Linear Algebra - brief review

Many good long textbooks
DO NOT CODE - use excellent free packages
Nonlinear fluids \rightarrow many linear sub-problems, e.g. Poisson problem, e.g. linear stability

Questions

- "matrix inversion": $A x=b$
- eigenvalues: $A e=\lambda e$

Matrices

- dense or sparse
- symmetric, positive definite, banded,...

LAPACK

Free packages. Download library.
Search engine to find correct routine for you

- linear equations or linear least squares, or eigenvalues, singular decomposition, generalised
- precision: single/double, real/complex
- matrix type: symmetric, SPD, banded

Driver routine, calls computational routines, calls auxiliary (BLAS)
Real, single, general matrix, linear equations $\operatorname{SGESV}(N$, Nrhs, $A, L D A, I P I V, B, L B D$, info $)$ where matrix A is $N \times N$, with Nrhs b 's in B.

Solving linear simultaneous equations

1. Gaussian elimination

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

Divide 1st eqn by a_{11}, so coef x_{1} is 1
Subtract 1 st eqn $\times a_{k 1}$ from k th eqn, so coef x_{1} becomes 0 Repeat on $(n-1) \times(n-1)$ subsystem of eqn $2 \rightarrow n$
Repeat on even smaller subsystems
Finally back-solve

$$
\begin{array}{cccc}
a_{n n} x_{n} & =b_{n} & \rightarrow & x_{n} \\
a_{n-1}{ }_{n-1} x_{n-1}+ & a_{n-1}{ }_{n} x_{n} & =b_{n-1} & \rightarrow \\
x_{n-1} \\
\vdots & & & \\
& & \rightarrow & x_{1}
\end{array}
$$

LU decomposition - rephrase Gaussian elimination

Lower and Upper triangular

$$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
. & 1 & 0 & 0 \\
. & . & 1 & 0 \\
. & . & . & 1
\end{array}\right) \quad U=\left(\begin{array}{cccc}
. & . & . & . \\
0 & . & . & . \\
0 & 0 & . & . \\
0 & 0 & 0 & .
\end{array}\right)
$$

Step $k=1 \rightarrow n$:

$$
\begin{aligned}
& u_{k j}=a_{k j} \text { for } j=k \rightarrow n \\
& \ell_{i k}=a_{i k} / a_{k k} \text { for } i=k \rightarrow n \\
& a_{i j} \leftarrow a_{i j}-\ell_{i k} u_{k j} \text { for } i=k+1 \rightarrow n, \text { for } j=k+1 \rightarrow n
\end{aligned}
$$

For a dense matrix $\frac{1}{3} n^{3}$ multiplies
For a tridiagonal matrix, avoiding zeros $2 n$ multiplies

Solve $L U x=b$ by
Forward $L y=b$

$$
\begin{aligned}
\ell_{11} y_{1} & =b_{1} \\
\ell_{21} y_{1} & \rightarrow y_{1} \\
\ell_{22} y_{2}= & b_{1}
\end{aligned} \quad \rightarrow y_{2},
$$

Backward $U x=y$

$$
\begin{array}{rllll}
u_{n n} x_{n} & = & y_{n} & \rightarrow & x_{n} \\
u_{n-1 n-1} x_{n-1} & +\quad u_{n-1} x_{n} & = & y_{n-1} & \rightarrow \\
x_{n-1} \\
& & & \vdots & \\
& & & \rightarrow & x_{1}
\end{array}
$$

Finding $L U$ is $O\left(n^{3}\right)$
but solving $L U x=b$ for a new b is only $O\left(n^{2}\right)$

LU: pivoting

Problem at step k if $a_{k k}=0$
Find largest $a_{j k}$ in $j=k \rightarrow n$, say at $j=\ell$
Swap rows k and ℓ - use index mapping (permutation matrix)
Partial pivoting $=$ swapping rows
Full pivoting = swap rows and columns - rarely better

- Note $\operatorname{det} A=\Pi_{i} u_{i i}$
- Symmetric $A: \quad A=L D L^{T}$ with diagonal D
- Sym \& positive definite: $\quad A=\left(L D^{1 / 2}\right)\left(L D^{1 / 2}\right)^{T}$ Cholesky
- Tridiagonal A : L diagonal and one under, U diagonal and one above.

