Time integration

Issues

- Accuracy
- Cost
 - ► CPU = cost/step×#steps,
 - storage,
 - programmer's time
- Stability

Spatial discretisation (typically FE or Spectral)

$$\rightarrow u_t = F(u, t)$$

- Treat by black-box time-integrator
- OR recognise spatial structure (typically only for FD)

Stability in time

- 1. Unstable algorithm bad!
 - numerics blow up all Δt , usually rapidly, often oscillates
- 2. Conditionally stable normal
 - stable if Δt not too big
- 3. Unconditionally stable slightly dangerous stable all Δt , inaccurate large Δt

Stable' = ?

- (i) numerics decays, even if physics does not
- (ii) numerics do not blow up for all t
- (iii) numerics do not blow up much, i.e. converge fixed t e.g. need $\Delta t < a + b/t$

Lax equivalence theorem

For a well-posed linear problem,

a consistent approximation (local error ightarrow 0 as $\Delta t
ightarrow$ 0)

converges to the correct solution

if and only if the algorithm is stable

Stiffness, for $u_t = F(u, t)$

How do small disturbances grow/decay? Linearise + freeze coefficients - occasionally wrong

 $\delta u_t = F'(u_0, t_0) \delta u$

Find eigenvalues λ of $F'(u_0, t_0)$ Stiff if $\lambda_{\max} \gg \lambda_{\min}$, typically by 10^4 Stability controlled by largest $|\lambda|$, need

$$\Delta t < rac{\mathrm{const}}{|\lambda|_{\mathrm{max}}}$$

– may represent boring time behaviour on fine scales If so, use unconditionally stable algorithm with big Δt and inaccurate rending of boring fine details

For $u_t = \lambda u$

 $\frac{u^{n+1}-u^n}{\Delta t}=\lambda u^n$

Hence

$$u^{n+1} = (1 + \lambda \Delta t)^{n=t/\Delta t} u^1 \ o e^{\lambda t} u^1$$
 as $\Delta t o 0$

Case λ real and negative: stable if $\Delta t < rac{2}{|\lambda|}$

Case λ purely imaginary

$$|1+\lambda\Delta t|=\left(1+|\lambda|^2\Delta t^2
ight)^{1/2}>1$$
 all Δt

so "unstable"

Now

$$\left(1+|\lambda|^2\Delta t^2
ight)^{t/2\Delta t} \quad {\Delta t o 0} \qquad e^{{1\over 2}|\lambda|^2\Delta t \, t}$$

i.e. does not blow up much (ϵ) if

$$\Delta t < \frac{2\ln\epsilon}{\lambda|^2 t}$$

Backward Euler – 1st order, implicit

For $u_t = \lambda u$

So

$$u^n = \left(\frac{1}{1 - \lambda \Delta t}\right)^n u_0$$

 $\frac{u^{n+1}-u^n}{\Delta t} = \lambda u^{n+1}$

Very stable just unstable in $|1 - \lambda \Delta t| < 1$

But inaccurate if Δt large E.g. λ real and negative & large $\Delta t = 1/|\lambda|$ gives

$$u(t) \sim e^{\lambda t \ln 2}$$
 cf $e^{\lambda t}$

Mid-point Euler - 2nd order, explicit

Simple to recode the first-order Forward Euler to make second-order

$$\frac{\frac{u^*-u^n}{\frac{1}{2}\Delta t}}{F(u^n,t_n)} = F(u^n,t_n)$$
$$\frac{u^{n+1}-u^n}{\Delta t} = F(u^*,t_{n+\frac{1}{2}})$$

Same stability as Forward Euler

Crank-Nicolson - 2nd order implicit

For $u_t = \lambda u$

$$\frac{u^{n+1}-u^n}{\Delta t} = \lambda \frac{u^{n+1}+u^n}{2}$$

NB: RHS uses unknown u^{n+1} , not a problem for this simple linear problem. Solution

$$u^{n} = \left(\frac{1 + \frac{1}{2}\lambda\Delta t}{1 - \frac{1}{2}\lambda\Delta t}\right)^{n} u^{0}$$

Case $Re(\lambda) < 0$ stable all Δt

Leap frog - 2nd order, explicit

$$\frac{u^{n+1}-u^{n-1}}{2\Delta t}=\lambda u^n$$

Two-term recurrence relation

$$u^{n+1} - 2\lambda \Delta t u^n - u^{n-1} = 0$$

has solutions $u^n = A\theta^n_+ + B\theta^n_-$ with $\theta_\pm = \lambda \Delta t \pm \sqrt{1 + \lambda^2 \Delta t^2}$

So

$$u^n \sim e^{\lambda n \Delta t} + \epsilon (-1)^n e^{-\lambda n \Delta t}$$

Spurious solution blows up if $Re(\lambda) < 0$

But stable for purely imaginary $\lambda \& \Delta t < 1/|\lambda|$

Runge-Kutta

E.g. standard 4th order RK, for $u_t = F(u, t)$

$$du^{1} = \Delta tF(u^{n}, t^{n})$$

$$du^{2} = \Delta tF(u^{n} + \frac{1}{2}du^{1}, t^{n} + \frac{1}{2}\Delta t)$$

$$du^{3} = \Delta tF(u^{n} + \frac{1}{2}du^{2}, t^{n} + \frac{1}{2}\Delta t)$$

$$du^{4} = \Delta tF(u^{n} + 1du^{3}, t^{n} + 1\Delta t)$$

$$u^{n+1} = u^{n} + \frac{1}{6}(du^{1} + 2du^{2} + 2du^{3} + du^{4})$$

NB: 4 function calls per step – very expensive Can vary Δt after each step – adaptive Good stability, need $\Delta t \lesssim \frac{3}{|\lambda|}$

