
n=−M

f̃ne
inθ =

N∑
j=1

f (θj)

[
1

N

M∑
n=−M

e in(θ−θj ) =

{
1 if θ = θj

0 if θ = θk 6= θj

]
= f (θj) if θ = θj



Discrete Fourier Transform (DFT)

Odd N = 2M + 1.
Equi-spaced collocation points θj = 2πj

N for j = 1, . . . ,N

Discrete approximation f̃n to Fourier f̂n

f̃n =
1

N

N∑
j=1

f (θj)e
−inθj n = −M, . . . ,M

Note for later: e−i(N+k)θj ) ≡ e−ikθj , so fN+k = fk

Let ω = e i2π/N the N-th root of 1, so
∑M
−M ωn = 0

Then

M∑
n=−M

f̃ne
inθ =

N∑
j=1

f (θj)

[
1

N

M∑
n=−M

e in(θ−θj ) =

{
1 if θ = θj

0 if θ = θk 6= θj

]
= f (θj) if θ = θj



Discrete Fourier Transform (DFT)

Odd N = 2M + 1.
Equi-spaced collocation points θj = 2πj

N for j = 1, . . . ,N

Discrete approximation f̃n to Fourier f̂n

f̃n =
1

N

N∑
j=1

f (θj)e
−inθj n = −M, . . . ,M

Note for later: e−i(N+k)θj ) ≡ e−ikθj , so fN+k = fk

Let ω = e i2π/N the N-th root of 1, so
∑M
−M ωn = 0

Then

M∑
n=−M

f̃ne
inθ =

N∑
j=1

f (θj)

[
1

N

M∑
n=−M

e in(θ−θj ) =

{
1 if θ = θj

0 if θ = θk 6= θj

]
= f (θj) if θ = θj



Discrete Fourier Transform (DFT)

Odd N = 2M + 1.
Equi-spaced collocation points θj = 2πj

N for j = 1, . . . ,N

Discrete approximation f̃n to Fourier f̂n

f̃n =
1

N

N∑
j=1

f (θj)e
−inθj n = −M, . . . ,M

Note for later: e−i(N+k)θj ) ≡ e−ikθj , so fN+k = fk

Let ω = e i2π/N the N-th root of 1, so
∑M
−M ωn = 0

Then

M∑
n=−M

f̃ne
inθ =

N∑
j=1

f (θj)

[
1

N

M∑
n=−M

e in(θ−θj ) =

{
1 if θ = θj

0 if θ = θk 6= θj

]
= f (θj) if θ = θj



Discrete Fourier Transform (DFT)

Odd N = 2M + 1.
Equi-spaced collocation points θj = 2πj

N for j = 1, . . . ,N

Discrete approximation f̃n to Fourier f̂n

f̃n =
1

N

N∑
j=1

f (θj)e
−inθj n = −M, . . . ,M

Note for later: e−i(N+k)θj ) ≡ e−ikθj , so fN+k = fk

Let ω = e i2π/N the N-th root of 1, so
∑M
−M ωn = 0

Then

M∑
n=−M

f̃ne
inθ =

N∑
j=1

f (θj)

[
1

N

M∑
n=−M

e in(θ−θj ) =

{
1 if θ = θj

0 if θ = θk 6= θj

]
= f (θj) if θ = θj



Runge phenomenon

Fitting polynomial through equi-spaced points can be badly wrong
in between fitting points.

-4

-2

 0

 2

 4

-1 -0.5  0  0.5  1

polynomial
1/(1+25*x*x)

However DFT well behaved, because effectively Chebyshev
polynomials fitted at points xj = cos(πj/N) – crowed at ends.



Runge phenomenon

Fitting polynomial through equi-spaced points can be badly wrong
in between fitting points.

-4

-2

 0

 2

 4

-1 -0.5  0  0.5  1

polynomial
1/(1+25*x*x)

However DFT well behaved,

because effectively Chebyshev
polynomials fitted at points xj = cos(πj/N) – crowed at ends.



Runge phenomenon

Fitting polynomial through equi-spaced points can be badly wrong
in between fitting points.

-4

-2

 0

 2

 4

-1 -0.5  0  0.5  1

polynomial
1/(1+25*x*x)

However DFT well behaved, because effectively Chebyshev
polynomials fitted at points xj = cos(πj/N) – crowed at ends.