Errors $A x=b$

Small ϵ error in b could become $\epsilon / \lambda_{\text {min }}$ error in solution, while worst solution is $b / \lambda_{\max }$
Thus relative error in solution could increase by factor

$$
K=\frac{\lambda_{\max }}{\lambda_{\min }}=\text { condition number of } A
$$

Theoretically $L U$ decomposition gives bigger errors, but not often

QR decomposition

$$
A=Q R
$$

- R upper triangular
- Q orthogonal, $Q Q^{T}=I$, i.e. columns orthonormal So at no cost $Q^{-1}=Q^{T}$
- May not stretch/increase errors like $L U$
- Used for eigenvalues
- $\operatorname{det} A=\Pi_{i} r_{i i}$
Q not unique
3 methods: Gram-Schmidt, Givens, Householder

QR Gram-Schmidt

Columns of $A \quad \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$

$$
\begin{array}{lll}
\mathbf{q}_{1}^{\prime}=\mathbf{a}_{1} & & \mathbf{q}_{1}=\mathbf{q}_{1}^{\prime} / / \mathbf{q}_{1}^{\prime} \mid \\
\mathbf{q}_{2}^{\prime}=\mathbf{a}_{2} & -\left(\mathbf{a}_{2} \cdot \mathbf{q}_{1}\right) \mathbf{q}_{1} & \\
\mathbf{q}_{3}=\mathbf{a}_{3} & -\left(\mathbf{a}_{3} \cdot \mathbf{q}_{1}\right) \mathbf{q}_{1} & -\left(\mathbf{a}_{3} \cdot \mathbf{q}_{2}\right) \mathbf{q}_{2} /\left|\mathbf{q}_{2}^{\prime}\right| \\
\mathbf{q}_{3}=\mathbf{q}_{3}^{\prime} /\left|\mathbf{q}_{3}^{\prime}\right|
\end{array}
$$

$Q=$ matrix with columns $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$
Let

$$
r_{i i}=\left|\mathbf{q}_{i}^{\prime}\right|, \quad \text { and } \quad r_{i j}=\mathbf{a}_{j} \cdot \mathbf{q}_{i}, \quad i<j
$$

Then

$$
\mathbf{a}_{j}=\sum_{i=1}^{j} \mathbf{q}_{j} r_{i j} \quad \text { i.e. } \quad A=Q R
$$

Better: when produce \mathbf{q}_{i} project it out of $\mathbf{a}_{j} j>i$

$Q R$ Givens rotation

$Q=$ product of many rotations

$$
G_{i j}=\left(\begin{array}{ccccccc}
& & & i & & & j \\
& 1 & & & & & \\
\\
& & 1 & & & & \\
i & & & \cos \theta & & & \sin \theta \\
& & \\
& & & & 1 & & \\
\\
j & & & -\sin \theta & & 1 & \\
& \cos \theta & & \\
& & & & & & \\
& & & & & & \\
& & & \\
&
\end{array}\right)
$$

$G_{i j} A$ alters rows and columns i and j
Choose θ to zero an off-diagonal Strategy to avoid filling previous zeros
Can parallelise

QR Householder

$Q=$ product of many reflections

$$
H=\left(I-2 \frac{\mathbf{h} \mathbf{h}^{T}}{\mathbf{h} \cdot \mathbf{h}}\right)
$$

Take $\quad \mathbf{h}_{1}=\mathbf{a}_{1}+\left(\alpha_{1}, 0, \ldots, 0\right)^{T}$ with $\alpha_{1}=\left|\mathbf{a}_{1}\right| \operatorname{sign}\left(a_{11}\right)$ So

$$
\mathbf{h}_{1} \cdot \mathbf{a}_{1}=\left|\mathbf{a}_{1}\right|^{2}+\left|a_{11}\right|\left|\mathbf{a}_{1}\right| \quad \text { and } \quad \mathbf{h}_{1} \cdot \mathbf{h}_{1}=\text { twice }
$$

Hence

$$
H_{1} \mathbf{a}_{1}=\left(-\alpha_{1}, 0, \ldots, 0\right)^{T}
$$

Now work on $(n-1) \times(n-1)$ subsystem in same way
Note $H \mathbf{x}$ is $O(n)$ operations, not $O\left(n^{2}\right)$
Hence forming Q is $O\left(n^{3}\right)$

