Example Sheet 1

1. Consider the two-dimensional flow $u=1 /(1+t), v=1$ in $t>-1$. Find and sketch
(i) the streamline at $t=0$ that passes through the point $(1,1)$,
(ii) the path of a fluid particle released from $(1,1)$ at $t=0$,
(iii) the position at $t=0$ of a streak of dye released from $(1,1)$ during the time interval $-1<t \leq 0$.
2. A steady two-dimensional flow (pure straining) is given by $u=\alpha x, v=-\alpha y$ with α constant.
(i) Find the equation for a general streamline of the flow, and sketch some of them.
(ii) At $t=0$ the fluid on the curve $x^{2}+y^{2}=a^{2}$ is marked (by an electro-chemical technique). Find the equation for this material fluid curve for $t>0$.
(iii) Does the area within the curve change in time, and why?
3. Repeat question 2 for the two-dimensional flow (simple shear) given by $u=\gamma y$, $v=0$ with γ constant. Which of the two flows stretches the curve faster at long times?
4. A two-dimensional flow is represented by a streamfunction $\psi(x, y)$ with $u=\partial \psi / \partial y$ and $v=-\partial \psi / \partial x$. Show that
(i) the streamlines are given by $\psi=$ const,
(ii) $|\mathbf{u}|=|\nabla \psi|$, so that the flow is faster where the streamlines are closer,
(iii) the volume flux per unit z-distance crossing any curve from \mathbf{x}_{0} to \mathbf{x}_{1} is given by $\psi\left(\mathbf{x}_{1}\right)-\psi\left(\mathbf{x}_{0}\right)$,
(iv) $\psi=$ const on any fixed (i.e. stationary) boundary.
[Hint for (iii): $\mathbf{n} d s=(d y,-d x)$.]
5. Verify that the two-dimensional flow given in Cartesian coordinates by

$$
u=\frac{y-b}{(x-a)^{2}+(y-b)^{2}}, \quad v=\frac{a-x}{(x-a)^{2}+(y-b)^{2}}
$$

satisfies $\nabla \cdot \mathbf{u}=0$, and then find the streamfunction $\psi(x, y)$ such that $u=\partial \psi / \partial y$ and $v=-\partial \psi / \partial x$. Sketch the streamlines.
6. Verify that the two-dimensional flow given in polar coordinates by

$$
u_{r}=U\left(1-\frac{a^{2}}{r^{2}}\right) \cos \theta, \quad u_{\theta}=-U\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta
$$

satisfies $\nabla \cdot \mathbf{u}=0$, and find the streamfunction $\psi(r, \theta)$. Sketch the streamlines.

$$
\left[\text { Take: } \quad \nabla \cdot \mathbf{u}=\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(u_{\theta}\right) \quad \text { and } \quad u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad u_{\theta}=-\frac{\partial \psi}{\partial r} .\right]
$$

7. Verify that the axisymmetric flow (uniaxial straining) given in cylindrical polar coordinates by $u_{r}=-\frac{1}{2} \alpha r, u_{z}=\alpha z$ satisfies $\nabla \cdot \mathbf{u}=0$, and find the Stokes streamfunction $\Psi(r, z)$. Sketch the streamlines.

$$
\left[\text { Take: } \quad \nabla \cdot \mathbf{u}=\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)+\frac{\partial u_{z}}{\partial z} \quad \text { and } \quad u_{r}=-\frac{1}{r} \frac{\partial \Psi}{\partial z}, \quad u_{z}=\frac{1}{r} \frac{\partial \Psi}{\partial r} .\right]
$$

8. An axisymmetric jet of water of speed $1 \mathrm{~m} \mathrm{~s}^{-1}$ and cross-section $6 \times 10^{-4} \mathrm{~m}^{2}$ strikes a wall at right angles and spreads out over it. By using the momentum integral equation, calculate the force on the wall due to the jet. [Neglect gravity.]
9. Starting from the Euler momentum equation for a fluid of constant density with a potential force $-\nabla \Phi$ per unit mass, show that for fixed volume V enclosed by surface A

$$
\frac{d}{d t} \int_{V} \frac{1}{2} \rho|\mathbf{u}|^{2} d V+\int_{A} \rho H \mathbf{u} \cdot \mathbf{n} d A=0
$$

where H is the Bernoulli quantity, $H=\frac{1}{2}|\mathbf{u}|^{2}+\frac{p}{\rho}+\Phi$. (This is sometimes interpreted as saying that H is the 'transportable energy', or the 'advected energy', per unit mass.)
10. How high can water rise up one's arm hanging in the river from a lazy ($1 \mathrm{~m} \mathrm{~s}^{-1}$) punt? [Use Bernoulli on surface streamline, where $p=1$ atmosphere.]
11. A flat-bottomed barge closely fits a canal, so that while it travels very slowly it still generates a fast $5 \mathrm{~m} \mathrm{~s}^{-1}$ current under it. Estimate how much lower in the water the barge lies as a result of this current. [Hint: Archimedes when stationary. Flow reduces pressure, so have to go deeper to get same pressure on long bottom.]
12. Waste water flows into a large tank at $10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$ and out of a short exit pipe of cross-section $4 \times 10^{-5} \mathrm{~m}^{2}$ into the air. The flow has reached a steady state. Estimate the height of the free surface of the water in the tank, relative to the height of the exit pipe.
13. A water clock is an axisymmetric vessel with a small exit pipe in the bottom. Find the shape of vessel for which the water level falls equal heights in equal intervals of time.

[^0]
[^0]: Please email any corrections/comments to E.J.Hinch@damtp.cam.ac.uk

