Nonlinear considerations

Nonlinear system

$$
\dot{\mathbf{u}}=\mathbf{f}(\mathbf{u})
$$

Find steady states (of discretised version)

$$
\mathbf{f}(\mathbf{u})=0
$$

by Newton iteration (quadratic convergence)

$$
\mathbf{u}^{n+1}=\mathbf{u}^{n}+\boldsymbol{\delta} \quad \text { with } \mathbf{f}^{\prime} \boldsymbol{\delta}=-\mathbf{f}\left(\mathbf{u}^{n}\right)
$$

NB Jacobian \mathbf{f}^{\prime} also gives linear stability info

- can text all $\operatorname{Re}(\lambda)<0$ without finding all λ

Find Jacobian

- Analytically - rarely, but see e.g. later before or after discretisation
- Numerical differentiation

$$
\frac{\partial f_{i}}{\partial u_{j}} \approx \frac{f_{i}\left(\mathbf{u}^{n}+h \mathbf{e}_{j}\right)-f_{i}\left(\mathbf{u}^{n}\right)}{h}
$$

with suitably small h

- Update in last direction

$$
\mathbf{f}^{\prime n+1}=\mathbf{f}^{\prime n}+\frac{2 \mathbf{f}\left(\mathbf{u}^{n+1}\right) \delta^{T}}{|\boldsymbol{\delta}|^{2}}
$$

may not converge

Eg limit cylcle of Van der Pol oscillator

a nonlinear eigenvalue problem

$$
\ddot{u}+\mu \dot{u}\left(u^{2}-1\right)+u=0
$$

Search fior a period solution with $u(T)=u(0), \dot{u}(T)=\dot{u}(0)$
Linearise (analytically) about a guess

$$
u^{n+1}=u^{n}+\epsilon v(t), \quad T^{n+1}=T^{n}+\delta
$$

so

$$
\ddot{v}+\mu \dot{v}\left(u^{2}-1\right)+\mu \dot{u} 2 u v+v=0
$$

Wlog: $v(0)=0$ and $\dot{v}(0)=1$
Periodic if

$$
\begin{aligned}
& u^{n}\left(T^{n}\right)+\delta \dot{u}\left(T^{n}\right)+\epsilon v\left(T^{n}\right)=u^{n}(0)+\epsilon(v(0)=0) \\
& \dot{u}^{n}\left(T^{n}\right)+\delta \ddot{u}\left(T^{n}\right)+\epsilon \dot{v}\left(T^{n}\right)=\dot{u}^{n}(0)+\epsilon(\dot{v}(0)=1)
\end{aligned}
$$

Solve for ϵ and δ

Parameter continuation

$$
\mathbf{f}(\mathbf{u}, \alpha)=0 \quad \text { with parameter } \alpha
$$

Start from one solution \mathbf{u}_{0} for α_{0}
Make a small increment to $\alpha_{0}+\delta \alpha$
Find first estimate of new solution $\mathbf{u}_{0}+\boldsymbol{\delta} \mathbf{u}$ from

$$
\delta \mathbf{u} \frac{\partial \mathbf{f}}{\partial \mathbf{u}}+\delta \alpha \frac{\partial \mathbf{f}}{\partial \alpha}=0
$$

Then Newton iterate for refinded solution
But problems if $\partial \mathbf{f} / \partial \mathbf{u}$ is singular

Problems when $\partial \mathbf{f} / \partial \mathbf{u}$ is singular

- Loss of stability of steady state of $\dot{\mathbf{u}}=\mathbf{f}(\mathbf{u}, \alpha)$
- Possible bifurcation.

Two eigenvalues $\operatorname{Re}(\lambda)=0$. Eigenvectors give directions of new soltions

Jump over with big $\delta \alpha$ steps

More problems when $\partial \mathbf{f} / \partial \mathbf{u}$ is singular

- Possible turning point

try different parameter, e.g. $|\mathbf{u}|$
- Possible limit point

Look at stability and nonlinear IVP

Searching for singularites of physical systems

- E.g. boundary layer equation for flow around a cylinder/sphere.

IVP lows up in a finite time

- E.g. inviscid 2D vortex sheet has finite-time singularity in the curvature of the sheet

Refine numerics

- smaller Δt
- smaller Δx
- cluster points

Only postpone singularity, never avoid
Good to have theoretical idea of type of singularity

- searching singularities

Do not naively plot something which blows up

If know $A \sim\left(T_{s}-t\right)^{-1 / 2}$, better plot $1 / A^{2}$

- searching singularities

Computer-aided algebra for power series in time

$$
u(t) \sim \Sigma^{N} a_{n} t^{n}
$$

Domb-Sykes plot finds t_{s} and α in $\left(t_{s}-t\right)^{-\alpha}$

$$
\frac{a_{n}}{a_{n-1}} \sim \frac{1}{t_{s}}\left(1-\frac{1-\alpha}{n}\right)
$$

Conver to Padé approximant

$$
\frac{\Sigma^{K} b_{b} t^{n}}{\sum^{L} c_{n} t^{n}}
$$

and look for zeros of denominator - move with L ?