Sparse matrices

Do not store all A, just non-zero elements in "packed" form
Evaluating $A \mathbf{x}$ cheaper than $O\left(n^{2}\right)$
e.g. Poisson on $N \times N$ grid, A is $N^{2} \times N^{2}$ with $5 N^{2}$ non-zero, so $A \mathrm{x}$ is $5 N^{2}$ not N^{4}
$L U$ and $Q R$ "direct methods" for dense (faster if banded)
Use iterative method for sparse A
i.e.

$$
A=B+C \quad \rightarrow \quad \mathbf{x}_{n+1}=B^{-1}\left(\mathbf{b}-C \mathbf{x}_{n}\right)
$$

converges if $\left|B^{-1} C\right|<1$, e.g. Sor

Conjugate gradients - A symmetric, positive definite

- actually a direct method, but usually converges well before n steps

Solve $A x=b$ by minimising quadratic

$$
f(x)=\frac{1}{2}(A x-b)^{T} A^{-1}(A x-b)=\frac{1}{2} x^{T} A x-x^{T} b+\frac{1}{2} b^{T} A b
$$

with

$$
\nabla f=A x-b
$$

From \mathbf{x}_{n} look in direction \mathbf{u} for minimum

$$
f\left(\mathbf{x}_{n}+\alpha \mathbf{u}\right)=f\left(\mathbf{x}_{n}\right)+\alpha \mathbf{u} \cdot \nabla f_{n}+\frac{1}{2} \alpha^{2} \mathbf{u}^{T} A \mathbf{u}
$$

i.e. minimum at $\alpha=-\mathbf{u} \cdot \nabla f_{n} / \mathbf{u}^{T} A \mathbf{u}$

Choose \mathbf{u} ? \quad steepest descent $\mathbf{u}=\nabla f$?

GC not steepest descent ∇f

Steepest descent \rightarrow rattle from side to side across steep valley with no movement along the valley floor

Need new direction \mathbf{v} which does not reset \mathbf{u} minimisation

$$
\begin{gathered}
f\left(\mathbf{x}_{n}+\alpha \mathbf{u}+\beta \mathbf{v}\right)=f\left(\mathbf{x}_{n}\right)+\alpha \mathbf{u} \cdot \nabla f_{n}+\frac{1}{2} \alpha^{2} \mathbf{u}^{T} A \mathbf{u} \\
+\alpha \beta \mathbf{u}^{T} A \mathbf{v}+\beta \mathbf{v} \cdot \nabla f_{n}+\frac{1}{2} \beta^{2} \mathbf{v}^{T} A \mathbf{v}
\end{gathered}
$$

Hence need $\mathbf{u}^{T} A \mathbf{v}=0 \quad$ "conjugate directions"

Conjugate Gradient Algorithm

Start x_{0} and u_{0}
Residual $r_{n}=A x_{n}-b=\nabla f_{n}$
Iterate

$$
\left.\begin{array}{rlr}
x_{n+1}=x_{n}+\alpha u_{n} & \text { Minimising } & \alpha=-\frac{u_{n}^{T} r_{n}}{u_{n}^{T} A u_{n}} \\
r_{n+1}=r_{n}+\alpha A u_{n} & & \text { Conj grad } \\
u_{n+1} & =r_{n+1}+\beta u_{n} &
\end{array}\right)-\frac{r_{n+1}^{T} A u_{n}}{u_{n}^{T} A u_{n}}
$$

Note only one matrix evaluation per iteration - good sparse
Can show u_{n+1} conjugate all $u_{i} i=1,2, \ldots, n$
Can show $\alpha=\frac{r_{n}^{T} r_{n}}{u_{n}^{T} A u_{n}}, \quad \beta=\frac{r_{n+1}^{T} r_{n+1}}{r_{n}^{T} r_{n}}$

Precondition

$A x=b$ same solution as $B^{-1} A x=B^{-1} b$
Choose B with easy inverse and $B^{-1} A$ sparse
Typical $I L U=$ incomplete $L U$, few large elements
Non-symmetric A
Gmres minimises $(A x-b)^{T}(A x-b)$

- but condition number K^{2}
$\operatorname{GmReS}(n)$ restart after n - avoids large storage
If tough, then $S V D=$ singular value decomposition

$$
A=U S V=\sum_{i} u_{i}^{T} \lambda_{i} v_{i}
$$

with v and u eigenvectors and adjoints, λ_{i} eigenvalues

Eigenproblems $A e=\lambda e$ and generalised $A e=\lambda B e$

- No finite/direct method - must iterate
- A real \& symmetric - nice orthogonal evectors
- A not symmetric - possible degenerate cases also non-normal modes (\& pseud-spectra...)

