Example Sheet 1

- 1. Consider the two-dimensional flow u = 1/(1+t), v = 1 in t > -1. Find and sketch
- (i) the streamline at t = 0 that passes through the point (1, 1),
- (ii) the path of a fluid particle released from (1, 1) at t = 0,
- (iii) the position at t = 0 of a streak of dye released from (1, 1) during the time interval $-1 < t \le 0$.

2. A steady two-dimensional flow (pure straining) is given by $u = \alpha x$, $v = -\alpha y$ with α constant.

- (i) Find the equation for a general streamline of the flow, and sketch some of them.
- (ii) At t = 0 the fluid on the curve $x^2 + y^2 = a^2$ is marked (by an electro-chemical technique). Find the equation for this material fluid curve for t > 0.
- (iii) Does the area within the curve change in time, and why?

3. Repeat question 2 for the two-dimensional flow (simple shear) given by $u = \gamma y$, v = 0 with γ constant. Which of the two flows stretches the curve faster at long times?

4. A two-dimensional flow is represented by a streamfunction $\psi(x, y)$ with $u = \partial \psi / \partial y$ and $v = -\partial \psi / \partial x$. Show that

- (i) the streamlines are given by $\psi = \text{const}$,
- (ii) $|\mathbf{u}| = |\nabla \psi|$, so that the flow is faster where the streamlines are closer,
- (iii) the volume flux per unit z-distance crossing any curve from \mathbf{x}_0 to \mathbf{x}_1 is given by $\psi(\mathbf{x}_1) \psi(\mathbf{x}_0)$,
- (iv) $\psi = \text{const on any fixed}$ (i.e. stationary) boundary. [*Hint for (iii):* $\mathbf{n} ds = (dy, -dx)$.]
- 5. Verify that the two-dimensional flow given in Cartesian coordinates by

$$u = \frac{y-b}{(x-a)^2 + (y-b)^2}, \qquad v = \frac{a-x}{(x-a)^2 + (y-b)^2}$$

satisfies $\nabla \cdot \mathbf{u} = 0$, and then find the streamfunction $\psi(x, y)$ such that $u = \partial \psi / \partial y$ and $v = -\partial \psi / \partial x$. Sketch the streamlines.

6. Verify that the two-dimensional flow given in polar coordinates by

$$u_r = U\left(1 - \frac{a^2}{r^2}\right)\cos\theta, \qquad u_\theta = -U\left(1 + \frac{a^2}{r^2}\right)\sin\theta$$

satisfies $\nabla \cdot \mathbf{u} = 0$, and find the streamfunction $\psi(r, \theta)$. Sketch the streamlines.

$$\begin{bmatrix} Take: \quad \nabla \cdot \mathbf{u} \ = \ \frac{1}{r} \frac{\partial}{\partial r} \left(r u_r \right) \ + \ \frac{1}{r} \frac{\partial}{\partial \theta} \left(u_\theta \right) \quad \text{and} \quad u_r \ = \ \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad u_\theta \ = \ -\frac{\partial \psi}{\partial r}. \end{bmatrix}$$

7. Verify that the axisymmetric flow (uniaxial straining) given in cylindrical polar coordinates by $u_r = -\frac{1}{2}\alpha r$, $u_z = \alpha z$ satisfies $\nabla \cdot \mathbf{u} = 0$, and find the Stokes streamfunction $\Psi(r, z)$. Sketch the streamlines.

$$\begin{bmatrix} Take: \quad \nabla \cdot \mathbf{u} = \frac{1}{r} \frac{\partial}{\partial r} (ru_r) + \frac{\partial u_z}{\partial z} \text{ and } u_r = -\frac{1}{r} \frac{\partial \Psi}{\partial z}, \quad u_z = \frac{1}{r} \frac{\partial \Psi}{\partial r}. \end{bmatrix}$$

8. An axisymmetric jet of water of speed 1 m s^{-1} and cross-section $6 \times 10^{-4} \text{ m}^2$ strikes a wall at right angles and spreads out over it. By using the momentum integral equation, calculate the force on the wall due to the jet. [Neglect gravity.]

9. Starting from the Euler momentum equation for a fluid of constant density with a potential force $-\nabla \Phi$ per unit mass, show that for fixed volume V enclosed by surface A

$$\frac{d}{dt}\int_V \frac{1}{2}\rho |\mathbf{u}|^2 \, dV \ + \ \int_A \rho H \mathbf{u} \cdot \mathbf{n} \, dA \ = \ 0 \ ,$$

where *H* is the Bernoulli quantity, $H = \frac{1}{2}|\mathbf{u}|^2 + \frac{p}{\rho} + \Phi$. (This is sometimes interpreted as saying that *H* is the 'transportable energy', or the 'advected energy', per unit mass.)

10. How high can water rise up one's arm hanging in the river from a lazy (1 m s^{-1}) punt? [Use Bernoulli on surface streamline, where p = 1 atmosphere.]

11. A flat-bottomed barge closely fits a canal, so that while it travels very slowly it still generates a fast 5 m s^{-1} current under it. Estimate how much lower in the water the barge lies as a result of this current. [*Hint:* Archimedes when stationary. Flow reduces pressure, so have to go deeper to get same pressure on long bottom.]

12. Waste water flows into a large tank at 10^{-4} m³ s⁻¹ and out of a short exit pipe of cross-section 4×10^{-5} m² into the air. The flow has reached a steady state. Estimate the height of the free surface of the water in the tank, relative to the height of the exit pipe.

13. A water clock is an axisymmetric vessel with a small exit pipe in the bottom. Find the shape of vessel for which the water level falls equal heights in equal intervals of time.

Please email any corrections/comments to E.J.Hinch@damtp.cam.ac.uk