Aliasing
– counter rotating wagon wheels in strobe light

High (N + k) frequency, e.g. g(θ) = e i(N+k)θ,
appears in DFT to be erroneous low k frequency:

g̃k =
1

N

N∑
j=1

g(θj)e
−ikθj = 1

E.g. N = 10 equispaced points cannot distinguish between sin θ
and − sin 9θ

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

sin(x)
-sin(9*x)



Aliasing
– counter rotating wagon wheels in strobe light

High (N + k) frequency, e.g. g(θ) = e i(N+k)θ,
appears in DFT to be erroneous low k frequency:

g̃k =
1

N

N∑
j=1

g(θj)e
−ikθj = 1

E.g. N = 10 equispaced points cannot distinguish between sin θ
and − sin 9θ

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

sin(x)
-sin(9*x)



Aliasing
– counter rotating wagon wheels in strobe light

High (N + k) frequency, e.g. g(θ) = e i(N+k)θ,
appears in DFT to be erroneous low k frequency:

g̃k =
1

N

N∑
j=1

g(θj)e
−ikθj = 1

E.g. N = 10 equispaced points cannot distinguish between sin θ
and − sin 9θ

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

sin(x)
-sin(9*x)



De-aliasing

Aliasing makes high frequency tail

of exact Fourier modes f̂n in n > M

appear to DFT f̃n

as low frequency modes at −M + n.

De-alias: Chop spectrum to −2
3M < n < 2

3M,

so nonlinear terms can produce new 2
3M < n < 4

3M

which are then chopped so as not transfer to low frequencies.

In 3D throw away 19
27 of the modes.



De-aliasing

Aliasing makes high frequency tail

of exact Fourier modes f̂n in n > M

appear to DFT f̃n

as low frequency modes at −M + n.

De-alias: Chop spectrum to −2
3M < n < 2

3M,

so nonlinear terms can produce new 2
3M < n < 4

3M

which are then chopped so as not transfer to low frequencies.

In 3D throw away 19
27 of the modes.



De-aliasing

Aliasing makes high frequency tail

of exact Fourier modes f̂n in n > M

appear to DFT f̃n

as low frequency modes at −M + n.

De-alias: Chop spectrum to −2
3M < n < 2

3M,

so nonlinear terms can produce new 2
3M < n < 4

3M

which are then chopped so as not transfer to low frequencies.

In 3D throw away 19
27 of the modes.



De-aliasing

Aliasing makes high frequency tail

of exact Fourier modes f̂n in n > M

appear to DFT f̃n

as low frequency modes at −M + n.

De-alias: Chop spectrum to −2
3M < n < 2

3M,

so nonlinear terms can produce new 2
3M < n < 4

3M

which are then chopped so as not transfer to low frequencies.

In 3D throw away 19
27 of the modes.



De-aliasing

Aliasing makes high frequency tail

of exact Fourier modes f̂n in n > M

appear to DFT f̃n

as low frequency modes at −M + n.

De-alias: Chop spectrum to −2
3M < n < 2

3M,

so nonlinear terms can produce new 2
3M < n < 4

3M

which are then chopped so as not transfer to low frequencies.

In 3D throw away 19
27 of the modes.



Fast Fourier Transform

DFT calculation for n = −1
2N, . . . ,

1
2N

f̃n =
N∑
j=1

f (θj)ω
nj , with θj =

2πj

N
and ω = e iθ1

looks like N coefficients × sum of N terms = N2 operations.

But

=

N/2∑
k=1

f (θ2k)ωnk
2 + ω−1

N/2∑
k=1

f (θ2k−1)ωnk
2 with ω2 = ω2

which is 2 lots of DFT on 1
2N points 2( 1

2N)2 = 1
2N

2 operations

If N = 2K , can half K times → N ln2 N operations.

Program: identify even/odd at each 2n-level n = 1, . . . ,K ,
i.e. binary representation of j



Fast Fourier Transform

DFT calculation for n = −1
2N, . . . ,

1
2N

f̃n =
N∑
j=1

f (θj)ω
nj , with θj =

2πj

N
and ω = e iθ1

looks like N coefficients × sum of N terms = N2 operations.

But

=

N/2∑
k=1

f (θ2k)ωnk
2 + ω−1

N/2∑
k=1

f (θ2k−1)ωnk
2 with ω2 = ω2

which is 2 lots of DFT on 1
2N points 2( 1

2N)2 = 1
2N

2 operations

If N = 2K , can half K times → N ln2 N operations.