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
-1 & k^{2} \\
0 & -1-k
\end{array}\right)\binom{x}{y} \quad \text { IC } \quad x(0)=0, y(0)=1
$$

has solution $x=k\left(e^{-t}-e^{(1+k) t}\right)$ which eventually decays but before is k larger than IC.

Henceforth A real and symmetric

Power iteration - for largest evalue

Start random x_{0}
Iterate a few times $x_{n+1}=A x_{n}=A^{n} x_{0}$
x_{n} becomes dominated by evector with largest evalue, so

$$
\lambda_{\text {approx }}=\left|A x_{n}\right| /\left|x_{n}\right|, \quad e_{\text {approx }}=A x_{n} /\left|A x_{n}\right|
$$

With this crude approximation invert

$$
\left(A-\lambda_{\text {approx }} I\right)^{-1}
$$

which has one very large evalue $1 /\left(\lambda_{\text {correct }}-\lambda_{\text {approx }}\right)$, so power iteration on this converges very rapidly

Find other evalues with μ-shifts $(A-\mu I)^{-1}$

Jacobi - small A only

Find maximum off-diagonal $a_{i j}$
Givens rotation $G_{i j}$ with θ to zero $a_{i j}$, and $a_{j i}$ by symmetry

$$
A^{\prime}=G A G^{T} \quad \text { has same evalues }
$$

Does fill in previous zeros, but sum of off-diagonals squared decreases by $a_{i j}^{2}$
Hence converges to diagonal (=evalues) form

Main method

Step 1: reduce to Hessenberg H, upper triangular plus one below diagonal

Arnoldi (GS on Kyrlov space $q_{1}, A q_{1}, A^{2} q_{1}, \ldots$)
Given unit q_{1}, step $k=1 \rightarrow n-1$

$$
\begin{aligned}
& v=A q_{k} \\
& \text { for } j=1 \rightarrow k: H_{j k}=q_{j} \cdot v ; v \leftarrow v-H_{j k} q_{j} \\
& H_{k+1 k}=|v| \\
& q_{k+1}=v / H_{k+1 k}
\end{aligned}
$$

Hence

$$
\text { original } \quad v=A q_{k}=H_{k+1 k} q_{k+1}+H_{k k} q_{k}+\ldots+H_{1 k} q_{1}
$$

$$
\text { i.e. } \quad A\left(q_{1}, q_{2}, \ldots, q_{n}\right)=\left(q_{1}, q_{2}, \ldots, q_{n}\right) H
$$

i.e. $\quad A Q=Q H$ or $H=Q^{T} A Q$ with same evalues as A

Cost $O\left(n^{2}\right)$ if dense

$$
H=Q^{T} A Q \quad \text { Hessenberg }
$$

A symmetric $\rightarrow H$ symmetric, hence tridiagonal Hence reduce 'for $j=1 \rightarrow k$ ' to 'for $j=k-1, k$ ',

$$
\text { Cost } \left.\rightarrow O\left(n^{2}\right) \quad \text { (Lanzcos }\right)
$$

NB: making q_{k+1} orthogonal to $q_{k} \& q_{k-1}$
gives q_{k+1} orthogonal to $q_{j} j=k, k-1, k-2, \ldots, 1$ cf conjugate gradient

Main method, step 2

a. $Q R$ Find $Q R$ decomposition of H Set $H^{\prime}=R Q=Q^{T} A Q$

- remains Hessenberg/Tridiagonal
- off-diagonals reduced by $\lambda_{i} / \lambda_{j}$
\rightarrow converges to diagonal, of evalues
b. Power iteration - quick when tridiagonal
c. Root solve $\operatorname{det}(A-\lambda I)=0$ - quick if tridiagonal

BUT USE PACKAGES

