
Time integration

Issues

I Accuracy
I Cost

I CPU = cost/step×#steps,
I storage,
I programmer’s time

I Stability

Spatial discretisation (typically FE or Spectral)

→ ut = F (u, t)

I Treat by black-box time-integrator

I OR recognise spatial structure (typically only for FD)

Stability in time

1. Unstable algorithm – bad!
– numerics blow up all ∆t, usually rapidly, often oscillates

2. Conditionally stable – normal
– stable if ∆t not too big

3. Unconditionally stable – slightly dangerous
– stable all ∆t, inaccurate large ∆t

‘Stable’ = ?

(i) numerics decays, even if physics does not

(ii) numerics do not blow up for all t

(iii) numerics do not blow up much, i.e. converge fixed t
e.g. need ∆t < a + b/t

Lax equivalence theorem

For a well-posed linear problem,

a consistent approximation (local error → 0 as ∆t → 0)

converges to the correct solution

if and only if the algorithm is stable

Stiffness, for ut = F (u, t)

How do small disturbances grow/decay?
Linearise + freeze coefficients – occasionally wrong

δut = F ′(u0, t0)δu

Find eigenvalues λ of F ′(u0, t0)

Stiff if λmax � λmin, typically by 104

Stability controlled by largest |λ|, need

∆t <
const

|λ|max

– may represent boring time behaviour on fine scales
If so, use unconditionally stable algorithm with big ∆t and
inaccurate rending of boring fine details



Forward Euler – 1st order, explicit

For ut = λu
un+1 − un

∆t
= λun

Hence

un+1 = (1 + λ∆t)n=t/∆t u1

→ eλtu1 as ∆t → 0

Case λ real and negative: stable if ∆t < 2
|λ|

Forward Euler – 1st order, explicit

Case λ purely imaginary

|1 + λ∆t| =
(
1 + |λ|2∆t2

)1/2
> 1 all ∆t

so “unstable”

Now (
1 + |λ|2∆t2

)t/2∆t ∆t→0−−−−→ e
1
2 |λ|

2∆t t

i.e. does not blow up much (ε) if

∆t <
2 ln ε

λ|2t

Backward Euler – 1st order, implicit

For ut = λu
un+1 − un

∆t
= λun+1

So

un =

(
1

1− λ∆t

)n

u0

Very stable just unstable in |1− λ∆t| < 1

But inaccurate if ∆t large
E.g. λ real and negative & large ∆t = 1/|λ| gives

u(t) ∼ eλt ln 2 cf eλt

Mid-point Euler – 2nd order, explicit

Simple to recode the first-order Forward Euler to make
second-order

u∗ − un

1
2 ∆t

= F (un, tn)

un+1 − un

∆t
= F (u∗, tn+ 1

2
)

Same stability as Forward Euler



Crank-Nicolson – 2nd order implicit

For ut = λu
un+1 − un

∆t
= λ

un+1 + un

2

NB: RHS uses unknown un+1, not a problem for this simple linear
problem. Solution

un =

(
1 + 1

2λ∆t

1− 1
2λ∆t

)n

u0

Case Re(λ) < 0 stable all ∆t

Case λ imaginary amplitude correctly constant all ∆t
although phase drifts

Leap frog - 2nd order, explicit

un+1 − un−1

2∆t
= λun

Two-term recurrence relation

un+1 − 2λ∆tun − un−1 = 0

has solutions un = Aθn+ + Bθn− with θ± = λ∆t ±
√

1 + λ2∆t2

So
un ∼ eλn∆t + ε(−1)ne−λn∆t

Spurious solution blows up if Re(λ) < 0

But stable for purely imaginary λ & ∆t < 1/|λ|

Runge-Kutta

E.g. standard 4th order RK, for ut = F (u, t)

du1 = ∆tF (un, tn)

du2 = ∆tF (un + 1
2du

1, tn + 1
2 ∆t)

du3 = ∆tF (un + 1
2du

2, tn + 1
2 ∆t)

du4 = ∆tF (un + 1du3, tn + 1∆t)

un+1 = un + 1
6 (du1 + 2du2 + 2du3 + du4)

NB: 4 function calls per step – very expensive

Can vary ∆t after each step – adaptive

Good stability, need ∆t . 3
|λ|

Error control for RK4

Take 2 steps of ∆t from un

un+2 = A + 2b∆t5 + . . .