Program: identify even/odd at each 2n-level n = 1, . . . ,K ,
i.e. binary representation of j



Fast Fourier Transform

DFT calculation for n = −1
2N, . . . ,

1
2N

f̃n =
N∑
j=1

f (θj)ω
nj , with θj =

2πj

N
and ω = e iθ1

looks like N coefficients × sum of N terms = N2 operations.

But

=

N/2∑
k=1

f (θ2k)ωnk
2 + ω−1

N/2∑
k=1

f (θ2k−1)ωnk
2 with ω2 = ω2

which is 2 lots of DFT on 1
2N points 2( 1

2N)2 = 1
2N

2 operations

If N = 2K , can half K times → N ln2 N operations.

Program: identify even/odd at each 2n-level n = 1, . . . ,K ,
i.e. binary representation of j



Fast Fourier Transform

DFT calculation for n = −1
2N, . . . ,

1
2N

f̃n =
N∑
j=1

f (θj)ω
nj , with θj =

2πj

N
and ω = e iθ1

looks like N coefficients × sum of N terms = N2 operations.

But

=

N/2∑
k=1

f (θ2k)ωnk
2 + ω−1

N/2∑
k=1

f (θ2k−1)ωnk
2 with ω2 = ω2

which is 2 lots of DFT on 1
2N points 2( 1

2N)2 = 1
2N

2 operations

If N = 2K , can half K times → N ln2 N operations.

Program: identify even/odd at each 2n-level n = 1, . . . ,K ,
i.e. binary representation of j



Fast Fourier Transform

DFT calculation for n = −1
2N, . . . ,

1
2N

f̃n =
N∑
j=1

f (θj)ω
nj , with θj =

2πj

N
and ω = e iθ1

looks like N coefficients × sum of N terms = N2 operations.

But

=

N/2∑
k=1

f (θ2k)ωnk
2 + ω−1

N/2∑
k=1

f (θ2k−1)ωnk
2 with ω2 = ω2

which is 2 lots of DFT on 1
2N points 2( 1

2N)2 = 1
2N

2 operations

If N = 2K , can half K times → N ln2 N operations.

Program: identify even/odd at each 2n-level n = 1, . . . ,K ,
i.e. binary representation of j



Orzsag speed up in two dimensions

M∑
m=1

N∑
n=1

amnφm(xi )φn(yj)

looks line MN terms to sum at MN points (xi , yj)

But
M∑

m=1

amnφm(xi )

is common to each (xi , ∗) point, → save factor of M operations.

Also FFT speed up



Orzsag speed up in two dimensions

M∑
m=1

N∑
n=1

amnφm(xi )φn(yj)

looks line MN terms to sum at MN points (xi , yj)

But
M∑

m=1

amnφm(xi )

is common to each (xi , ∗) point, → save factor of M operations.

Also FFT speed up



Orzsag speed up in two dimensions

M∑
m=1

N∑
n=1

amnφm(xi )φn(yj)

looks line MN terms to sum at MN points (xi , yj)

But
M∑

m=1

amnφm(xi )

is common to each (xi , ∗) point, → save factor of M operations.

Also FFT speed up



Differential Matrix

To differentiate data with exponential accuracy

f (θj)
transform−→ f̃n

differentiate−→ nf̃n
transform−→ f ′(θj)

But transforming is a linear sum, so

f ′(θi ) = Dij f (θi ) with differentiation matrix D

FFT factorisation can make N lnN instead of N2

2pts→ 2nd order in FD→ error N−2

4pts→ 4th order in FD → error N−4

Npts→ → error N−N

NB D(2) 6= DD



Differential Matrix

To differentiate data with exponential accuracy

f (θj)
transform−→ f̃n

differentiate−→ nf̃n
transform−→ f ′(θj)

But transforming is a linear sum, so

f ′(θi ) = Dij f (θi ) with differentiation matrix D

FFT factorisation can make N lnN instead of N2

2pts→ 2nd order in FD→ error N−2

4pts→ 4th order in FD → error N−4

Npts→ → error N−N

NB D(2) 6= DD



Differential Matrix

To differentiate data with exponential accuracy

f (θj)
transform−→ f̃n

differentiate−→ nf̃n
transform−→ f ′(θj)

But transforming is a linear sum, so

f ′(θi ) = Dij f (θi ) with differentiation matrix D

FFT factorisation can make N lnN instead of N2

2pts→ 2nd order in FD→ error N−2

4pts→ 4th order in FD → error N−4

Npts→ → error N−N

NB D(2) 6= DD



Differential Matrix

To differentiate data with exponential accuracy

f (θj)
transform−→ f̃n

differentiate−→ nf̃n
transform−→ f ′(θj)