Error control for RK4

Take 2 steps of Δt from u^n

$$u^{n+2} = A + 2b\Delta t^5 + \dots$$

Take 1 step of $2\Delta t$ from u^n

$$u^* = A + b(2\Delta t)^5 + \dots$$

Extrapolating, 5th order estimate of answer

$$\frac{16}{15}u^{n+2} - \frac{1}{15}u^*$$

Estimate of error

$$\frac{1}{30}(u^*-u^{n+2})$$

– decide if to decrease/increase Δt

$$du^{1} = \Delta t F \left(u^{n} + \frac{1}{4} du^{1} + \left(\frac{1}{4} - \frac{\sqrt{3}}{6}\right) du^{2}, t^{n} + \left(\frac{4}{1} - \frac{\sqrt{3}}{6}\right) \Delta t \right)$$

$$du^{2} = \Delta t F \left(u^{n} + \left(\frac{1}{4} + \frac{\sqrt{3}}{6}\right) du^{1} + \frac{1}{4} du^{2}, t^{n} + \left(\frac{1}{4} + \frac{\sqrt{3}}{6}\right) \Delta t \right)$$

$$u^{n+1} = u^{n} + \frac{1}{2} du^{1} + \frac{1}{2} du^{2}$$

Iterate to find du^1 and du^2 – very expensive

Stable all Δt if $Re(\lambda) \leq 0$

Sympletic integrators

For Hamiltonian (non-dissipative) systems

$$\dot{p}_i = -\frac{\partial H}{\partial q_i}, \qquad \dot{q}_i = \frac{\partial H}{\partial p_i}$$

conserve H and projections of volume of phase-space NB Important for integration to long times.

Sympletic integrators have same conservations properties for a numerical approximation to the Hamiltonian $H^{
m num}(\Delta t)$

NB must keep Δt fixed

E.g. Störmer-Verlet (sort of leap-frog) - for molecular dynamics

$$p^{n+\frac{1}{2}} = p^{n} + \frac{1}{2}\Delta tF(r^{n})$$

$$r^{n+1} = r^{n} + \Delta t \frac{1}{m}p^{n+\frac{1}{2}}$$

$$p^{n+1} = p^{n+\frac{1}{2}} + \frac{1}{2}\Delta tF(r^{n+1})$$

Multi-step methods – use information from previous steps

AB3 Adams-Bashforth, 3rd order, explicit

$$u^{n+1} = u^n + \frac{\Delta t}{12} \left(23F_n - 16F_{n-1} + 5F_{n-2} \right)$$

AM4 Adams-Moulton, 4th order, implicit

$$u^{n+1} = u^n + \frac{\Delta t}{24} (9F_{n+1} + 19F_n - 5F_{n-1} + F_{n-2})$$

NB uses 1 function evaluation per step – good NB difficult to start or change step size Δt – bad NB Stable $\Delta t \lesssim 1/|\lambda|$

Predictor-corrector

AB3 sufficiently good estimate for u^{n+1} to use in AM4 F_{n+1} , but then 2 function evaluations per step

Navier-Stokes - different methods for different terms

For
$$u_t + uu_x = u_{xx}$$
 (no pressure, yet)

$$\frac{u^{n+1} - u^n}{\Delta t} = -(uu_x)^{n+\frac{1}{2}} + \frac{u^{n+1}_{i+1} - 2u^{n+1}_i + u^{n+1}_{i-1} + u^n_{i+1} - 2u^n_i + u^n_{i-1}}{2\Delta x^2}$$

implicit on diffusion for stability at boring fine scales

AB3 explicit on safe advection

$$(uu_{x})^{n+\frac{1}{2}} = \frac{1}{12} \left(23 \left(uu_{x} \right)^{n-\frac{1}{2}} - 16 \left(uu_{x} \right)^{n-\frac{3}{2}} + 5 \left(uu_{x} \right)^{n-\frac{5}{2}} \right)$$

Iserles Zig-Zag – 2nd order and sort of upwinding

$$(uu_{x})^{n+\frac{1}{2}} = \frac{u_{i}^{n+1} + u_{i}^{n}}{2} \left(\frac{u_{i+1}^{n+1} - u_{i}^{n+1}}{2\Delta x} + \frac{u_{i}^{n} - u_{i-1}^{n}}{2\Delta x} \right) \quad \text{if} \quad u_{i}^{n} > 0$$

Lagrangian methods in $\boldsymbol{u}\cdot\nabla\boldsymbol{u}$ dominant

Pressure update - 2nd order, exact projection to $\nabla\cdot {\bf u}=0$

Split time-step

$$\frac{u^* - u^n}{\Delta t} = -(uu_x)^{n+\frac{1}{2}} - \nabla \rho^{n-\frac{1}{2}} + \nu \nabla^2 \left(\frac{u^* + u^n}{2}\right)$$

Projection

$$u^{n+1} = u^* + \Delta t \nabla \phi^{n+1}$$

with

$$abla^2 \phi^{n+1} = -\nabla \cdot u^* / \Delta t \quad \text{with BC} \quad \Delta t \frac{\partial \phi^{n+1}}{\partial n} = u_n^{\mathrm{BC}} - u_n^*$$

Update

$$abla p^{n+rac{1}{2}} =
abla p^{n-rac{1}{2}} -
abla \left(\phi^{n+1} - rac{1}{2}
u \Delta t
abla^2 \phi^{n+1}
ight)$$

Tangential BC

$$u_{\mathrm{tang}}^* = u_{\mathrm{tang}}^{\mathrm{BC}} - \Delta t \nabla \phi^n$$