Take 1 step of 2∆t from un

u∗ = A + b(2∆t)5 + . . .

Extrapolating, 5th order estimate of answer

16

15
un+2 − 1

15
u∗

Estimate of error
1

30 (u∗ − un+2)

– decide if to decrease/increase ∆t



Implicit Runge-Kutta

du1 = ∆tF
(
un + 1

4du
1 + ( 1

4 −
√

3
6 )du2, tn + ( 4

1 −
√

3
6 )∆t

)
du2 = ∆tF

(
un + ( 1

4 +
√

3
6 )du1 + 1

4du
2, tn + ( 1

4 +
√

3
6 )∆t

)
un+1 = un + 1

2du
1 + 1

2du
2

Iterate to find du1 and du2 – very expensive

Stable all ∆t if Re(λ) ≤ 0

Multi-step methods – use information from previous steps

AB3 Adams-Bashforth, 3rd order, explicit

un+1 = un +
∆t

12
(23Fn − 16Fn−1 + 5Fn−2)

AM4 Adams-Moulton, 4th order, implicit

un+1 = un +
∆t

24
(9Fn+1 + 19Fn − 5Fn−1 + Fn−2)

NB uses 1 function evaluation per step – good
NB difficult to start or change step size ∆t – bad
NB Stable ∆t . 1/|λ|

Predictor-corrector
AB3 sufficiently good estimate for un+1 to use in AM4 Fn+1,

but then 2 function evaluations per step

Sympletic integrators

For Hamiltonian (non-dissipative) systems

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi

conserve H and projections of volume of phase-space
NB Important for integration to long times.

Sympletic integrators have same conservations properties for a
numerical approximation to the Hamiltonian Hnum(∆t)

NB must keep ∆t fixed

E.g. Störmer-Verlet (sort of leap-frog) – for molecular dynamics

pn+ 1
2 = pn + 1

2 ∆tF (rn)

rn+1 = rn + ∆t 1
mpn+ 1

2

pn+1 = pn+ 1
2 + 1

2 ∆tF (rn+1)

Navier-Stokes – different methods for different terms

For ut + uux = uxx (no pressure, yet)

un+1 − un

∆t
= − (uux)n+ 1

2

+
un+1
i+1 − 2un+1

i + un+1
i−1 + uni+1 − 2uni + uni−1

2∆x2

implicit on diffusion for stability at boring fine scales

AB3 explicit on safe advection

(uux)n+ 1
2 = 1

12

(
23 (uux)n−

1
2 − 16 (uux)n−

3
2 + 5 (uux)n−

5
2

)
Iserles Zig-Zag – 2nd order and sort of upwinding

(uux)n+ 1
2 =

un+1
i + uni

2

(
un+1
i+1 − un+1

i

2∆x
+

uni − uni−1

2∆x

)
if uni > 0

Lagrangian methods in u · ∇u dominant



Pressure update - 2nd order, exact projection to ∇ · u = 0

Split time-step

u∗ − un

∆t
= − (uux)n+ 1

2 −∇pn−
1
2 + ν∇2

(
u∗ + un

2

)
Projection

un+1 = u∗ + ∆t∇φn+1

with

∇2φn+1 = −∇ · u∗/∆t with BC ∆t
∂φn+1

∂n
= uBC

n − u∗n

Update

∇pn+ 1
2 = ∇pn−

1
2 −∇

(
φn+1 − 1

2ν∆t∇2φn+1
)

Tangential BC
u∗tang = uBC

tang −∆t∇φn