But transforming is a linear sum, so

f ′(θi ) = Dij f (θi ) with differentiation matrix D

FFT factorisation can make N lnN instead of N2

2pts→ 2nd order in FD→ error N−2

4pts→ 4th order in FD → error N−4

Npts→ → error N−N

NB D(2) 6= DD



Differential Matrix

To differentiate data with exponential accuracy

f (θj)
transform−→ f̃n

differentiate−→ nf̃n
transform−→ f ′(θj)

But transforming is a linear sum, so

f ′(θi ) = Dij f (θi ) with differentiation matrix D

FFT factorisation can make N lnN instead of N2

2pts→ 2nd order in FD→ error N−2

4pts→ 4th order in FD → error N−4

Npts→ → error N−N

NB D(2) 6= DD



Navier-Stokes

∇ · u = 0

∂u

∂t
+ u · ∇u = −∇p + ν∇2u

Fourier transform

ik · u = 0

∂û

∂t
+ û · ∇u = −ikp − νk2û

Eliminate pressure

∂û

∂t
= −

(
I− kk

k2

)
· û · ∇u− νk2û

with û · ∇u by pseudo-spectral real space evaluation



Navier-Stokes

∇ · u = 0

∂u

∂t
+ u · ∇u = −∇p + ν∇2u

Fourier transform

ik · u = 0

∂û

∂t
+ û · ∇u = −ikp − νk2û

Eliminate pressure

∂û

∂t
= −

(
I− kk

k2

)
· û · ∇u− νk2û

with û · ∇u by pseudo-spectral real space evaluation



Navier-Stokes

∇ · u = 0

∂u

∂t
+ u · ∇u = −∇p + ν∇2u

Fourier transform

ik · u = 0

∂û

∂t
+ û · ∇u = −ikp − νk2û

Eliminate pressure

∂û

∂t
= −

(
I− kk

k2

)
· û · ∇u− νk2û

with û · ∇u by pseudo-spectral real space evaluation



Navier-Stokes

∇ · u = 0

∂u

∂t
+ u · ∇u = −∇p + ν∇2u

Fourier transform

ik · u = 0

∂û

∂t
+ û · ∇u = −ikp − νk2û

Eliminate pressure

∂û

∂t
= −

(
I− kk

k2

)
· û · ∇u− νk2û

with û · ∇u by pseudo-spectral real space evaluation



Boundary conditions

If homogeneous BCs, recombine to satisfy BCs

φ2n = T2n − T0 and φ2n−1 = T2n−1 − T1

OR impose BC (“tau” method)

N∑
n−1

f̃nTn(±1) = BC

Crowding of points → time-step limitation

For ut = Duxx on [−1, 1]

1/N2 crowding of xj = cos θj near ±1
→ stability if ∆t < D/N4



Boundary conditions

If homogeneous BCs, recombine to satisfy BCs

φ2n = T2n − T0 and φ2n−1 = T2n−1 − T1

OR impose BC (“tau” method)

N∑
n−1

f̃nTn(±1) = BC

Crowding of points → time-step limitation

For ut = Duxx on [−1, 1]

1/N2 crowding of xj = cos θj near ±1
→ stability if ∆t < D/N4



Boundary conditions

If homogeneous BCs, recombine to satisfy BCs

φ2n = T2n − T0 and φ2n−1 = T2n−1 − T1

OR impose BC (“tau” method)

N∑
n−1

f̃nTn(±1) = BC

Crowding of points → time-step limitation

For ut = Duxx on [−1, 1]

1/N2 crowding of xj = cos θj near ±1
→ stability if ∆t < D/N4



Boundary conditions

If homogeneous BCs, recombine to satisfy BCs

φ2n = T2n − T0 and φ2n−1 = T2n−1 − T1

OR impose BC (“tau” method)

N∑
n−1

f̃nTn(±1) = BC

Crowding of points → time-step limitation

For ut = Duxx on [−1, 1]

1/N2 crowding of xj = cos θj near ±1
→ stability if ∆t < D/N4



Bridging the gap

Local Global

Finite Elements FE hp

Finite Differences Spectral
point data whole interval

Splines Wavelets
global points local waves



Bridging the gap

Local Global

Finite Elements FE hp

Finite Differences Spectral
point data whole interval

Splines Wavelets
global points local waves


